Coding Theory: Bounds

Bounds Bounds seen so far

• Sphere Packing Bound

Bounds Bounds seen so far

• Sphere Packing Bound

There are many bounds on $(n, k, d)_q$ linear codes, we will see two more: the Gilbert bound and the Singleton bound.

Bounds Bounds seen so far

• Sphere Packing Bound

There are many bounds on $(n, k, d)_q$ linear codes, we will see two more: the Gilbert bound and the Singleton bound.

Recall: $A_q(n, d)$ = number of codewords in a code over \mathbb{F}_q of length n and minimum distance at least d.

 $B_q(n,d)$ = number of codewords in a linear code over \mathbb{F}_q of length n and minimum distance at least d.

The Gilbert Bound

Recall that the Sphere Packing Bound is an upper bound on $A_q(n, d)$:

$$B_q(n,d) \le A_q(n,d)$$

$$\le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i},$$

 $t = \lfloor \frac{d-1}{2} \rfloor.$ The Gilbert Bound is a lower bound.

The Sphere Packing Bound:

Recall:

Packing radius = The largest radius of spheres centered at codewords so that the spheres are pairwise disjoint.

Recall:

Packing radius = The largest radius of spheres centered at codewords so that the spheres are pairwise disjoint.

When codes are not perfect, in order to fill \mathbb{F}_q^n with spheres centered at codewords, the spheres must have radius larger than $t = \lfloor \frac{d-1}{2} \rfloor$. Then not all spheres will be pairwise disjoint.

 $\rho = \rho(\mathcal{C})$ is the smallest integer *s* such that \mathbb{F}_q^n is the union of the spheres of radius *s* centered at the codewords of \mathcal{C} . Packing radius = The largest radius of spheres centered at codewords so that the spheres are pairwise disjoint.

 $\rho = \rho(\mathcal{C})$ is the smallest integer s such that \mathbb{F}_q^n is the union of the spheres of radius s centered at the codewords of \mathcal{C} . Packing radius = The largest radius of spheres centered at codewords so that the spheres are pairwise disjoint. A code C is perfect if and only if its covering radius equals its packing radius $(t = \rho(C))$. Otherwise, the covering radius is larger than the packing radius

 $(t \le \rho(\mathcal{C})).$

 $\rho = \rho(\mathcal{C})$ is the smallest integer s such that \mathbb{F}_q^n is the union of the spheres of radius s centered at the codewords of \mathcal{C} .

The covering radius $\rho(\mathcal{C})$ of a code \mathcal{C} , linear or not, is at most d-1.

Suppose by contradiction that $\rho(\mathcal{C}) \geq d.$ Then spheres of radius d-1 are not covering \mathbb{F}_{q}^{n} , and there must be at least one vector \mathbf{x} which is in none of these spheres. Create a new code $\mathcal{C}' = \mathcal{C} \cup \{\mathbf{x}\}.$ Then $|\mathcal{C}'| = |\mathcal{C}| + 1$, and the minimum Hamming distance of \mathcal{C}' is still d, since x is at distance at least d from all other codewords. Iterate with \mathcal{C}' instead of \mathcal{C} .

The Gilbert Bound

 $\frac{B_q(n,d)}{\sum_{i=0}^{q^n} {n \choose i} (q-1)^i}.$

For C a linear code with $B_q(n, d)$ codewords:

The covering radius of C is at most d-1.

The spheres of radius d-1 about the codewords cover \mathbb{F}_q^n by definition.

A sphere of radius d-1 centered at a codeword contains $\sum_{i=0}^{d-1} {n \choose i} (q-1)^i$ vectors. The $B_q(n,d)$ spheres must fill the space.

$$\frac{q^n}{\sum_{i=0}^{d-1} \binom{n}{i}(q-1)^i} \le B_q(n,d) \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i}(q-1)^i}, \ t = \lfloor \frac{d-1}{2} \rfloor$$

$$\frac{q^n}{\sum_{i=0}^{d-1} \binom{n}{i} (q-1)^i} \le B_q(n,d) \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i}, \ t = \lfloor \frac{d-1}{2} \rfloor$$

For $q = 2$:

$$\frac{2^n}{\sum_{i=0}^{d-1} \binom{n}{i}} \le B_2(n,d) \le \frac{2^n}{\sum_{i=0}^{t} \binom{n}{i}}, \ t = \lfloor \frac{d-1}{2} \rfloor$$

For q = 2 and n = 5: 2^5 (5.1) 2^5

$$\frac{2^5}{\sum_{i=0}^{d-1} {5 \choose i}} \le B_2(5,d) \le \frac{2^5}{\sum_{i=0}^t {5 \choose i}}, \ t = \lfloor \frac{d-1}{2} \rfloor$$

For q = 2 and n = 5:

$$\frac{2^5}{\sum_{i=0}^{d-1} {5 \choose i}} \le B_2(5,d) \le \frac{2^5}{\sum_{i=0}^{t} {5 \choose i}}, \ t = \lfloor \frac{d-1}{2} \rfloor$$

$$d = 2: \ \frac{2^5}{1+5} \approx 5.3 \le B_2(5,2) \le 2^5 = 32 \ B_2(5,2) = 8,16,32$$

$$d = 3: \ \frac{2^5}{1+5+10} = 2 \le B_2(5,3) \le \frac{2^5}{1+5} \approx 5.3 \ B_2(5,3) = 2,4$$

$$d = 4: \ \frac{2^5}{1+5+10+10} \approx 1.23 \le B_2(5,4) \le \frac{2^5}{1+5} \approx 5.3$$

$$B_2(5,4) = 2,4$$

Exercise. Is there a binary code with parameters (5, 2, 2)?

Exercise. Is there a binary code with parameters (5, 2, 2)?

The bounds tell us:

$$d = 2$$
: $\frac{2^5}{1+5} \approx 5.3 \le B_2(5,2) \le 2^5 = 32$

So for n = 5 and d = 2, we need at least 6 codewords (in fact 8 for a linear code), so no, such a code (k = 2 means 4 codewords) does not exist.

Exercise. Is there a binary code with parameters (5, 2, 2)?

The bounds tell us:

$$d = 2$$
: $\frac{2^5}{1+5} \approx 5.3 \le B_2(5,2) \le 2^5 = 32$

So for n = 5 and d = 2, we need at least 6 codewords (in fact 8 for a linear code), so no, such a code (k = 2 means 4 codewords) does not exist.

Fitting the parameters does not guarantee the existence.

The Singleton Bound

For $d \le n$, $B_q(n,d) \le q^{n-d+1}$.

We want to prove that $k \le n - d + 1 \iff d \le n - (k - 1).$

Project all the codewords on the first k-1 coordinates. Since there are q^k different codewords, by the pigeon-hole principle, at least two of them should agree on these k-1coordinates. These then disagree on at most the remaining n - (k - 1)coordinates. Hence the minimum distance d of the code is $d \le n - (k - 1)$.

The Singleton Bound

For $d \le n$, $B_q(n,d) \le q^{n-d+1}$.

We want to prove that $k \leq n - d + 1 \iff d \leq n - (k - 1).$

Consider the (4, 2, 3) tetracode over \mathbb{F}_3 . We have

$$k = 2 \le n - d + 1 = 4 - 3 + 1$$

Maximum Distance Separable (MDS) codes

Codes whose parameters are meeting the Singleton bound. $\begin{array}{l} \text{MDS Codes} \\ \blacksquare \text{ So far}? \end{array}$

 $\mathrm{MDS} \iff k = n - d + 1$

$(n,k,d_H)_q$	k/n	name	MDS
$(n,1,n)_q$	$\frac{1}{n}$	repetition	yes
$(n, n-1, 2)_q$	$\frac{n-1}{n}$	parity check	yes
$(\frac{q^r-1}{q-1}, n-r, 3)_q$	$\frac{n-r}{n}$	Hamming	
$(24, 12, 8)_2$	$\frac{1}{2} = 0.5$	\mathcal{G}_{24}	no
$(23, 12, 7)_2$	$\frac{12}{23} \approx 0.52$	\mathcal{G}_{23}	no
$(12, 6, 6)_3$	$\frac{1}{2} = 0.5$	\mathcal{G}_{12}	no
$(11, 6, 5)_3$	$\frac{6}{11} \approx 0.545$	\mathcal{G}_{11}	no
$(2^m, \sum_{i=0}^r \binom{m}{i}, 2^{m-r})_2$		$\mathcal{R}(r,m)$	

MDS Codes ■ So far?

 $\mathrm{MDS} \iff k = n - d + 1$

$(n,k,d_H)_q$	k/n	name	MDS
$(n,1,n)_q$	$\frac{1}{n}$	repetition	yes
$(n, n-1, 2)_q$	$\frac{n-1}{n}$	parity check	yes
$(\frac{q^r-1}{q-1}, n-r, 3)_q$	$\frac{n-r}{n}$	Hamming	
$(24, 12, 8)_2$	$\frac{1}{2} = 0.5$	\mathcal{G}_{24}	no
$(23, 12, 7)_2$	$\frac{12}{23} \approx 0.52$	\mathcal{G}_{23}	no
$(12, 6, 6)_3$	$\frac{1}{2} = 0.5$	\mathcal{G}_{12}	no
$(11, 6, 5)_3$	$\frac{6}{11} \approx 0.545$	\mathcal{G}_{11}	no
$(2^m, \sum_{i=0}^r \binom{m}{i}, 2^{m-r})_2$		$\mathcal{R}(r,m)$	

To find more MDS codes, we need more alphabets (than \mathbb{F}_p , \mathbb{F}_4).

Gilbert Bound Singleton Bound Maximum distance separable (MDS)