
Coding Theory: Bounds



Bounds
� Bounds seen so far

• Sphere Packing Bound

There are many bounds on (n, k, d)q linear codes, we will
see two more: the Gilbert bound and the Singleton bound.

Recall: Aq(n, d) = number of codewords in a code over Fq of
length n and minimum distance at least d.
Bq(n, d) = number of codewords in a linear code over Fq of
length n and minimum distance at least d.
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The Gilbert Bound
Recall that the Sphere
Packing Bound is an upper
bound on Aq(n, d):

Bq(n, d) ≤ Aq(n, d)

≤ qn∑t
i=0

(
n
i

)
(q − 1)i

,

t = bd−12 c.
The Gilbert Bound is a
lower bound.
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The Sphere Packing
Bound:
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t = bd−12 c.



Covering radius Recall:

Packing radius = The largest
radius of spheres centered at
codewords so that the spheres are
pairwise disjoint.

When codes are not perfect, in
order to fill Fn

q with spheres
centered at codewords, the
spheres must have radius larger
than t = bd−12 c. Then not all
spheres will be pairwise disjoint.
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Covering radius

ρ = ρ(C) is the smallest
integer s such that Fn

q is
the union of the spheres
of radius s centered at
the codewords of C.

Packing radius = The largest
radius of spheres centered at
codewords so that the spheres are
pairwise disjoint.

A code C is perfect if and only if
its covering radius equals its
packing radius (t = ρ(C)).

I Otherwise, the covering radius is
larger than the packing radius
(t ≤ ρ(C)).
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Covering radius

ρ = ρ(C) is the smallest
integer s such that Fn

q is
the union of the spheres
of radius s centered at
the codewords of C.

The covering radius
ρ(C) of a code C, linear
or not, is at most d− 1.

Suppose by contradiction that
ρ(C) ≥ d.
Then spheres of radius d− 1 are
not covering Fn

q , and there must
be at least one vector x which
is in none of these spheres.
Create a new code C′ = C ∪ {x}.
Then |C′| = |C|+ 1, and the
minimum Hamming distance of
C′ is still d, since x is at
distance at least d from all
other codewords.
Iterate with C′ instead of C.



The Gilbert Bound

Bq(n, d) ≥
qn∑d−1

i=0 (ni)(q−1)i
.

For C a linear code with Bq(n, d)
codewords:

The covering radius of C is at
most d− 1.

The spheres of radius d− 1 about
the codewords cover Fn

q by
definition.

A sphere of radius d− 1 centered
at a codeword contains∑d−1

i=0

(
n
i

)
(q − 1)i vectors.

The Bq(n, d) spheres must fill the
space.
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For q = 2:
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Bounds
� Bounds on Bq(n, d)

For q = 2 and n = 5:

25∑d−1
i=0

(
5
i

) ≤ B2(5, d) ≤ 25∑t
i=0

(
5
i

) , t = bd− 1

2
c

d = 2: 25

1+5 ≈ 5.3 ≤ B2(5, 2) ≤ 25 = 32 B2(5, 2) = 8, 16, 32

d = 3: 25

1+5+10 = 2 ≤ B2(5, 3) ≤ 25

1+5 ≈ 5.3 B2(5, 3) = 2, 4

d = 4: 25

1+5+10+10 ≈ 1.23 ≤ B2(5, 4) ≤ 25

1+5 ≈ 5.3
B2(5, 4) = 2, 4
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Bounds
� Bounds on Bq(n, d)

Exercise. Is there a binary code with parameters (5, 2, 2)?

The bounds tell us:

d = 2: 25

1+5 ≈ 5.3 ≤ B2(5, 2) ≤ 25 = 32

So for n = 5 and d = 2, we need at least 6 codewords (in fact 8
for a linear code), so no, such a code (k = 2 means 4
codewords) does not exist.

Fitting the parameters does not guarantee the existence.



Bounds
� Bounds on Bq(n, d)

Exercise. Is there a binary code with parameters (5, 2, 2)?

The bounds tell us:

d = 2: 25

1+5 ≈ 5.3 ≤ B2(5, 2) ≤ 25 = 32

So for n = 5 and d = 2, we need at least 6 codewords (in fact 8
for a linear code), so no, such a code (k = 2 means 4
codewords) does not exist.

Fitting the parameters does not guarantee the existence.



Bounds
� Bounds on Bq(n, d)

Exercise. Is there a binary code with parameters (5, 2, 2)?

The bounds tell us:

d = 2: 25

1+5 ≈ 5.3 ≤ B2(5, 2) ≤ 25 = 32

So for n = 5 and d = 2, we need at least 6 codewords (in fact 8
for a linear code), so no, such a code (k = 2 means 4
codewords) does not exist.

Fitting the parameters does not guarantee the existence.



The Singleton Bound

For d ≤ n,
Bq(n, d) ≤ qn−d+1.

We want to prove that
k ≤ n− d+ 1 ⇐⇒ d ≤
n− (k − 1).

Project all the codewords on
the first k − 1 coordinates.
Since there are qk different
codewords, by the pigeon-hole
principle, at least two of them
should agree on these k − 1
coordinates.
These then disagree on at most
the remaining n− (k − 1)
coordinates. Hence the
minimum distance d of the code
is d ≤ n− (k − 1).



The Singleton Bound

For d ≤ n,
Bq(n, d) ≤ qn−d+1.

We want to prove that
k ≤ n− d+ 1 ⇐⇒ d ≤
n− (k − 1).

Consider the (4, 2, 3) tetracode
over F3.
We have

k = 2 ≤ n− d+ 1 = 4− 3 + 1



Maximum Distance
Separable (MDS) codes

Codes whose
parameters are meeting
the Singleton bound.



MDS Codes
� So far?

MDS ⇐⇒ k = n− d+ 1

(n, k, dH)q k/n name MDS

(n, 1, n)q
1
n repetition yes

(n, n− 1, 2)q
n−1
n parity check yes

( q
r−1
q−1 , n− r, 3)q

n−r
n Hamming

(24, 12, 8)2
1
2 = 0.5 G24 no

(23, 12, 7)2
12
23 ≈ 0.52 G23 no

(12, 6, 6)3
1
2 = 0.5 G12 no

(11, 6, 5)3
6
11 ≈ 0.545 G11 no

(2m,
∑r

i=0

(
m
i

)
, 2m−r)2 R(r,m)

To find more MDS codes, we need more alphabets (than Fp, F4).
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Gilbert Bound

Singleton Bound

Maximum distance separable (MDS)


