
Coding Theory: Finite Fields



Alphabets
� Finite fields

Fq is a finite field with q elements.

For p a prime, the set of integers modulo p represented by
{0, 1 . . . , p− 1} is a finite field, denoted by Fp.

Informally, that Fp is a field means that computations
work as usual, namely we can add, subtract, multiply, in a
commutative manner, and divide as long as it is not by 0.



Finite fields
� F4

Suppose there exists an element ω which is a zero of
X2 +X + 1 (mod 2). Then ω 6= 0, 1,

ω2 = ω + 1 (mod 2), ω3 = ω(ω + 1) = ω2 + ω = 1 (mod 2).

F4

+ 0 1 ω ω2

0 0 1 ω ω2

1 1 0 ω2 ω
ω ω ω2 0 1
ω2 ω2 ω 1 0

· 0 1 ω ω2

0 0 0 0 0
1 0 1 ω ω2

ω 0 ω ω2 1
ω2 0 ω2 1 ω
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Alphabets
� Finite fields

We want more alphabets than Fp and F4 ...

so we can build more codes, in particular MDS codes.
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Fq[X]

The set of polynomials
in X with coefficients in
Fq.

• (Division Algorithm) Let
f(X), g(X) ∈ Fq[X] with g(X)
non-zero. There exist unique
polynomials q(X), r(X) such
that f(X) =
g(X)q(X) + r(X), deg r(X) <
deg g(X), or r(X) = 0.

• (Greatest common divisor) If
f(X) = g(X)q(X) + r(X), then
gcd(f(X), g(X)) =
gcd(g(X), r(X)).
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Fq[X]

The set of polynomials
in X with coefficients in
Fq.

• (Bezout identity) Let
f(X), g(X) ∈ Fq[X] with g(X)
non-zero. There exist
polynomials a(X), b(X) such
that a(X)f(X) + b(X)g(X) =
gcd(f(X), g(X)).

Apply the

division algorithm iteratively:
f = gq1 + r1, g = r1h2 + r2,
r1 = r2h3 + r3, . . .,until rn = 0,
then gcd(f, g) = crn−1, c ∈ Fq.
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Irreducible polynomial

A nonconstant
polynomial
f(X) ∈ Fq[X] is
irreducible over Fq

provided it does not
factor into a product of
two non-constant
polynomials of smaller
degree.

Recall:

If f(X) has a factor of degree 1,
that is f(X) = (X − α)g(X),
then f(α) = 0 and vice-versa.

If f(X) has degree 2 or 3, then a
factorization necessarily means a
factor of degree 1, which is not
the case if f(X) has degree 4: it
could be the product of two
polynomials of degree 2.
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Finite Fields
Polynomials over Fq

Exercise. Are the following polynomials irreducible? (1)
X2 + 1 over F2 (2) X2 + 1 over F3 (3) X4 −X + 1 over F3

(1) X2 + 1 over F2 is not irreducible: indeed,
X2 + 1 = (X + 1)2.

(2) X2 + 1 over F3 is irreducible: X2 + 1 evaluated in X = 0 is
1, evaluated in X = 1 is 2 and evaluated in 2 is 5 ≡ 2.

(3) X4 −X + 1 over F3 is not irreducible:
X4 −X + 1 ≡ X4 + 2X + 1 evaluated in X = 2 is 0.
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Fq[X]/(p(X))

The set of polynomials
in X with coefficients in
Fq modulo the
polynomial p(X).

It can be done with any p(X),
but we will consider the case
where p(X) is irreducible and
monic (its leading coefficient is 1).

f(X) modulo p(X) means that
f(X) is divided by p(X): f(X) =
p(X)q(X) + r(X), deg r(X) <
deg p(X), or r(X) = 0 (division
algorithm) and we keep the
remainder r(X): f(X) ≡ r(X)
mod p(X).
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Polynomials over Fq
Fq[X]/(p(X))

Exercise. Compute F3[X]/(X2 + 1).

F3[X] = {f0 + f1X + f2X
2 + . . . , f0, f1, f2 . . . ∈ F3}

Modulo p(X), any remainder must have a degree strictly
less than that of p(X) = X2 + 1, this means any remainder
is of the form r(X) = r0 + r1X.

Thus F3[X]/(X2 + 1) = {f0 + f1X, f0, f1 ∈ F3}.

Note that p(X) is monic and irreducible, though we have not
used this fact (yet).



Polynomials over Fq
Fq[X]/(p(X))

Exercise. Compute F3[X]/(X2 + 1).

F3[X] = {f0 + f1X + f2X
2 + . . . , f0, f1, f2 . . . ∈ F3}

Modulo p(X), any remainder must have a degree strictly
less than that of p(X) = X2 + 1, this means any remainder
is of the form r(X) = r0 + r1X.

Thus F3[X]/(X2 + 1) = {f0 + f1X, f0, f1 ∈ F3}.

Note that p(X) is monic and irreducible, though we have not
used this fact (yet).



Fq[X]/(p(X))

For f(X), g(X) ∈
Fq[X]/(p(X)), we have
f(X) + g(X) ∈
Fq[X]/(p(X)).

For
f(X), g(X) ∈ Fq[X]/(p(X)), we
have
f(X)g(X) ∈ Fq[X]/(p(X)):
indeed, compute f(X)g(X),
divide by p(X) and take the
remainder.



Polynomials over Fq
Fq[X]/(p(X))

Exercise. In F3[X]/(X2 + 1), compute (1) the sum of X + 1
and 2X + 2 and (2) the product of X + 1 and 2X + 2.

(1) (X + 1) + (2X + 2) = 3X + 3 ≡ 0.

(2) (X + 1)(2X + 2) = 2X2 + 2X + 2X + 2 ≡ 2X2 +X + 2.
Next we reduce modulo X2 + 1. We have
2X2 +X + 2 = 2(X2 + 1) +X, thus (X + 1)(2X + 2) ≡ X
in F3[X]/(X2 + 1).

We still have not used the fact that X2 + 1 is irreducible.
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Is Fq[X]/(p(X)) a finite
field?

Informally, a field
means that
computations work as
usual, namely we can
add, subtract, multiply,
in a commutative
manner, and divide as
long as it is not by 0.

We can add. X

We can subtract. X

We can multiply. X

What about division?
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Inverse in Fp

For x a non-zero
element in Fp, its
(multiplicative) inverse
is the element in Fp

denoted by x−1 which
satisfies that
x · x−1 = x−1 · x = 1.

Inverse in Fq[X]/(p(X))

For f(X) a non-zero
polynomial in Fq[X], its
(multiplicative) inverse is the
element in Fq[X] denoted by
f(X)−1 which satisfies that
f(X) · f(X)−1 =
f(X)−1 · f(X) = 1.



Polynomials over Fq
Bezout identity

There exist polynomials a(X), b(X) such that

a(X)f(X) + b(X)p(X) = gcd(f(X), p(X))

Since p(X) is monic and irreducible, gcd(f(X), p(X)) = 1 (if
f(X) is a multiple of p(X), then f(X) ≡ 0). Thus, assuming
p(X) is irreducible, there exists a(X) such that

a(X)f(X) ≡ 1

and a(X) = f(X)−1.
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Is Fq[X]/(p(X)) a finite
field?

If p(X) is monic and
irreducible, yes it is.

We can add. X

We can subtract. X

We can multiply. X

We can divide since every
non-zero polynomial is invertible.
X
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Finite Fields
F4

Exercise. (1) Find an irreducible polynomial p(X) of degree 2
over F2, (2) compute the multiplication table of F2[X]/(p(X)),
(3) compare with the multiplication table of F4.

(1) We look for a polynomial p(X) = p0 + p1X + p2X
2, with

p0, p1, p2 over F2. We need p2 = 1 to have a degree of 2:
p(X) = p0 + p1X +X2. Then we also need p0 = 1,
otherwise X can be factored out: p(X) = 1 + p1X +X2.
Finally we also need p1 = 1, otherwise X = 1 is a root.
This gives the polynomial p(X) = X2 +X + 1.
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Finite Fields
F4

Exercise. (1) Find an irreducible polynomial p(X) of degree 2
over F2, (2) compute the multiplication table of F2[X]/(p(X)),
(3) compare with the multiplication table of F4.

(2)
· 0 1 X X2 ≡ X + 1

0 0 0 0 0
1 0 1 X X2

X 0 X X2 1
X2 0 X2 1 X

X2 = (X2+X+1)+X+1
X3 =
(X + 1)(X2 +X + 1) + 1
X4 =
(X2+X)(X2+X+1)+X



Finite Fields
F4

Exercise. (1) Find an irreducible polynomial p(X) of degree 2
over F2, (2) compute the multiplication table of F2[X]/(p(X)),
(3) compare with the multiplication table of F4.

(2)

· 0 1 X X2

0 0 0 0 0
1 0 1 X X2

X 0 X X2 1
X2 0 X2 1 X

(3)

· 0 1 ω ω2

0 0 0 0 0
1 0 1 ω ω2

ω 0 ω ω2 1
ω2 0 ω2 1 ω



For p(X) monic and
irreducible
Fq[X]/(p(X)) ' Fq[w]
with p(w) = 0

Set deg(p) = n, define a
map φ :
Fq[X]/(p(X))→ Fq[w],
f0 + f1X + . . .+
fn−1X

n−1 7→
f0+f1w+. . .+fn−1w

n−1

φ is an isomorphism:

φ(0) = 0, φ(1) = 1

φ(f + g) = φ(f) + φ(g)

φ(fg) = φ(f)φ(g): this follows
from the fact that for
f(X) = q(X)p(X) + r(X),
f(X) ≡ r(X) ⇐⇒ f(w) = r(w).

Both sets have the same
cardinality, namely qn.

The map is injective, thus
bijective.
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Recipe to construct Fq

q = pn

• Find a monic irreducible
polynomial p(X) of degree n over
Fp.

• Let w be a root of the polynomial
p(X). Then Fp[w] is the set
{a0 + a1w + . . .+
an−1w

n−1, a0, . . . , an−1 ∈ Fp},
and wn is given by
0 = p(w) = p0 + p1w+ . . .+wn ⇒
wn = −p0− p1w− . . .− pn−1w

n−1

(recall that p(X) is monic).



Finite Fields
F9

Exercise. Construct F9, list its elements and give a
multiplication table.

(1) We already know that p(X) = X2 + 1 over F3 is irreducible.

(2) Let w be a root of p(X), that is
0 = p(w) = w2 + 1⇒ w2 = −1 = 2. Then

F9 = {0, 1, 2, w, w + 1, w + 2, 2w, 2w + 1, 2w + 2}
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(3)
· 1 2 w w + 1 w + 2 2w 2w + 1 2w + 2

1 1 2 w w + 1 w + 2 2w 2w + 1 2w + 2
2 2 1 2w 2w + 2 2w + 1 w w + 2 w + 1
w w 2w 2 2 + w 2 + 2w 1 1 + w 1 + 2w

w + 1 w + 1 2w + 2 2 + w 2w 1 1 + 2w 2 w
w + 2 w + 2 2w + 1 2w + 2 1 w 1 + w 2w 2
2w 2w w 1 1 + 2w 1 + w 2 2 + 2w 2 + w

2w + 1 2w + 1 w + 2 1 + w 2 2w 2 + 2w w 1
2w + 2 2w + 2 w + 1 1 + 2w w 2 2 + w 1 2w



Irreducible polynomial

Construction of finite fields


