
Coding Theory: Cyclic Codes



Cyclic Codes

A linear code C of
length n such that for
each vector
c = (c0, . . . , cn−1) in C,
the vector
(cn−1, c0, . . . , cn−2) in C.

• Note that indices are from 0
to n− 1, this is because it is
convenient to think of positions
in terms of integers modulo n:
shift means i 7→ i + 1 (mod n).
• In words, a cyclic code of
length n contains all n cyclic
shifts of any codeword.



Cyclic Codes
� Examples

Exercise. (1) Give one example of a cyclic code. (2) Is the
(n, n− 1) single-parity check code cyclic?

(1) We could take the repetition code. Indeed, all shifts of the
zero vector (0, 0, . . . , 0) are in the code (it is the same
vector), the same holds for the whole 1 vector (1, 1, . . . , 1).

(2) Take a generic codeword (c0, . . . , cn−3, cn−2,
∑n−1

i=0 ci). A
shift gives the codeword (

∑n−1
i=0 ci, c0, . . . , cn−3, cn−2). To

know whether the shifted codeword belongs to the code, we
recall that it must satisfy that the last coefficient is the
sum of the previous ones, which is true.
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Cyclic codes
� Polynomials

We often represent the codewords in polynomial form:

c = (c0, . . . , cn−1) ∈ Fn
q ⇐⇒ c(X) = c0+c1X+. . .+cn−1X

n−1 ∈ Fq[X]

If c(X) = c0 + c1X + . . . + cn−1X
n−1, then

Xc(X) = c0X + c1X
2 + . . . + cn−1X

n ≡
cn−1 + c0X + c1X

2 + . . . + cn−2X
n−1 (mod Xn − 1).

In a cyclic code C, if c(X) ∈ C, so is Xc(X) (mod Xn − 1).
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Cyclic codes
� Polynomials

In a cyclic code C, if c(X) ∈ C, so is Xc(X) (mod Xn − 1).

But then, if Xc(X) (mod Xn − 1) is a codeword, so must
be X2c(X) (mod Xn − 1).

Since the code is linear, whenever a codeword is in C, so
are its multiples.
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Let C be an (n, k) cyclic
code. If c(X) ∈ C, then
for any polynomial
p(X) ∈ Fq[X],
p(X)c(X)
(mod Xn − 1) is also a
codeword in C.

Suppose
p(X) =

∑k
i=0 piX

i.

p(X)c(X) =
(
∑k

i=0 piX
i)c(X) =∑k

i=0 pi(X
ic(X)).

Modulo (mod Xn − 1),
Xic(X) is a codeword, and
since the code is linear, a linear
combination of codewords is a
codeword.



Cyclic Codes
� Examples

Exercise. Consider the binary code generated by

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

(1) Show that this code is cyclic. (2) Illustrate the claim of the
previous slide on this example (choose any codeword and
polynomial you like).



Cyclic Codes
� Examples

Exercise. Consider the binary code generated by

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

(1) To show that the code is cyclic, we need to show that for
every codeword, all its shifts are in the code. Since the code is
binary of dimension k = 3, it contains 8 codewords:

(0, 0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1),

(1, 1, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 1, 1), (0, 1, 1, 1, 0, 0, 1), (1, 1, 0, 0, 1, 0, 1).



Cyclic Codes
� Examples

For every codeword, we need to see that all shifts are here:

(0, 0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1),

(1, 1, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 1, 1), (0, 1, 1, 1, 0, 0, 1), (1, 1, 0, 0, 1, 0, 1).

(1, 0, 1, 1, 1, 0, 0)
shift−−−→ (0, 1, 0, 1, 1, 1, 0)

shift−−−→
(0, 0, 1, 0, 1, 1, 1)

shift−−−→ (1, 0, 0, 1, 0, 1, 1)
shift−−−→

(1, 1, 0, 0, 1, 0, 1)
shift−−−→ (1, 1, 1, 0, 0, 1, 0)

shift−−−→ (0, 1, 1, 1, 0, 0, 1)



Cyclic Codes
� Examples

Exercise. Consider the binary code generated by

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

(2) Illustrate the claim of the previous slide on this example.

(2) Take for example (1, 0, 0, 1, 0, 1, 1), as a polynomial it is
1 + X3 + X5 + X6. Take some polynomial say X + 1. Then

(1+X)(1+X3+X5+X6) = 1+X3+X5+X6+X+X4+X6+X7.

The code has length n = 7, so modulo X7 − 1, we get

1 + X + X3 + X4 + X5 + X6 + X6 + 1 ≡ X + X3 + X4 + X5.

As a codeword, this is (0, 1, 0, 1, 1, 1, 0), indeed in the code.



Cyclic codes
Polynomials

The right framework for linear cyclic codes of length n is to
consider

Fq[X]/(Xn − 1).

In this set, we have polynomials modulo Xn − 1, with a
multiplication modulo Xn − 1.



Generator polynomial
of a cyclic code.

For C a cyclic code, a
nonzero polynomial
g(X) of lowest degree in
C.

Let us continue our previous
example with 8 codewords:
(0, 0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 1, 0, 0),
(0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1),
(1, 1, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 1, 1),
(0, 1, 1, 1, 0, 0, 1), (1, 1, 0, 0, 1, 0, 1).

• (1, 0, 1, 1, 1, 0, 0) has lowest
degree.

We saw all the shifts of
(1, 0, 1, 1, 1, 0, 0) generate all
non-zero codewords of the code.
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Generator polynomial of
a cyclic code.

For C a linear cyclic code,
a nonzero polynomial
g(X) of lowest degree r
in C. Taking g(X) monic,
we refer to the generator
polynomial.
Then
C = {q(X)g(X), q(X) ∈
Fq[X], deg(q(X)) <
n− r}.

The set
C0 = {q(X)g(X), q(X) ∈
Fq[X], deg(q(X)) < n− r} is
contained in C (we know
codewords multiplied by
polynomials are in C).
Left to prove: C is contained in
C0.



Generator polynomial
of a cyclic code.

For C a linear cyclic
code, the nonzero monic
polynomial g(X) of
lowest degree r in C.
To prove: C ⊂ C0 =
{q(X)g(X), q(X) ∈
Fq[X], deg(q(X)) <
n− r}.

Take c(X) any polynomial in C
and do a Euclidean division:
c(X)︸ ︷︷ ︸
∈C

= g(X)q(X)︸ ︷︷ ︸
∈C0

+r(X), with

deg r(X) < deg g(X) or
r(X) = 0.
Since g(X) has the lowest
degree, r(X) = 0 and
c(X) = g(X)q(X).



Cyclic Codes
Generator polynomial

Exercise. Consider the binary code C generated by

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

Find its generator polynomial and check that indeed
C = {q(X)g(X), q(X) ∈ Fq[X], deg(q(X)) < n− r} where r is
the degree of the polynomial.

To find the generator polynomial, we need the codeword whose
polynomial is of lowest degree (it will be monic since it is a
binary code). We already computed it, it is
g(X) = 1 + X2 + X3 + X4.



Cyclic Codes
Generator polynomial

Exercise. Consider the binary code C generated by

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

Find its generator polynomial and check that indeed
C = {q(X)g(X), q(X) ∈ Fq[X], deg(q(X)) < n− r} where r is
the degree of the polynomial.

To find the generator polynomial, we need the codeword whose
polynomial is of lowest degree (it will be monic since it is a
binary code). We already computed it, it is
g(X) = 1 + X2 + X3 + X4.



Cyclic Codes
Generator polynomial

Exercise.Check that indeed
C = {q(X)g(X), q(X) ∈ Fq[X], deg(q(X)) < n− r} where r is
the degree of the polynomial.

Since the generator polynomial is g(X) = 1 + X2 + X3 + X4,
r = 4 and n = 7 so n− r = 7− 4 = 3. So
q(X) = q0 + q1X + q2X

2 so we have 8 such polynomials (which
is good, we have 8 codewords).
We have q(X)g(X) = (q0 + q1X + q2X

2)(1 + X2 + X3 + X4) =
q0 + q0X

2 + q0X
3 + q0X

4 + q1X + q1X
3 + q1X

4 + q1X
5 +

q2X
2 + q2X

4 + q2X
5 + q2X

6.
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Cyclic Codes
Generator polynomial

We have
q(X)g(X) = (q0 + q1X + q2X

2)(1 +X2 +X3 +X4) = q0 + q1X +
X2(q0 +q2)+X3(q0 +q1)+X4(q0 +q1 +q2)+X5(q1 +q2)+q2X

6.
q0 q1 q2 q(X)g(X) codeword

0 0 0 0 (0, 0, 0, 0, 0, 0, 0)
1 0 0 1 + X2 + X3 + X4 (1, 0, 1, 1, 1, 0, 0)
0 1 0 X + X3 + X4 + X5 (0, 1, 0, 1, 1, 1, 0)
1 1 0 1 + X + X2 + X5 (1, 1, 1, 0, 0, 1, 0)
0 0 1 X2 + X4 + X5 + X6 (0, 0, 1, 0, 1, 1, 1)
1 0 1 1 + X3 + X5 + X6 (1, 0, 0, 1, 0, 1, 1)
0 1 1 X + X2 + X3 + X6 (0, 1, 1, 1, 0, 0, 1)
1 1 1 1 + X + X4 + X6 (1, 1, 0, 0, 1, 0, 1)



Definition of cyclic code

Correspondance between codeword and
polynomial

Generator polynomial


