Coding Theory: Cyclic Codes (III)
A linear cyclic code C of length n contains all n cyclic shifts of any codeword.

$c = (c_0, \ldots, c_{n-1}) \in \mathbb{F}_q^n \iff c(X) = c_0 + \ldots + c_{n-1}X^{n-1}$

$C = \{q(X)g(X), \ q(X) \in \mathbb{F}_q[X], \deg(q(X)) < n - r\}$, where $g(X)$ is the monic polynomial of lowest degree r in C called the generator polynomial.

$\dim(C) = n - r = k$

$g(X)h(X) = X^n - 1, \ h(X) = \text{check polynomial}$

Generator matrix is obtained by shifts of the coefficients of $g(X)$.

Divisors $g(X)$ of $X^n - 1 \iff$ cyclic codes of length n.
If C has check polynomial $h(X)$ then $C = \{c(X), \deg c(X) \leq n - 1, c(X)h(X) \equiv 0 \pmod{X^n - 1}\}$.

We prove both inclusions. If $c(X) \in C$, then $c(X) = q(X)g(X)$. Then $c(X)h(X) = q(X)g(X)h(X) = q(X)(X^n - 1)$.

Suppose now $c(X)$ is such that $c(X)h(X) = p(X)(X^n - 1) = p(X)g(X)h(X)$. Thus $[c(X) - p(X)g(X)]h(X) = 0$ but $h(X)$ cannot be 0. Then $c(X) - p(X)g(X) = 0 \Rightarrow c(X) = p(X)g(X)$ as desired.
Consider the (7, 3) linear binary code
\[C = \{ q(X)(1 + X^2 + X^3 + X^4), \; q(X) \in \mathbb{F}_q[X], \; \deg(q(X)) < 3 \} : \]
\[
\begin{array}{cc}
q(X)g(X) & \text{codeword} \\
\hline
0 & (0, 0, 0, 0, 0, 0, 0) \\
1 + X^2 + X^3 + X^4 & (1, 0, 1, 1, 1, 0, 0) \\
X + X^3 + X^4 + X^5 & (0, 1, 0, 1, 1, 1, 0) \\
1 + X + X^2 + X^5 & (1, 1, 1, 0, 0, 1, 0) \\
X^2 + X^4 + X^5 + X^6 & (0, 0, 1, 0, 1, 1, 1) \\
1 + X^3 + X^5 + X^6 & (1, 0, 0, 1, 0, 1, 1) \\
X + X^2 + X^3 + X^6 & (0, 1, 1, 1, 0, 0, 1) \\
1 + X + X^4 + X^6 & (1, 1, 0, 0, 1, 0, 1) \\
\end{array}
\]
Since \((1 + X^2 + X^3)(1 + X^2 + X^3 + X^4) = X^7 - 1,\)
\[h(X) = 1 + X^2 + X^3. \]
Does \((1, 0, 1, 1, 1, 0, 0) \) belong to \(C \)?
Does \((1, 0, 1, 1, 1, 0, 0)\) belong to \(C\)?

\[
(1 + X^2 + X^3 + X^4)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 = 1 + X^7.
\]
Does \((1, 0, 1, 1, 1, 0, 0)\) belong to \(C\)?

\[
(1 + X^2 + X^3 + X^4)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 = 1 + X^7.
\]

Does \((1, 0, 1, 1, 1, 0, 1)\) belong to \(C\)?
Check polynomial
Example (2)

Does \((1, 0, 1, 1, 1, 0, 0)\) belong to \(C\)?
\[
(1 + X^2 + X^3 + X^4)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 = 1 + X^7.
\]

Does \((1, 0, 1, 1, 1, 0, 1)\) belong to \(C\)?
\[
(1 + X^2 + X^3 + X^4 + X^6)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 + X^6 + X^8 + X^9 = 1 + X^7 + X^6 + X^8 + X^9 \equiv X^6 + X^8 + X^9 \equiv X^6 + X + X^2 \pmod{X^7 - 1}.
\]
Reverse code $C^{[-1]}$. The reverse code $C^{[-1]}$ of a cyclic code is cyclic.

Code obtained by reversing every codeword of C.

$$(c_0, \ldots, c_i, \ldots, c_{n-1}) \in C \iff (c_{n-1}, \ldots, c_{n-1-i}, \ldots, c_0) \in C^{[-1]}.$$
Reverse code $C^{[-1]}$.

Code obtained by reversing every codeword of C.

$$(c_0, \ldots, c_i, \ldots, c_{n-1}) \in C \iff (c_{n-1}, \ldots, c_{n-1-i}, \ldots, c_0) \in C^{[-1]}.$$

The reverse code $C^{[-1]}$ of a cyclic code is cyclic.

In polynomial notation: $c(X) \in C \iff X^{n-1}c(X^{-1}) \in C^{[-1]}$.
Reciprocal polynomial.

\[p^{[-1]}(X) = \sum_{i=0}^{d} p_{d-i} X^i = X^d p(X^{-1}). \]

For example, suppose \(h(X) = h_0 + h_1 X + \ldots h_k X^k \), then \(h^{[-1]}(X) = X^k (h_0 + h_1 X^{-1} + \ldots h_k X^{-k}) = h_k + h_{k-1} X + \ldots + h_0 X^k \).
Let C be a cyclic code of length n and check polynomial $h(X) = \sum_{i=0}^{k} h_i X^i$ of degree k. Then a parity-check matrix H is:

$$
H = \begin{bmatrix}
 h_k & h_{k-1} & \ldots & h_1 & h_0 & 0 & \ldots & 0 \\
 0 & h_k & h_{k-1} & \ldots & h_1 & h_0 & 0 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots \\
 0 & 0 & h_k & h_{k-1} & h_1 & h_0
\end{bmatrix}
$$

and C^\perp is the cyclic code generated by the polynomial $h^{[-1]}(X)$.
A polynomial \(c(X) = c_0 + c_1X + \ldots + c_{n-1}X^{n-1} \) is a codeword from \(C \) if \(c(X)h(X) = 0 \). For \(c(X)h(X) \) to be 0, the coefficients of \(X^k, \ldots, X^{n-1} \) must be 0, i.e.,

\[
\begin{align*}
c_0h_k + c_1h_{k-1} + \ldots + c_kh_0 &= 0 \\
c_1h_k + c_2h_{k-1} + \ldots + c_{k+1}h_0 &= 0 \\
&\vdots \\
c_{n-k-1}h_k + c_{n-k}h_{k-1} + \ldots + c_{n-1}h_0 &= 0
\end{align*}
\]

Thus any codewords \((c_0, c_1, \ldots, c_{n-1}) \in C\) is orthogonal to \((h_k, h_{k-1}, \ldots, h_0, 0 \ldots, 0)\) and to its cyclic shifts.
A polynomial \(c(X) = c_0 + c_1X + \ldots + c_{n-1}X^{n-1} \) is a codeword from \(C \) if \(c(X)h(X) = 0 \). For \(c(X)h(X) \) to be 0, the coefficients of \(X^k, \ldots, X^{n-1} \) must be 0, i.e.,

\[
\begin{align*}
 c_0h_k &+ c_1h_{k-1} + \ldots + c_kh_0 = 0 \\
 c_1h_k &+ c_2h_{k-1} + \ldots + c_{k+1}h_0 = 0 \\
 &\vdots \\
 c_{n-k-1}h_k &+ c_{n-k}h_{k-1} + \ldots + c_{n-1}h_0 = 0
\end{align*}
\]

Thus any codewords \((c_0, c_1, \ldots, c_{n-1}) \in C\) is orthogonal to \((h_k, h_{k-1}, \ldots, h_0, 0 \ldots, 0)\) and to its cyclic shifts. Rows of the matrix \(H \) are in \(C^\perp \). Since \(h_k = 1 \), the rows are linearly independent, and there are \(n - k = \dim(C^\perp) \). Hence \(H \) is a generator matrix for \(C^\perp \), and thus a parity-check matrix for \(C \).
Left to prove: C^\perp is generated by the polynomial $h^{[-1]}(X)$. It is sufficient to show that $h^{[-1]}(X)$ is factor of $X^n - 1$.

Recall that $h^{[-1]}(X) = X^k h(X^{-1})$. Then

$h(X^{-1}) g(X^{-1}) = (X^{-1})^n - 1$, multiplying by X^n gives

$X^k h(X^{-1}) X^{n-k} g(X^{-1}) = X^n ((X^{-1})^n - 1) = 1 - X^n$.
Exercise. Consider the binary code of length 7 with generator polynomial \(g(X) = 1 + X^2 + X^3 + X^4 \). Construct its parity check matrix.
Exercise. Consider the binary code of length 7 with generator polynomial $g(X) = 1 + X^2 + X^3 + X^4$. Construct its parity check matrix.

Since $(1 + X^2 + X^3)(1 + X^2 + X^3 + X^4) = X^7 - 1,$
$h(X) = 1 + X^2 + X^3$.

$$H = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{bmatrix}$$
We can check that $HG^T = 0$:

\[
\begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]
For a linear \((n, k)\) cyclic code \(\mathcal{C}\) with generator polynomial \(g(X)\) of degree \(r\):

- Length is \(n\).
- Dimension is \(k = n - r\).
- Generator matrix is obtained by shifts of the coefficients of \(g(X)\).
- Parity check matrix is obtained by shifts of the coefficients of \(h[-1](X)\).
- \(\mathcal{C}^\perp\) is a cyclic code generated by \(h[-1](X)\).
A cyclic code is defined by its generator polynomial \(g(X) \), for \(g(X) \) a divisor of \(X^n - 1 \).

The polynomial \(g(X) \in \mathbb{F}_q[X] \) is factorized into a product of irreducible polynomials:

\[
g(X) = \prod_s M_s(X), \quad M_s(X) \in \mathbb{F}_q[X], \quad M_s(X)|X^n - 1.
\]

E.g. \(g(X) = 1 + X^2 + X^3 + X^4 = (X + 1)(X^3 + X + 1) \).

A cyclic code is defined by the irreducible factors \(M_s(X) \) of \(g(X) \), for \(M_s(X) \) a divisor of \(X^n - 1 \).
A cyclic code is defined by its generator polynomial \(g(X) \), for \(g(X) \) a divisor of \(X^n - 1 \).

The polynomial \(g(X) \in \mathbb{F}_q[X] \) is factorized into a product of irreducible polynomials:

\[
g(X) = \prod_s M_s(X), \quad M_s(X) \in \mathbb{F}_q[X], \quad M_s(X) | X^n - 1.
\]

E.g. \(g(X) = 1 + X^2 + X^3 + X^4 = (X + 1)(X^3 + X + 1) \).

A cyclic code is defined by the irreducible factors \(M_s(X) \) of \(g(X) \), for \(M_s(X) \) a divisor of \(X^n - 1 \).

Every \(M_s(X) \) can be factorized as \(M_s(X) = \prod_{i \in C_s} (X - \alpha_i) \) over a finite field that contains all the roots of \(X^n - 1 = \prod_{i=0}^{n-1} (X - \alpha_i) \).

A cyclic code is defined by the roots of \(g(X) \), which form a subset of the roots of \(X^n - 1 \).
• If \(\alpha \) is a root of \(X^n - 1 \), then \(\alpha^n = 1 \) and \(\alpha \) is an \(n \)th root of unity.

• Roots of \(X^n - 1 \) may or not be repeated. E.g.
 \[X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X + 1)^2 \]
 over \(\mathbb{F}_2 \), so it has 4 roots, all of them are 1 (and 1 is a 4rth root of unity).

• Claim: if \((n, q) = 1\), the roots of \(X^n - 1 \) are not repeated. From now on, we assume \((n, q) = 1\).
Cyclic Codes

■ Roots of $X^n - 1$

- If α is a root of $X^n - 1$, then $\alpha^n = 1$ and α is an nth root of unity.
- Roots of $X^n - 1$ may or not be repeated. E.g.
 $X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X + 1)^2$ over \mathbb{F}_2, so it has 4 roots, all of them are 1 (and 1 is a 4rth root of unity).
- Claim: if $(n, q) = 1$, the roots of $X^n - 1$ are not repeated. From now on, we assume $(n, q) = 1$.
- Since $X^n - 1 \in \mathbb{F}_q[X]$ has no repeated root when $(n, q) = 1$, this means that its n roots are n distinct nth roots of unity (that is all nth roots of unity).
Cyclic Codes

- Claim: Exactly when $n | q^t - 1$, \mathbb{F}_{q^t} contains a primitive nth root of unity α that is an element α such that
 $$\alpha, \alpha^2, \alpha^3, \ldots \alpha^n = 1.$$

- When $n | q^t - 1$, we can find all the roots of $X^n - 1$ in \mathbb{F}_{q^t}. E.g. when $q = 2$, and $n = 7$, we need t such that $7 | 2^t - 1$.

For example take $t = 3$. Then $\mathbb{F}_{q^t} = \mathbb{F}_8 \simeq \mathbb{F}_2[X]/(X^3 + X + 1)$:

- $\omega_3 = \omega + 1$,
- $\omega_4 = \omega^2 + \omega$,
- $\omega_5 = \omega^3 + \omega^2 = \omega^2 + 1$,
- $\omega_6 = \omega^3 + \omega^2 + \omega = \omega^2 + 1$,
- $\omega_7 = \omega^3 + \omega = 1$. Thus ω is a 7th root of unity and $(\omega^i)_7^{i=1} = (\omega^7)^i = 1$, $i = 1, \ldots, 7$ we thus have found the 7 roots of $X^7 - 1 = \prod_{i=1}^{7} (X - \alpha_i)$.
- **Claim:** Exactly when $n|q^t - 1$, \mathbb{F}_{q^t} contains a primitive nth root of unity α that is an element α such that

$$\alpha, \alpha^2, \alpha^3, \ldots \alpha^n = 1.$$

- When $n|q^t - 1$, we can find all the roots of $X^n - 1$ in \mathbb{F}_{q^t}. E.g. when $q = 2$, and $n = 7$, we need t such that $7|2^t - 1$. For example take $t = 3$. Then

$$\mathbb{F}_{q^t} = \mathbb{F}_8 \simeq \mathbb{F}_2[X]/(X^3 + X + 1): \omega^3 = \omega + 1, \omega^4 = \omega^2 + \omega, \omega^5 = \omega^3 + \omega^2 = \omega^2 + \omega + 1, \omega^6 = \omega^3 + \omega^2 + \omega = \omega^2 + 1, \omega^7 = \omega^3 + \omega = 1.$$

Thus ω is a 7th root of unity and

$$(\omega^i)^7 = (\omega^7)^i = 1, \ i = 1, \ldots, 7$$

we thus have found the 7 roots of $X^7 - 1 = \prod_{i=1}^{7}(X - \alpha^i)$.
• Claim: Exactly when $n|q^t - 1$, \mathbb{F}_{q^t} contains a primitive nth root of unity α. We will choose t to be the smallest such t.

• E.g. when $q = 2$, and $n = 7$, we need t such that $7|2^t - 1$. We already saw that we can choose $t = 3$.
• Claim: Exactly when \(n | q^t - 1 \), \(\mathbb{F}_{q^t} \) contains a primitive \(n \)th root of unity \(\alpha \). We will choose \(t \) to be the smallest such \(t \).

• E.g. when \(q = 2 \), and \(n = 7 \), we need \(t \) such that \(7 | 2^t - 1 \). We already saw that we can choose \(t = 3 \). We could also pick \(t = 6 \), but \(t = 3 \) is the smallest suitable \(t \), thus we will choose \(t = 3 \) over \(t = 6 \).
A cyclic code is defined by its generator polynomial

\[g(X) = \prod_s M_s(X) = \prod_s \prod_{i \in C_s} (X - \alpha^i), \]

for \(g(X) \) a divisor of \(X^n - 1 \), thus by the roots \(\alpha^i \) of \(g(X) \), and since we only have powers of \(\alpha \), a cyclic code is defined by the sets \(C_s \).

E.g. \(g(X) = 1 + X^2 + X^3 + X^4 = (X + 1)(X^3 + X + 1) \):
\(C_0 = \{0\}, \ C_1 = \{1, 2, 4\} \).
For \(0 \leq s < n \), the \(q \)-cyclotomic coset of \(s \) modulo \(n \) is

\[C_s = \{ s, sq, \ldots, sq^{u-1} \} \pmod{n} \]

(\(\pmod{n} \)), \(u \) is the smallest positive integer such that \(q^u \equiv 1 \pmod{n} \).

When \(n = 7, q = 2, u = 3 \), since \(2, 2^2 \equiv 4, 2^3 \equiv 1 \pmod{7} \). Then we have \(\{ 1, 2, q^{u-1} = 2^2 = 4 \} \):

\[
\begin{align*}
C_0 &= \{0\} \\
C_1 &= \{1, 2, 4\} = C_2 = C_4 \\
C_3 &= \{3, 6, 5\} = C_5 = C_6
\end{align*}
\]
For $n = 7$, $q = 2$: $X^7 - 1 = \prod_{i=1}^{7} (X - \alpha^i)$:

List all roots

$\alpha^0, \alpha^1, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$

Group the roots

$\alpha^0, \alpha^1, \alpha^2, \alpha^4 \quad \alpha^3, \alpha^5, \alpha^6$

$C_0 \quad C_1 \quad C_2$

Compose $g(X)$

$X - 1$

$(X - \alpha)(X - \alpha^2)(X - \alpha^4)$

$(X - \alpha^3)(X - \alpha^5)(X - \alpha^6)$

$(X - 1)(X - \alpha)(X - \alpha^2)(X - \alpha^4)$

$(X - 1)(X - \alpha^3)(X - \alpha^5)(X - \alpha^6)$

$(X - \alpha)(X - \alpha^2)(X - \alpha^4)(X - \alpha^3)(X - \alpha^5)(X - \alpha^6)$

$X^7 - 1$
Cyclic Codes

Factors of $g(X)$

For $n = 7$, $q = 2$:

$$X^7 - 1 = \prod_{i=1}^{7} (X - \alpha^i):$$

List all roots: $\alpha^0, \alpha^1, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$

Group the roots:

C_0: $\{\alpha^0, \alpha^1, \alpha^2, \alpha^4\}$
C_1: $\{\alpha^3, \alpha^5, \alpha^6\}$

Compose $g(X)$:

$X + 1$
$X^3 + X + 1$
$X^3 + X^2 + 1$
$X^4 + X^3 + X^2 + 1$
$X^4 + X^2 + X + 1$
$X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$
$X^7 - 1$
Defining set of \mathcal{C}

The set

\[T = \bigcup_{s} C_s, \]

\[C_s = \{s, sq, \ldots, sq^{u-1}\} \pmod{n}. \]

\[Z = \{\alpha^i, \ i \in T\} \]

is called the set of zeros of \mathcal{C}.

\[T = C_0 \cup C_1 = \{0, 1, 2, 4\} \]

is a defining set of \mathcal{C} generated by $g(X) = 1 + X^2 + X^3 + X^4$ over \mathbb{F}_2. Also

\[Z = \{1, \alpha, \alpha^2, \alpha^4\} \]

is the set of zeros of \mathcal{C}.
Consecutive elements

The defining set
\[T = \bigcup_s C_s \] contains \(v \) consecutive elements if there is a set
\[S = \{b, b+1, \ldots, b+v-1\} \]
of \(v \) consecutive integers (mod \(n \)) such that
\[S \subseteq T. \]

\[T = C_0 \cup C_1 = \{0, 1, 2, 4\} \]
is a defining set of \(C \) generated by \(g(X) = 1 + X^2 + X^3 + X^4 \) over \(\mathbb{F}_2 \). Then \(T \) contains a set \(S \) of \(v = 3 \) consecutive elements:
\[S = \{0, 1, 2\}. \]
BCH Bound

Let \(C \) be an \((n, k, d)\) cyclic code over \(\mathbb{F}_q \) with defining set \(T = \bigcup s \mathbb{C}_s \). If \(T \) contains \(\delta - 1 \) consecutive elements for some integer \(\delta \), then

\[d \geq \delta. \]

Let \(C \) be the cyclic code generated by \(g(X) = 1 + X^2 + X^3 + X^4 \) over \(\mathbb{F}_2 \), with defining set \(T = C_0 \cup C_1 = \{0, 1, 2, 4\} \) which contains a set \(S = \{0, 1, 2\} \) of \(v = 3 = \delta - 1 \) consecutive elements. Thus

\[d \geq 4. \]
BCH Bound

Let \mathcal{C} be an (n, k, d) cyclic code over \mathbb{F}_q with defining set $T = \bigcup_s C_s$. If T contains $\delta - 1$ consecutive elements for some integer δ, then

$$d \geq \delta.$$

The code \mathcal{C} has zeros that include $\alpha^b, \ldots, \alpha^{b+\delta-2}$. Let $c(X)$ be a nonzero codeword of \mathcal{C} of weight w:

$$c(X) = \sum_{j=1}^{w} c_{ij} X^{ij}$$

Assume to the contrary that $w < \delta$. We have $c(\alpha^l) = 0$ for $b \leq l \leq b + \delta - 2$, since $g(X)$ divides $c(X)$.

That \(c(\alpha^l) = 0 \) for \(b \leq l \leq b + \delta - 2 \) implies

\[
c(\alpha^l) = \sum_{j=1}^{w} c_{ij} (\alpha^l)^{ij}
\]

which gives the following system of equations:

\[
\begin{bmatrix}
\alpha^{i_1b} & \alpha^{i_2b} & \cdots & \alpha^{i_wb} \\
i_1(b+1) & \alpha^{i_2(b+1)} & \cdots & \alpha^{i_w(b+1)} \\
\vdots & \vdots & \ddots & \vdots \\
i_1(b+w-1) & \alpha^{i_2(b+w-1)} & \cdots & \alpha^{i_w(b+w-1)}
\end{bmatrix}
\begin{bmatrix}
c_{i_1} \\
c_{i_2} \\
\vdots \\
c_{i_w}
\end{bmatrix}
\neq 0
\]

\((w < \delta \iff w+1 \leq \delta \iff w \leq \delta - 1 \iff b+w-1 \leq b+\delta-2)\).
Then M must satisfy $\det(M) = 0$ but

$$M = \begin{bmatrix}
\alpha^{i_1 b} & \ldots & \alpha^{i_w b} \\
\alpha^{i_1 (b+1)} & \ldots & \alpha^{i_w (b+1)} \\
\vdots & \ddots & \vdots \\
\alpha^{i_1 (b+w-1)} & \ldots & \alpha^{i_w (b+w-1)}
\end{bmatrix} = \begin{bmatrix}
1 & \ldots & 1 \\
\alpha^{i_1} & \ldots & \alpha^{i_w} \\
\vdots & \ddots & \vdots \\
\alpha^{i_1 (w-1)} & \ldots & \alpha^{i_w (w-1)}
\end{bmatrix} D$$

with $D = \text{diag}(\alpha^{i_1 b}, \ldots, \alpha^{i_w b})$.
Then M must satisfy $\det(M) = 0$ but

$$M = \begin{bmatrix}
\alpha^{i_1 b} & \ldots & \alpha^{i_w b} \\
\alpha^{i_1 (b+1)} & \ldots & \alpha^{i_w (b+1)} \\
\vdots & \ddots & \vdots \\
\alpha^{i_1 (b+w-1)} & \ldots & \alpha^{i_w (b+w-1)}
\end{bmatrix} = \begin{bmatrix}
1 & \ldots & 1 \\
\alpha^{i_1} & \ldots & \alpha^{i_w} \\
\vdots & \ddots & \vdots \\
\alpha^{i_1 (w-1)} & \ldots & \alpha^{i_w (w-1)}
\end{bmatrix} D$$

with $D = \text{diag}(\alpha^{i_1 b}, \ldots, \alpha^{i_w b})$. Thus

$$\det(M) = \alpha^{(i_1 + \ldots + i_w)b} \prod_{l<j} (\alpha^{i_j} - \alpha^{i_l}) \neq 0$$

a contradiction.
BCH codes

BCH = BoseChaudhuri-Hocquenghem. For $2 \leq \delta \leq n$, a cyclic code of length n over \mathbb{F}_q and designed distance δ with defining set

$$T = C_b \cup \ldots \cup C_{b+\delta-2}.$$

By construction, $d \geq \delta$.

1. Fix q, n.
2. Compute the q-cyclotomic cosets modulo n.
3. Compute consecutive elements to find possible designed distance δ.
4. Find a primitive nth root of unity.
5. Map q-cyclotomic cosets to polynomials.
1. Let us fix $n = 13$ and $q = 3$.

2. By definition the q-cyclotomic coset of s modulo n is

$$C_s = \{s, sq, \ldots, sq^{u-1}\} \pmod{n},$$

where u is the smallest positive integer such that $q^u \equiv 1 \pmod{n}$.
1. Let us fix $n = 13$ and $q = 3$.
2. By definition the q-cyclotomic coset of s modulo n is

$$C_s = \{s, sq, \ldots, sq^{u-1}\} \pmod{n},$$

u is the smallest positive integer such that $q^u \equiv 1 \pmod{n}$. We have $3, 3^2 = 9, 3^3 = 27 \equiv 1 \pmod{13}$ so $C_s = \{s, s3, s9\}$.
1. Let us fix $n = 13$ and $q = 3$.
2. By definition the q-cyclotomic coset of s modulo n is

$$C_s = \{s, sq, \ldots, sq^{u-1}\} \pmod{n},$$

u is the smallest positive integer such that $q^u \equiv 1 \pmod{n}$.

We have $3, 3^2 = 9, 3^3 = 27 \equiv 1 \pmod{13}$ so $C_s = \{s, s3, s9\}$. We compute $C_0 = \{0\}, C_1 = \{1, 3, 9\}, C_2 = \{2, 6, 5\}, C_4 = \{4, 12, 10\}, C_7 = \{7, 8, 11\}$.
3. $C_0 = \{0\}, C_1 = \{1, 3, 9\}, C_2 = \{2, 6, 5\}, C_4 = \{4, 12, 10\}, C_7 = \{7, 8, 11\}.

C_1: it has $\delta - 1 = 1$ consecutive element, so designed distance $\delta = 2$.

$C_0 \cup C_1 = \{0, 1, 3, 9\}$: it has $\delta - 1 = 2$ consecutive elements, so designed distance $\delta = 3$.

$C_0 \cup C_1 \cup C_2 = \{0, 1, 2, 3, 5, 6, 9\}$: it has $\delta - 1 = 4$ consecutive elements, so designed distance $\delta = 5$.
4. To find a primitive 13th root of unity, we know we need to find the smallest \(t \) such that \(n = 13|(q^t - 1) \), that is \(13|3^t - 1 \). When \(t = 3 \), \(3^3 - 1 = 26 \) which is divisible by 13.
4. To find a primitive 13th root of unity, we know we need to find the smallest t such that $n = 13|(q^t - 1)$, that is $13|3^t - 1$. When $t = 3$, $3^3 - 1 = 26$ which is divisible by 13. We thus look for a primitive 13th root in \mathbb{F}_{3^3}. The polynomial $X^3 + 2X + 1 = 0$ is irreducible modulo 3. Let α be such that $\alpha^3 + 2\alpha + 1 = 0$, so $\alpha^3 = \alpha - 1$. Then $\alpha^6 = \alpha^2 + \alpha + 1$, $\alpha^{12} = \alpha^4 - \alpha^3 + 2\alpha + 1 = \alpha^2 - 1$ so $\alpha^{13} = \alpha^3 - \alpha = -1$. This shows that α^2 is a primitive 13th root of unity.
5. We have α^2 a primitive 13th root of unity for α such that $\alpha^3 + 2\alpha + 1 = 0$. Thus

\[
\begin{align*}
C_0 &= \{0\} & X - 1 \\
C_1 &= \{1, 3, 9\} & (X - \alpha^2)(X - \alpha^6)(X - \alpha^{18}) = X^3 + X^2 + X + 2 \\
C_2 &= \{2, 6, 5\} & (X - \alpha^4)(X - \alpha^{12})(X - \alpha^{10}) = X^3 + X^2 + 2 \\
C_4 &= \{4, 12, 10\} & (X - \alpha^8)(X - \alpha^{24})(X - \alpha^{20}) = X^3 + 2X^2 + 2X + 2 \\
C_7 &= \{7, 8, 11\} & (X - \alpha^{14})(X - \alpha^{16})(X - \alpha^{22}) = X^3 + 2X + 2
\end{align*}
\]
BCH codes

For $2 \leq \delta \leq n$, a cyclic code of length n over \mathbb{F}_q and designed distance δ with defining set $T = C_b \cup \ldots \cup C_{b+\delta-2}$. When $b = 1$, C is called a narrow-sense BCH code. If $n = q^t - 1$, then C is called a primitive BCH code.

For $n = 13$ and $q = 3$, $q^t - 1 = 3^3 - 1 = 26$, so $n = 13|q^t - 1$ so we are not getting primitive BCH codes.

The code with generator polynomial $(X - \alpha^2)(X - \alpha^6)(X - \alpha^{18})$ is a narrow-sense BCH.
Parity check matrix
Dual code
BCH bound
BCH codes (narrow-sense, primitive)