
Coding Theory: Cyclic Codes (III)



Cyclic Codes
� So far

• A linear cyclic code C of length n contains all n cyclic shifts
of any codeword.

• c = (c0, . . . , cn−1) ∈ Fnq ⇐⇒ c(X) = c0 + . . .+ cn−1X
n−1

• C = {q(X)g(X), q(X) ∈ Fq[X],deg(q(X)) < n− r}, where
g(X) is the monic polynomial of lowest degree r in C called
the generator polynomial.

• dim(C) = n− r = k

• g(X)h(X) = Xn − 1, h(X) = check polynomial

• Generator matrix is obtained by shifts of the coefficients of
g(X).

• Divisors g(X) of Xn − 1⇐⇒ cyclic codes of length n.



If C has check
polynomial h(X) then
C = {c(X), deg c(X) ≤
n− 1, c(X)h(X) ≡ 0
(mod Xn − 1)}.

We prove both
inclusions.
If c(X) ∈ C, then
c(X) = q(X)g(X).
Then c(X)h(X) =
q(X)g(X)h(X) =
q(X)(Xn − 1).

Suppose now c(X) is such that
c(X)h(X) = p(X)(Xn − 1) =
p(X)g(X)h(X). Thus
[c(X)− p(X)g(X)]h(X) = 0
but h(X) cannot be 0. Then
c(X)− p(X)g(X) = 0⇒
c(X) = p(X)g(X) as desired.



Check polynomial
Example (1)

Consider the (7, 3) linear binary code
C = {q(X)(1 +X2 +X3 +X4), q(X) ∈ Fq[X], deg(q(X)) < 3}:

q(X)g(X) codeword

0 (0, 0, 0, 0, 0, 0, 0)
1 +X2 +X3 +X4 (1, 0, 1, 1, 1, 0, 0)
X +X3 +X4 +X5 (0, 1, 0, 1, 1, 1, 0)
1 +X +X2 +X5 (1, 1, 1, 0, 0, 1, 0)
X2 +X4 +X5 +X6 (0, 0, 1, 0, 1, 1, 1)
1 +X3 +X5 +X6 (1, 0, 0, 1, 0, 1, 1)
X +X2 +X3 +X6 (0, 1, 1, 1, 0, 0, 1)
1 +X +X4 +X6 (1, 1, 0, 0, 1, 0, 1)

Since (1 +X2 +X3)(1 +X2 +X3 +X4) = X7 − 1,
h(X) = 1 +X2 +X3.



Check polynomial
Example (2)

Does (1, 0, 1, 1, 1, 0, 0) belong to C?

(1 +X2 +X3 +X4)(1 +X2 +X3) = 1 +X2 +X3 +X2 +
X4 +X5 +X3 +X5 +X6 +X4 +X6 +X7 = 1 +X7.

Does (1, 0, 1, 1, 1, 0, 1) belong to C?
(1+X2+X3+X4+X6)(1+X2+X3) = 1+X2+X3+X2+
X4 +X5 +X3 +X5 +X6 +X4 +X6 +X7 +X6 +X8 +X9 =
1 +X7 +X6 +X8 +X9 ≡ X6 +X8 +X9 ≡ X6 +X +X2

(mod X7 − 1).
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Reverse code C[−1].

Code obtained by
reversing every
codeword of C.
(c0, . . . , ci, . . . , cn−1) ∈
C ⇐⇒
(cn−1, . . . , cn−1−i, . . . , c0) ∈
C[−1].

The reverse code C[−1] of a
cyclic code is cyclic.

In polynomial notation: c(X) ∈
C ⇐⇒ Xn−1c(X−1) ∈ C[−1].
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Reciprocal polynomial.

p[−1](X) =∑d
i=0 pd−iX

i =
Xdp(X−1).

For example, suppose
h(X) = h0 + h1X + . . . hkX

k,
then h[−1](X) =
Xk(h0 + h1X

−1 + . . . hkX
−k) =

hk + hk−1X + . . .+ h0X
k.



Cyclic Codes
� Dual code

Let C be a cyclic code of length n and check polynomial
h(X) =

∑k
i=0 hiX

i of degree k. Then a parity-check matrix H
is:

H =


hk hk−1 . . . h1 h0 0 . . . 0
0 hk hk−1 . . . h1 h0 0 . . . 0
...

. . .
. . .

0 0 hk hk−1 h1 h0


and C⊥ is the cyclic code generated by the polynomial h[−1](X).



Cyclic Codes
� Dual code

A polynomial c(X) = c0 + c1X + . . .+ cn−1X
n−1 is a codeword

from C if c(X)h(X) = 0. For c(X)h(X) to be 0, the coefficients
of Xk, . . . , Xn−1 must be 0, i.e.,

c0hk + c1hk−1 + . . .+ ckh0 = 0

c1hk + c2hk−1 + . . .+ ck+1h0 = 0

...

cn−k−1hk + cn−khk−1 + . . .+ cn−1h0 = 0

Thus any codewords (c0, c1, . . . , cn−1) ∈ C is orthogonal to
(hk, hk−1, . . . , h0, 0 . . . , 0) and to its cyclic shifts.

Rows of the
matrix H are in C⊥. Since hk = 1, the rows are linearly
independent, and there are n− k = dim(C⊥). Hence H is a
generator matrix for C⊥, and thus a parity-check matrix for C.
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Cyclic Codes
� Dual code

Left to prove: C⊥ is generated by the polynomial h[−1](X). It is
sufficient to show that h[−1](X) is factor of Xn − 1.
Recall that h[−1](X) = Xkh(X−1). Then
h(X−1)g(X−1) = (X−1)n − 1, multiplying by Xn gives
Xkh(X−1)Xn−kg(X−1) = Xn((X−1)n − 1) = 1−Xn.



Cyclic Codes
� Dual code

Exercise. Consider the binary code of length 7 with generator
polynomial g(X) = 1 +X2 +X3 +X4. Construct its parity
check matrix.

Since (1 +X2 +X3)(1 +X2 +X3 +X4) = X7 − 1,
h(X) = 1 +X2 +X3.

H =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
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Cyclic Codes
� Dual code

We can check that HGT = 0:


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1





1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1





Cyclic Codes
� Dual code

For a linear (n, k) cyclic code C with generator polynomial g(X)
of degree r:

X Length is n.

X Dimension is k = n− r.
X Generator matrix is obtained by shifts of the coefficients of

g(X).

X Parity check matrix is obtained by shifts of the coefficients
of h[−1](X).

X C⊥ is a cyclic code generated by h[−1](X).



Cyclic Codes
� Factors of g(X)

• A cyclic code is defined by its generator polynomial g(X),
for g(X) a divisor of Xn − 1.
The polynomial g(X) ∈ Fq[X] is factorized into a product
of irreducible polynomials:

g(X) =
∏
s

Ms(X), Ms(X) ∈ Fq[X], Ms(X)|Xn − 1.

E.g. g(X) = 1 +X2 +X3 +X4 = (X + 1)(X3 +X + 1).
• A cyclic code is defined by the irreducible factors Ms(X) of
g(X), for Ms(X) a divisor of Xn − 1.

Every Ms(X) can be factorized as Ms(X) =
∏
i∈Cs

(X −αi)
over a finite field that contains all the roots of
Xn − 1 =

∏n−1
i=0 (X − αi).

• A cyclic code is defined by the roots of g(X), which form a
subset of the roots of Xn − 1.
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Cyclic Codes
� Roots of Xn − 1

• If α is a root of Xn − 1, then αn = 1 and α is an nth root
of unity.

• Roots of Xn − 1 may or not be repeated. E.g.
X4 − 1 = (X2 − 1)(X2 + 1) = (X − 1)(X + 1)(X + 1)2 over
F2, so it has 4 roots, all of them are 1 (and 1 is a 4rth root
of unity).

• Claim: if (n, q) = 1, the roots of Xn − 1 are not repeated.
From now on, we assume (n, q) = 1.

• Since Xn − 1 ∈ Fq[X] has no repeated root when (n, q) = 1,
this means that its n roots are n distinct nth roots of unity
(that is all nth roots of unity).
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Cyclic Codes
� Roots of Xn − 1

• Claim: Exactly when n|qt − 1, Fqt contains a primitive nth
root of unity α that is an element α such that

α, α2, α3, . . . αn = 1.

• When n|qt − 1, we can find all the roots of Xn − 1 in Fqt .
E.g. when q = 2, and n = 7, we need t such that 7|2t − 1.

For example take t = 3. Then
Fqt = F8 ' F2[X]/(X3 +X + 1): ω3 = ω + 1, ω4 = ω2 + ω,
ω5 = ω3 + ω2 = ω2 + ω + 1, ω6 = ω3 + ω2 + ω = ω2 + 1,
ω7 = ω3 + ω = 1. Thus ω is a 7th root of unity and

(ωi)7 = (ω7)i = 1, i = 1, . . . , 7

we thus have found the 7 roots of X7 − 1 =
∏7
i=1(X − αi).
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Cyclic Codes
� Roots of Xn − 1

• Claim: Exactly when n|qt − 1, Fqt contains a primitive nth
root of unity α. We will choose t to be the smallest such t.

• E.g. when q = 2, and n = 7, we need t such that 7|2t − 1.
We already saw that we can choose t = 3.

We could also
pick t = 6, but t = 3 is the smallest suitable t, thus we will
choose t = 3 over t = 6.
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Cyclic Codes
� Factors of g(X)

• A cyclic code is defined by its generator polynomial

g(X) =
∏
s

Ms(X) =
∏
s

∏
i∈Cs

(X − αi),

for g(X) a divisor of Xn − 1, thus by the roots αi of g(X),
and since we only have powers of α, a cyclic code is defined
by the sets Cs.

E.g. g(X) = 1 +X2 +X3 +X4 = (X + 1)(X3 +X + 1):
C0 = {0}, C1 = {1, 2, 4}.



q-cyclotomic coset

For 0 ≤ s < n, the
q-cyclotomic coset of s
modulo n is

Cs = {s, sq, . . . , squ−1}

(mod n), u is the
smallest positive integer
such that qu ≡ 1
(mod n).

When n = 7, q = 2, u = 3, since
2, 22 ≡ 4, 23 ≡ 1 (mod 7). Then
we have {1, 2, qu−1 = 22 = 4}:

C0 = {0}
C1 = {1, 2, 4} = C2 = C4

C3 = {3, 6, 5} = C5 = C6



Cyclic Codes
� Factors of g(X)

For n = 7, q = 2: X7 − 1 =
∏7
i=1(X − αi):

List all roots α0, α1, α2, α3, α4, α5, α6

Group the roots α0︸︷︷︸
C0

, α1, α2, α4︸ ︷︷ ︸
C1

, α3, α5, α6︸ ︷︷ ︸
C2

Compose g(X) X − 1

(X − α)(X − α2)(X − α4)

(X − α3)(X − α5)(X − α6)

(X − 1)(X − α)(X − α2)(X − α4)

(X − 1)(X − α3)(X − α5)(X − α6)

(X − α)(X − α2)(X − α4)(X − α3)(X − α5)(X − α6)

X7 − 1



Cyclic Codes
� Factors of g(X)

For n = 7, q = 2: X7 − 1 =
∏7
i=1(X − αi):

List all roots α0, α1, α2, α3, α4, α5, α6

Group the roots α0︸︷︷︸
C0

, α1, α2, α4︸ ︷︷ ︸
C1

, α3, α5, α6︸ ︷︷ ︸
C2

Compose g(X) X + 1

X3 +X + 1

X3 +X2 + 1

X4 +X3 +X2 + 1

X4 +X2 +X + 1

X6 +X5 +X4 +X3 +X2 +X + 1

X7 − 1



Defining set of C

The set

T = ∪sCs,

Cs = {s, sq, . . . , squ−1}
(mod n).

Z = {αi, i ∈ T}

is called the set of zeros
of C.

T = C0 ∪ C1 = {0, 1, 2, 4}

is a defining set of C generated
by g(X) = 1 +X2 +X3 +X4

over F2. Also

Z = {1, α, α2, α4}

is the set of zeros of C.



Consecutive elements

The defining set
T = ∪sCs contains v
consecutive elements if
there is a set

S = {b, b+1, . . . , b+v−1}

of v consecutive integers
(mod n) such that
S ⊆ T .

T = C0 ∪ C1 = {0, 1, 2, 4}

is a defining set of C generated
by g(X) = 1 +X2 +X3 +X4

over F2. Then T contains a set
S of v = 3 consecutive elements:

S = {0, 1, 2}.



BCH Bound

Let C be an (n, k, d)
cyclic code over Fq with
defining set T = ∪sCs.
If T contains δ − 1
consecutive elements for
some integer δ, then

d ≥ δ.

Let C be the cyclic code
generated by
g(X) = 1 +X2 +X3 +X4 over
F2, with defining set
T = C0 ∪ C1 = {0, 1, 2, 4} which
contains a set S = {0, 1, 2} of
v = 3 = δ − 1 consecutive
elements. Thus

d ≥ 4.



BCH Bound

Let C be an (n, k, d)
cyclic code over Fq with
defining set T = ∪sCs.
If T contains δ − 1
consecutive elements for
some integer δ, then

d ≥ δ.

The code C has zeros that
include αb, . . . , αb+δ−2. Let
c(X) be a nonzero codeword of
C of weight w:

c(X) =

w∑
j=1

cijX
ij

Assume to the contrary that
w < δ. We have c(αl) = 0 for
b ≤ l ≤ b+ δ − 2, since g(X)
divides c(X).



Cyclic Codes
� Factors of g(X)

That c(αl) = 0 for b ≤ l ≤ b+ δ − 2 implies

c(αl) =

w∑
j=1

cij (α
l)ij

which gives the following system of equations:
αi1b αi2b . . . αiwb

αi1(b+1) αi2(b+1) . . . αiw(b+1)

...
...

αi1(b+w−1) αi2(b+w−1) . . . αiw(b+w−1)



ci1
ci2
...
ciw


︸ ︷︷ ︸
6=0

= 0

(w < δ ⇐⇒ w+1 ≤ δ ⇐⇒ w ≤ δ−1 ⇐⇒ b+w−1 ≤ b+δ−2).



Cyclic Codes
� Factors of g(X)

Then M must satisfy det(M) = 0 but

M =


αi1b . . . αiwb

αi1(b+1) . . . αiw(b+1)

...
...

αi1(b+w−1) . . . αiw(b+w−1)

 =


1 . . . 1
αi1 . . . αiw

...
...

αi1(w−1) . . . αiw(w−1)


︸ ︷︷ ︸

V andermonde

D

with D = diag(αi1b, . . . , αiwb).

Thus

det(M) = α(i1+...+iw)b
∏
l<j

(αij − αil) 6= 0

a contradiction.
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BCH codes

BCH = BoseChaudhuri-
Hocquenghem. For
2 ≤ δ ≤ n, a cyclic code
of length n over Fq and
designed distance δ with
defining set

T = Cb ∪ . . . ∪ Cb+δ−2.

By construction, d ≥ δ.

1. Fix q, n.

2. Compute the q-cyclotomic
cosets modulo n.

3. Compute consecutive
elements to find possible
designed distance δ.

4. Find a primitive nth root
of unity.

5. Map q-cyclotomic cosets to
polynomials.



BCH Codes
Example (1)

1. Let us fix n = 13 and q = 3.

2. By definition the q-cyclotomic coset of s modulo n is

Cs = {s, sq, . . . , squ−1} (mod n),

u is the smallest positive integer such that qu ≡ 1 (mod n).

We have 3, 32 = 9, 33 = 27 ≡ 1 (mod 13) so
Cs = {s, s3, s9}. We compute C0 = {0}, C1 =
{1, 3, 9}, C2 = {2, 6, 5}, C4 = {4, 12, 10}, C7 = {7, 8, 11}.
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BCH Codes
Example (2)

3. C0 = {0}, C1 = {1, 3, 9}, C2 = {2, 6, 5}, C4 =
{4, 12, 10}, C7 = {7, 8, 11}.

C1: it has δ − 1 = 1 consecutive element, so designed
distance δ = 2.
C0 ∪ C1 = {0, 1, 3, 9}: it has δ − 1 = 2 consecutive elements,
so designed distance δ = 3.
C0 ∪ C1 ∪ C2 = {0, 1, 2, 3, 5, 6, 9}: it has δ − 1 = 4
consecutive elements, so designed distance δ = 5.



BCH Codes
Example (3)

4. To find a primitive 13th root of unity, we know we need to
find the smallest t such that n = 13|(qt − 1), that is
13|3t − 1. When t = 3, 33 − 1 = 26 which is divisible by 13.

We thus look for a primitive 13th root in F33 . The
polynomial X3 + 2X + 1 = 0 is irreducible modulo 3. Let α
be such that α3 + 2α+ 1 = 0, so α3 = α− 1. Then
α6 = α2 + α+ 1, α12 = α4 − α3 + 2α+ 1 = α2 − 1 so
α13 = α3 − α = −1. This shows that α2 is a primitive 13th
root of unity.



BCH Codes
Example (3)

4. To find a primitive 13th root of unity, we know we need to
find the smallest t such that n = 13|(qt − 1), that is
13|3t − 1. When t = 3, 33 − 1 = 26 which is divisible by 13.
We thus look for a primitive 13th root in F33 . The
polynomial X3 + 2X + 1 = 0 is irreducible modulo 3. Let α
be such that α3 + 2α+ 1 = 0, so α3 = α− 1. Then
α6 = α2 + α+ 1, α12 = α4 − α3 + 2α+ 1 = α2 − 1 so
α13 = α3 − α = −1. This shows that α2 is a primitive 13th
root of unity.



BCH Codes
Example (4)

5. We have α2 a primitive 13th root of unity for α such that
α3 + 2α+ 1 = 0. Thus

C0 = {0} X − 1
C1 = {1, 3, 9} (X − α2)(X − α6)(X − α18) = X3 +X2 +X + 2
C2 = {2, 6, 5} (X − α4)(X − α12)(X − α10) = X3 +X2 + 2
C4 = {4, 12, 10} (X − α8)(X − α24)(X − α20) = X3 + 2X2 + 2X + 2
C7 = {7, 8, 11} (X − α14)(X − α16)(X − α22) = X3 + 2X + 2



BCH codes

For 2 ≤ δ ≤ n, a cyclic
code of length n over Fq
and designed distance δ
with defining set
T = Cb ∪ . . . ∪ Cb+δ−2.
When b = 1, C is called
a narrow-sense BCH
code. If n = qt − 1, then
C is called a primitive
BCH code.

For n = 13 and q = 3,
qt − 1 = 33 − 1 = 26, so
n = 13|qt − 1 so we are not
getting primitive BCH
codes.

The code with generator
polynomial
(X −α2)(X −α6)(X −α18)
is a narrow-sense BCH.



Parity check matrix

Dual code

BCH bound

BCH codes (narrow-sense, primitive)


