Coding Theory: Cyclic Codes (III)



Cyclic Codes

W So far

A linear cyclic code C of length n contains all n cyclic shifts
of any codeword.

e c=(co,...,cn-1) EFY == c(X) = co+...+cp X771

o € ={4(X)g(X), q(X) € Fy[X],deg(q(X)) <n —r}, where
g(X) is the monic polynomial of lowest degree r in C called
the generator polynomial.

e dm(C)=n—r==~%k

e g(X)h(X)=X"—1, h(X) = check polynomial

e Generator matrix is obtained by shifts of the coefficients of
9(X).

e Divisors g(X) of X" — 1 <= cyclic codes of length n.



If C has check Suppose now ¢(X) is such that

polynomial h(X) then (X)h(X) =p(X)(X"—-1) =
C ={c(X), dege(X) < p(X)g(X)h(X). Thus

n—1, o(X)h(X) =0 e(X) = p(X)g(X)]H(X) = 0

(mod X™ —1)}. but h(X) cannot be 0. Then

We prove both
inclusions.

If ¢(X) € C, then
o(X) = q(X)g(X).
Then ¢(X)h(X) =
a(X)g(X)h(X) =
q(X) (X" = 1).

o(X) — p(X)g(X) = 0 =
c(X) = p(X)g(X) as desired.




Check polynomial

Example (1)

Consider the (7, 3) linear binary code
C={a(X)(1+X?+ X? + X*), q(X) € FlX], deg(q(X)) < 3}:

q(X)g(X) codeword

0 (0,0,0,0,0,0,0)

1+ X2+ X34+X4  (1,0,1,1,1,0,0)

X+ X3+ X4+ X% (0,1,0,1,1,1,0)
1+X+X2+X5  (1,1,1,0,0,1,0)

X2+ X4+ X°+Xx% (0,0,1,0,1,1,1)
1+X3+X5+X%  (1,0,0,1,0,1,1)

X+ X2+ Xx3+Xx% (0,1,1,1,0,0,1)
I+X+ X4+ X5  (1,1,0,0,1,0,1)

Since (1+ X2+ X1+ X2+ X3+ X)) = X" 1,
h(X)=1+ X2+ X3



Check polynomial

Example (2)

Does (1,0,1,1,1,0,0) belong to C?



Check polynomial

Example (2)

Does (1,0,1,1,1,0,0) belong to C?
A+ X2+ X3+ XHI+ X2+ X)) =1+ X2+ X34+ X2+
X'+ X5+ X34+ X0+ X0+ X1+ X6+ XT =14 X"



Check polynomial

Example (2)

Does (1,0,1,1,1,0,0) belong to C?

A+ X2+ X3+ XHI+ X2+ X)) =1+ X2+ X34+ X2+
X4+ X5+ X34 X+ X0 X4 X6 XT =14+ X7,
Does (1,0,1,1,1,0,1) belong to C?



Check polynomial

Example (2)

Does (1,0,1,1,1,0,0) belong to C?

A+ X2+ X3+ XHI+ X2+ X)) =1+ X2+ X34+ X2+
X4+ X4+ X3+ X0+ X0 X4 X0 XT =14+ X7,
Does (1,0,1,1,1,0,1) belong to C?

I+ X2+ X34+ X+ XO) 1+ X2+ X3) = 1+ X2+ X3+ X2+
X4+ X4+ X34+ X+ X0+ X4+ X6+ X7+ X6+ X8+ X9 =
T+ X"+ X0+ X84+ X9=X0 4+ X84+ X9= X6+ X + X2
(mod X7 —1).



Reverse code Cl~1. The reverse code Cl=1 of a
e CyCliC code is CyCliC.

Code obtained by
reversing every
codeword of C.

(co,...,ci,...,cn_l) S
C <—
(Cn—17---7cn—1—ia~--760) €

cl=1.




Reverse code Cl~1. The reverse code Cl=1 of a
e CyCliC code is CyCliC.

Code obtained by
reversing every
codeword of C.

In polynomial notation: ¢(X) €
C «— X" lgx—YHeclHl,

(co,...,ci,...,cn_l) S
C <—
(Cn—17---7cn—1—ia~--760) €

cl=1.




Reciprocal polynomial. For example, suppose
h(X)=ho+hi X +... h X",
then hl-1(X) =

Xk<h0 + thfl + ... thfk) =
hk + hk_lX + ...+ hoXk.

p[_dl](X) = '
2 im0 Pa—iX" =
Xdp(X—1).




Cyclic Codes

B Dual code

Let C be a cyclic code of length n and check polynomial
h(X) = Zf:o h; X" of degree k. Then a parity-check matrix H
is:

he hioy ... hi hg O ... 0
0 hy hiy ... hi hg O ... 0
H: . . .
0 0  hi hii hi ho

and C* is the cyclic code generated by the polynomial hl=1(X).



Cyclic Codes

B Dual code

A polynomial ¢(X) = co+c1 X + ... +c,_1 X" ! is a codeword

from C if ¢(X)h(X) = 0. For ¢(X)h(X) to be 0, the coefficients
of Xk ..., X" ! must be 0, i.e.,

cohr + cihp—1 + ...+ chg
cthy +cohp—1+ ...+ cpp1ho =

Cnt—1he + cpn_php_1+...+cn_thg = 0

Thus any codewords (cg, c1,...,¢n—1) € C is orthogonal to
(hg, hi—1,...,ho,0...,0) and to its cyclic shifts.



Cyclic Codes

B Dual code

A polynomial ¢(X) = co+c1 X + ... +c,_1 X" ! is a codeword
from C if ¢(X)h(X) = 0. For ¢(X)h(X) to be 0, the coefficients
of Xk ..., X" ! must be 0, i.e.,

cohr +cithy_1+ ... +chyg =
cthy +cohp—1+ ...+ cpp1ho =

Cnt—1he + cpn_php_1+...+cn_thg = 0

Thus any codewords (cg, c1,...,¢n—1) € C is orthogonal to
(hg, hi—1,...,ho,0...,0) and to its cyclic shifts. Rows of the
matrix H are in Ct. Since hj, = 1, the rows are linearly
independent, and there are n — k = dim(C*). Hence H is a
generator matrix for C*, and thus a parity-check matrix for C.



Cyclic Codes

B Dual code

Left to prove: Ct is generated by the polynomial hl=1(X). It is
sufficient to show that hl=1(X) is factor of X" — 1.

Recall that h[=1(X) = X*h(X~1). Then

h(X Hg(X~1) = (X" — 1, multiplying by X™ gives
XEp(X—HXr g X ) =X (X" =-1)=1- X"



rclic Codes

B Dual code

Exercise. Consider the binary code of length 7 with generator
polynomial g(X) =1+ X2 + X3 + X*. Construct its parity
check matrix.

1



Cyclic Codes

B Dual code

Exercise. Consider the binary code of length 7 with generator
polynomial g(X) =1+ X2 + X3 + X*. Construct its parity
check matrix.

1

Since (1 + X%+ X3)(1+ X2+ X3+ X)) =X"7 -1,

h(X)=1+ X%+ X3

1101000
01101060
H_0011010
0001101
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(ON |

We can check that HGT = 0:




Cyclic Codes

B Dual code

For a linear (n, k) cyclic code C with generator polynomial g(X)

of degree r:

v' Length is n.

v' Dimension is k =n —r.

v" Generator matrix is obtained by shifts of the coefficients of
9(X).

v Parity check matrix is obtained by shifts of the coefficients
of h=1(X).

v Ctis a cyclic code generated by hl=1(X).



Cyclic Codes

B Factors of g(X)

e A cyclic code is defined by its generator polynomial g(X),
for g(X) a divisor of X™ — 1.
The polynomial g(X) € F,[X] is factorized into a product
of irreducible polynomiaIS‘

= [TA400, M:(X) € LX), M0IX" -

E.g g(X)= 1+X2+X3+X4 =(X+1)(X3+X+1).
e A cyclic code is defined by the irreducible factors M, (X) of
g9(X), for My(X) a divisor of X" — 1



Cyclic Codes

B Factors of g(X)

e A cyclic code is defined by its generator polynomial g(X),
for g(X) a divisor of X™ — 1.
The polynomial g(X) € F,[X] is factorized into a product
of irreducible polynomiaIS‘

= [TA400, M:(X) € LX), M0IX" -

E.g g(X)= 1+X2+X3+X4 =(X+1)(X3+X+1).

e A cyclic code is defined by the irreducible factors M, (X) of
g9(X), for My(X) a divisor of X" — 1
Every M;(X) can be factorized as Ms(X) = [[;cc, (X — i)
over a finite field that contains all the roots of
X" -1 —Hfo (X — ).

e A cyclic code is defined by the roots of g(X), which form a
subset of the roots of X™ — 1.



Cyclic Codes

e If o is a root of X™ — 1, then o' = 1 and « is an nth root
of unity.

e Roots of X™ — 1 may or not be repeated. E.g.
Xt—1=(X?2-1)(X%2+1) = (X - 1)(X +1)(X +1)? over
o, so it has 4 roots, all of them are 1 (and 1 is a 4rth root
of unity).

e Claim: if (n,q) = 1, the roots of X™ — 1 are not repeated.
From now on, we assume (n,q) = 1.



Cyclic Codes

e If o is a root of X™ — 1, then o' = 1 and « is an nth root
of unity.

e Roots of X™ — 1 may or not be repeated. E.g.
Xt—1=(X?2-1)(X%2+1) = (X - 1)(X +1)(X +1)? over
o, so it has 4 roots, all of them are 1 (and 1 is a 4rth root
of unity).

e Claim: if (n,q) = 1, the roots of X™ — 1 are not repeated.
From now on, we assume (n,q) = 1.

e Since X" —1 € [F,;[X] has no repeated root when (n,q) =1,
this means that its n roots are n distinct nth roots of unity
(that is all nth roots of unity).



Cyclic Co

B Roots of 4\ n—

e Claim: Exactly when n|q' — 1, [y contains a primitive nth
root of unity « that is an element « such that

e When n|¢" — 1, we can find all the roots of X™ — 1 in F.
E.g. when ¢ = 2, and n = 7, we need t such that 7|2¢ — 1.



Cyclic Codes

e Claim: Exactly when n|q' — 1, [y contains a primitive nth
root of unity « that is an element « such that

e When n|¢" — 1, we can find all the roots of X™ — 1 in F.
E.g. when ¢ = 2, and n = 7, we need t such that 7|2¢ — 1.
For example take ¢t = 3. Then
Fyp =Fg = Fo[X]/(X3 + X + ):w *w+1 wt = w? +w,
=t =wtw+l, =+l Fw=w?+1,

w” = w3 +w=1. Thus w is a 7th root of unity and

we thus have found the 7 roots of X7 — 1 = Hz (X —ab).



Cyclic Co

B Roots of 4\ n—

e Claim: Exactly when n|q' — 1, F,+ contains a primitive nth
root of unity a. We will choose t to be the smallest such t.

e E.g. when ¢ =2, and n = 7, we need ¢ such that 72! — 1.
We already saw that we can choose ¢t = 3.



rclic Codes

B Roots of X™ —1

e Claim: Exactly when n|q' — 1, F,+ contains a primitive nth
root of unity a. We will choose t to be the smallest such t.

e E.g. when ¢ =2, and n = 7, we need ¢ such that 72! — 1.
We already saw that we can choose ¢t = 3. We could also
pick t = 6, but t = 3 is the smallest suitable ¢, thus we will
choose t = 3 over t = 6.



Cyclic Codes

B Factors of g(X)

e A cyclic code is defined by its generator polynomial

g(X) = M) =] [T (X =),

s 1€Cy

for g(X) a divisor of X™ — 1, thus by the roots o’ of g(X),
and since we only have powers of «, a cyclic code is defined
by the sets Cs.

Eg g X)=1+X?+ X3+ X=X+ 1)(X3+ X +1):
Co = {0}, C1 ={1,2,4}.



g-cyclotomic coset
|
For 0 < s < n, the
g-cyclotomic coset of s
modulo n is

CS = {87 sq, . .. 73qu71}

(mod n), u is the
smallest positive integer
such that ¢“ =
(mod n).

When n =7, g =2, u=3, since
2,22 =4,23 =1 (mod 7). Then
we have {1,2,¢*"! =22 = 4}:

Co = {0}
O = {1,2,4}=Co=Cy4
Cy = {3,6,5) = C5 = Cq



Cyclic Codes

—
\
~
Y
=)
Y
o
2!
=
=~
)
Q
S
=

Group the roots

Compose g(X)



List all roots
Group the roots

Compose g(X)

ic Codes
ctors of g(X)

Oé' :
al,al,a?, a3, 0, o’ ab
a¥ ol a? e, o?,a,ab
~N e — ——
Co Ch Co
X+1
X34+ X +1
X34+ X241

X4+ X34+ X241

Xt+ X2+ X +1

X0+ X0+ X4+ X3+ X2+ X +1
X7-1




Defining set of C
I

The set
T = UsCsa

CS = {87 8¢, .., SqU71}
(mod n).

Z={d', icT}

is called the set of zeros

of C.

T=CyuC; ={0,1,2,4}
is a defining set of C generated
by g(X) =1+ X?+ X3+ X1
over Fq. Also

Z ={1,a,0?, o}

is the set of zeros of C.



Consecutive elements
|
The defining set

T = U,C, contains v
consecutive elements if
there is a set

S ={b,b+1,...,b+v-1}

of v consecutive integers
(mod n) such that
SCT.

T=CyuC; ={0,1,2,4}

is a defining set of C generated
by g(X) =1+ X2+ X3+ X1
over Fy. Then T contains a set
S of v = 3 consecutive elements:

S =1{0,1,2}.



BCH Bound
|
Let C be an (n, k, d)
cyclic code over [F, with
defining set T' = U;Cs.
If T contains § — 1
consecutive elements for
some integer J, then

d > 9.

Let C be the cyclic code
generated by

g(X) =1+ X2+ X3+ X* over
o, with defining set

T =CyuUC; ={0,1,2,4} which
contains a set S = {0, 1,2} of

v =3 =4§ — 1 consecutive
elements. Thus

d > 4.



BCH Bound
|
Let C be an (n, k, d)
cyclic code over [F, with
defining set T' = U;Cs.
If T contains § — 1
consecutive elements for
some integer J, then

d>é.

The code C has zeros that
include a?, ..., a2, Let
¢(X) be a nonzero codeword of
C of weight w:

w
C(X) = Z Cinij
j=1

Assume to the contrary that
w < §. We have c(a!) = 0 for
b<1<b+0d—2,since g(X)
divides ¢(X).



ic Codes

actors of g(X)

That c(al) =0 for b <1 < b+ § — 2 implies
c(al) = ZC%’ (al)ii
j=1

which gives the following system of equations:

i1b i2b twb

o) a . a iy

i1 (0+1) ai2(b+1) o oiw(b+1) Ciy
=0

azj(b—i—w—l) aiz(b—i—w—l) gt (b+w-1) ci,

£0

(W< <= w+l<d <= w<i-1 < b+tw—-1<>b+6-2).



ic Codes

actors of g(X)

Then M must satisfy det(M) = 0 but

airb R afwb
ai1(b+1) o aiw(b—i-l)
M = ) . =
oftbtw=1)  iw(btw—1)

with D = diag(ai®, ..., aivw?).

1 . 1
a’l e at
oft(w=1) ofw(w—1)
Vandermonde

D



ic Codes

actors of g(X)

Then M must satisfy det(M) = 0 but

aitb e alwb 1 . 1
i1(b+1) 1 (b41) i1 [
« . (6 (6 e (6%
M = . . = ) . D
oftbtw=1)  iw(btw—1) oftlw=1)  Jiw(w—1)
Vandermonde

with D = diag(a®®, ..., o). Thus

det(M) = it Fiw)b H(aij — o/l) #0
<y

a contradiction.



BCH codes
|
BCH = BoseChaudhuri-
Hocquenghem. For

2 < < n, a cyclic code
of length n over I, and
designed distance § with
defining set

T=CyU...UCphis5_2.

By construction, d > 4.

1. Fix ¢, n.

ot

. Compute the g-cyclotomic

cosets modulo n.

. Compute consecutive

elements to find possible
designed distance 9.

Find a primitive nth root
of unity.

. Map g-cyclotomic cosets to

polynomials.



BCH Codes

Example (1)

1. Let us fix n =13 and ¢ = 3.

2. By definition the ¢-cyclotomic coset of s modulo n is
Cs={s,5q,...,5¢" '} (mod n),

u is the smallest positive integer such that ¢* =1 (mod n).



BCH Codes

Example (1)

1. Let us fix n =13 and ¢ = 3.

2. By definition the ¢-cyclotomic coset of s modulo n is
Cs={s,5q,...,5¢" '} (mod n),

u is the smallest positive integer such that ¢* =1 (mod n).
We have 3,32 = 9,32 =27 =1 (mod 13) so
Cs = {s, s3,s9}.



BCH Codes

Example (1)

1. Let us fix n =13 and ¢ = 3.

2. By definition the ¢-cyclotomic coset of s modulo n is
Cs={s,5q,...,5¢" '} (mod n),

u is the smallest positive integer such that ¢* =1 (mod n).
We have 3,32 = 9,32 =27 =1 (mod 13) so

Cs = {s,53,59}. We compute Cy = {0},C; =

{1,3,9},Ce ={2,6,5},Cy = {4,12,10},C7 = {7,8,11}.



BCH Codes

Example (2)

3. C’0 = {O}aCI = {1,379}502 = {2a6’5}’ 04 =
{4,12,10},C7 = {7,8,11}.

C1: it has § — 1 =1 consecutive element, so designed
distance § = 2.
CoUC1 =1{0,1,3,9}: it has § — 1 = 2 consecutive elements,
so designed distance § = 3.
CoUCl UCQ = {0,1,2,3,5,6,9}2 ithasd —1=4
consecutive elements, so designed distance § = 5.



BCH Codes

Q

Example (3)

4. To find a primitive 13th root of unity, we know we need to
find the smallest ¢ such that n = 13|(¢* — 1), that is
13]3* — 1. When t = 3, 3% — 1 = 26 which is divisible by 13.



BCH Codes

Example (3)

4. To find a primitive 13th root of unity, we know we need to
find the smallest ¢ such that n = 13|(¢* — 1), that is
13]3* — 1. When t = 3, 3% — 1 = 26 which is divisible by 13.
We thus look for a primitive 13th root in Fgs. The
polynomial X3 +2X + 1 = 0 is irreducible modulo 3. Let o
be such that o® +2a4+1 =0, so a® = a — 1. Then
aS=a’+a+1,a?=a*-a?+2a0+1=a>—-1s0
a'® = a® — a = —1. This shows that o? is a primitive 13th

root of unity.



BCH Codes

Example (4)

5. We have o a primitive 13th root of unity for o such that
o +2a+1=0. Thus

Co = {0} X -1
C, ={1,3,9} (X —a®)(X —a)(X —a'®) = X3+ X2+ X +2
Cy = {2,6,5} (X —a*)(X — o) (X —a'0) = X3 + X2 +2
Cy={4,12,10} | (X —a®)(X —a®)(X —a?0) = X3 +2X2 42X +2
C; ={7,8,11} (X —a)(X —alf) (X —a??) = X3 +2X + 2



BCH codes
|
For 2 < < n, a cyclic
code of length n over F,
and designed distance 0
with defining set
T=CyU...UCpr5_2.
When b =1, C is called
a narrow-sense BCH
code. If n = ¢* — 1, then
C is called a primitive
BCH code.

For n =13 and ¢ = 3,

¢ —1=3%—1=26,s0

n = 13|q¢' — 1 so we are not
getting primitive BCH
codes.

The code with generator
polynomial

(X —a®)(X —a%) (X —al®)
is a narrow-sense BCH.



Parity check matrix
Dual code
BCH bound

BCH codes (narrow-sense, primitive)




