Coding Theory: Cyclic Codes (III)

Cyclic Codes ■ So far

• A linear cyclic code C of length n contains all n cyclic shifts of any codeword.

•
$$\mathbf{c} = (c_0, \dots, c_{n-1}) \in \mathbb{F}_q^n \iff c(X) = c_0 + \dots + c_{n-1}X^{n-1}$$

- $C = \{q(X)g(X), q(X) \in \mathbb{F}_q[X], \deg(q(X)) < n r\}$, where g(X) is the monic polynomial of lowest degree r in C called the generator polynomial.
- $\dim(\mathcal{C}) = n r = k$
- $g(X)h(X) = X^n 1, h(X) = \text{check polynomial}$
- Generator matrix is obtained by shifts of the coefficients of g(X).
- Divisors g(X) of $X^n 1 \iff$ cyclic codes of length n.

If C has check polynomial h(X) then $C = \{c(X), \deg c(X) \le n-1, c(X)h(X) \equiv 0 \pmod{X^n - 1}\}.$

We prove both inclusions. If $c(X) \in C$, then c(X) = q(X)g(X). Then c(X)h(X) =q(X)g(X)h(X) = $q(X)(X^n - 1)$. Suppose now c(X) is such that $c(X)h(X) = p(X)(X^n - 1) =$ p(X)g(X)h(X). Thus [c(X) - p(X)g(X)]h(X) = 0but h(X) cannot be 0. Then $c(X) - p(X)g(X) = 0 \Rightarrow$ c(X) = p(X)g(X) as desired.

$\frac{\text{Check polynomial}}{\text{Example (1)}}$

Consider the (7,3) linear binary code $\mathcal{C} = \{q(X)(1 + X^2 + X^3 + X^4), \ q(X) \in \mathbb{F}_q[X], \ \deg(q(X)) < 3\}:$ q(X)q(X) codeword (0, 0, 0, 0, 0, 0, 0)0 $1 + X^2 + X^3 + X^4$ (1, 0, 1, 1, 1, 0, 0) $X + X^3 + X^4 + X^5$ (0, 1, 0, 1, 1, 1, 0) $1 + X + X^2 + X^5$ (1, 1, 1, 0, 0, 1, 0) $X^2 + X^4 + X^5 + X^6$ (0, 0, 1, 0, 1, 1, 1) $1 + X^3 + X^5 + X^6$ (1, 0, 0, 1, 0, 1, 1) $X + X^2 + X^3 + X^6$ (0, 1, 1, 1, 0, 0, 1) $1 + X + X^4 + X^6$ (1, 1, 0, 0, 1, 0, 1) Since $(1 + X^2 + X^3)(1 + X^2 + X^3 + X^4) = X^7 - 1$. $h(X) = 1 + X^2 + X^3.$

Check polynomial Example (2)

Does (1, 0, 1, 1, 1, 0, 0) belong to C?

Check polynomial Example (2)

Does (1, 0, 1, 1, 1, 0, 0) belong to C? $(1 + X^2 + X^3 + X^4)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 = 1 + X^7.$ Check polynomial Example (2)

Does
$$(1, 0, 1, 1, 1, 0, 0)$$
 belong to C ?
 $(1 + X^2 + X^3 + X^4)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 = 1 + X^7.$
Does $(1, 0, 1, 1, 1, 0, 1)$ belong to C ?

Check polynomial Example (2)

Does
$$(1, 0, 1, 1, 1, 0, 0)$$
 belong to C ?
 $(1 + X^2 + X^3 + X^4)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 = 1 + X^7$.
Does $(1, 0, 1, 1, 1, 0, 1)$ belong to C ?
 $(1 + X^2 + X^3 + X^4 + X^6)(1 + X^2 + X^3) = 1 + X^2 + X^3 + X^2 + X^4 + X^5 + X^3 + X^5 + X^6 + X^4 + X^6 + X^7 + X^6 + X^8 + X^9 = 1 + X^7 + X^6 + X^8 + X^9 \equiv X^6 + X^8 + X^9 \equiv X^6 + X + X^2$
 $(\text{mod } X^7 - 1).$

Reverse code $\mathcal{C}^{[-1]}$.

Code obtained by reversing every codeword of C. $(c_0, \ldots, c_i, \ldots, c_{n-1}) \in C \iff (c_{n-1}, \ldots, c_{n-1-i}, \ldots, c_0) \in C^{[-1]}.$ The reverse code $\mathcal{C}^{[-1]}$ of a cyclic code is cyclic.

Reverse code $\mathcal{C}^{[-1]}$.

Code obtained by reversing every codeword of C. $(c_0, \ldots, c_i, \ldots, c_{n-1}) \in C \iff (c_{n-1}, \ldots, c_{n-1-i}, \ldots, c_0) \in C^{[-1]}.$ The reverse code $\mathcal{C}^{[-1]}$ of a cyclic code is cyclic.

In polynomial notation: $c(X) \in \mathcal{C} \iff X^{n-1}c(X^{-1}) \in \mathcal{C}^{[-1]}.$

Reciprocal polynomial.

$$p^{[-1]}(X) = \sum_{\substack{i=0 \ X^d p(X^{-1})}}^{d} p_{d-i} X^i =$$

For example, suppose $h(X) = h_0 + h_1 X + \dots h_k X^k,$ then $h^{[-1]}(X) =$ $X^k(h_0 + h_1 X^{-1} + \dots h_k X^{-k}) =$ $h_k + h_{k-1} X + \dots + h_0 X^k.$

Let C be a cyclic code of length n and check polynomial $h(X) = \sum_{i=0}^{k} h_i X^i$ of degree k. Then a parity-check matrix H is:

$$H = \begin{bmatrix} h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & 0\\ 0 & h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & 0\\ \vdots & & \ddots & \ddots & & & & \\ 0 & & 0 & h_k & h_{k-1} & & h_1 & h_0 \end{bmatrix}$$

and \mathcal{C}^{\perp} is the cyclic code generated by the polynomial $h^{[-1]}(X)$.

A polynomial $c(X) = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1}$ is a codeword from C if c(X)h(X) = 0. For c(X)h(X) to be 0, the coefficients of X^k, \ldots, X^{n-1} must be 0, i.e.,

$$c_0h_k + c_1h_{k-1} + \dots + c_kh_0 = 0$$

$$c_1h_k + c_2h_{k-1} + \dots + c_{k+1}h_0 = 0$$

$$\vdots$$

$$c_{n-k-1}h_k + c_{n-k}h_{k-1} + \dots + c_{n-1}h_0 = 0$$

Thus any codewords $(c_0, c_1, \ldots, c_{n-1}) \in C$ is orthogonal to $(h_k, h_{k-1}, \ldots, h_0, 0, \ldots, 0)$ and to its cyclic shifts.

A polynomial $c(X) = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1}$ is a codeword from C if c(X)h(X) = 0. For c(X)h(X) to be 0, the coefficients of X^k, \ldots, X^{n-1} must be 0, i.e.,

$$c_0h_k + c_1h_{k-1} + \ldots + c_kh_0 = 0$$

$$c_1h_k + c_2h_{k-1} + \ldots + c_{k+1}h_0 = 0$$

$$\vdots$$

$$c_{n-k-1}h_k + c_{n-k}h_{k-1} + \ldots + c_{n-1}h_0 = 0$$

Thus any codewords $(c_0, c_1, \ldots, c_{n-1}) \in \mathcal{C}$ is orthogonal to $(h_k, h_{k-1}, \ldots, h_0, 0, \ldots, 0)$ and to its cyclic shifts. Rows of the matrix H are in \mathcal{C}^{\perp} . Since $h_k = 1$, the rows are linearly independent, and there are $n - k = \dim(\mathcal{C}^{\perp})$. Hence H is a generator matrix for \mathcal{C}^{\perp} , and thus a parity-check matrix for \mathcal{C} .

Left to prove: \mathcal{C}^{\perp} is generated by the polynomial $h^{[-1]}(X)$. It is sufficient to show that $h^{[-1]}(X)$ is factor of $X^n - 1$. Recall that $h^{[-1]}(X) = X^k h(X^{-1})$. Then $h(X^{-1})g(X^{-1}) = (X^{-1})^n - 1$, multiplying by X^n gives $X^k h(X^{-1})X^{n-k}g(X^{-1}) = X^n((X^{-1})^n - 1) = 1 - X^n$.

Exercise. Consider the binary code of length 7 with generator polynomial $g(X) = 1 + X^2 + X^3 + X^4$. Construct its parity check matrix.

Exercise. Consider the binary code of length 7 with generator polynomial $g(X) = 1 + X^2 + X^3 + X^4$. Construct its parity check matrix.

Since
$$(1 + X^2 + X^3)(1 + X^2 + X^3 + X^4) = X^7 - 1$$
,
 $h(X) = 1 + X^2 + X^3$.

$$H = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{vmatrix}$$

Cyclic Codes \blacksquare Dual code

We can check that $HG^T = 0$:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

For a linear (n, k) cyclic code \mathcal{C} with generator polynomial g(X) of degree r:

- ✓ Length is n.
- ✓ Dimension is k = n r.
- ✓ Generator matrix is obtained by shifts of the coefficients of g(X).
- ✓ Parity check matrix is obtained by shifts of the coefficients of $h^{[-1]}(X)$.
- ✓ C^{\perp} is a cyclic code generated by $h^{[-1]}(X)$.

Cyclic Codes Factors of g(X)

• A cyclic code is defined by its generator polynomial g(X), for g(X) a divisor of $X^n - 1$. The polynomial $g(X) \in \mathbb{F}_q[X]$ is factorized into a product of irreducible polynomials:

$$g(X) = \prod_{s} M_s(X), \ M_s(X) \in \mathbb{F}_q[X], \ M_s(X) | X^n - 1.$$

E.g. $g(X) = 1 + X^2 + X^3 + X^4 = (X + 1)(X^3 + X + 1).$

• A cyclic code is defined by the irreducible factors $M_s(X)$ of g(X), for $M_s(X)$ a divisor of $X^n - 1$.

Cyclic Codes Factors of g(X)

• A cyclic code is defined by its generator polynomial g(X), for g(X) a divisor of $X^n - 1$. The polynomial $g(X) \in \mathbb{F}_q[X]$ is factorized into a product of irreducible polynomials:

$$g(X) = \prod_{s} M_s(X), \ M_s(X) \in \mathbb{F}_q[X], \ M_s(X) | X^n - 1.$$

E.g. $g(X) = 1 + X^2 + X^3 + X^4 = (X + 1)(X^3 + X + 1).$

- A cyclic code is defined by the irreducible factors $M_s(X)$ of g(X), for $M_s(X)$ a divisor of $X^n 1$. Every $M_s(X)$ can be factorized as $M_s(X) = \prod_{i \in C_s} (X - \alpha_i)$ over a finite field that contains all the roots of $X^n - 1 = \prod_{i=0}^{n-1} (X - \alpha_i)$.
- A cyclic code is defined by the roots of g(X), which form a subset of the roots of $X^n 1$.

- If α is a root of $X^n 1$, then $\alpha^n = 1$ and α is an *n*th root of unity.
- Roots of $X^n 1$ may or not be repeated. E.g. $X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X + 1)^2$ over \mathbb{F}_2 , so it has 4 roots, all of them are 1 (and 1 is a 4rth root of unity).
- Claim: if (n,q) = 1, the roots of $X^n 1$ are not repeated. From now on, we assume (n,q) = 1.

- If α is a root of $X^n 1$, then $\alpha^n = 1$ and α is an *n*th root of unity.
- Roots of $X^n 1$ may or not be repeated. E.g. $X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X + 1)^2$ over \mathbb{F}_2 , so it has 4 roots, all of them are 1 (and 1 is a 4rth root of unity).
- Claim: if (n,q) = 1, the roots of $X^n 1$ are not repeated. From now on, we assume (n,q) = 1.
- Since $X^n 1 \in \mathbb{F}_q[X]$ has no repeated root when (n, q) = 1, this means that its *n* roots are *n* distinct *n*th roots of unity (that is all *n*th roots of unity).

• Claim: Exactly when $n|q^t - 1$, \mathbb{F}_{q^t} contains a primitive *n*th root of unity α that is an element α such that

$$\alpha, \alpha^2, \alpha^3, \dots \alpha^n = 1.$$

• When $n|q^t - 1$, we can find all the roots of $X^n - 1$ in \mathbb{F}_{q^t} . E.g. when q = 2, and n = 7, we need t such that $7|2^t - 1$.

• Claim: Exactly when $n|q^t - 1$, \mathbb{F}_{q^t} contains a primitive *n*th root of unity α that is an element α such that

$$\alpha, \alpha^2, \alpha^3, \dots \alpha^n = 1.$$

• When $n|q^t - 1$, we can find all the roots of $X^n - 1$ in \mathbb{F}_{q^t} . E.g. when q = 2, and n = 7, we need t such that $7|2^t - 1$. For example take t = 3. Then $\mathbb{F}_{q^t} = \mathbb{F}_8 \simeq \mathbb{F}_2[X]/(X^3 + X + 1)$: $\omega^3 = \omega + 1$, $\omega^4 = \omega^2 + \omega$, $\omega^5 = \omega^3 + \omega^2 = \omega^2 + \omega + 1$, $\omega^6 = \omega^3 + \omega^2 + \omega = \omega^2 + 1$, $\omega^7 = \omega^3 + \omega = 1$. Thus ω is a 7th root of unity and

$$(\omega^i)^7 = (\omega^7)^i = 1, \ i = 1, \dots, 7$$

we thus have found the 7 roots of $X^7 - 1 = \prod_{i=1}^7 (X - \alpha^i)$.

- Claim: Exactly when $n|q^t 1$, \mathbb{F}_{q^t} contains a primitive *n*th root of unity α . We will choose *t* to be the smallest such *t*.
- E.g. when q = 2, and n = 7, we need t such that $7|2^t 1$. We already saw that we can choose t = 3.

- Claim: Exactly when $n|q^t 1$, \mathbb{F}_{q^t} contains a primitive *n*th root of unity α . We will choose *t* to be the smallest such *t*.
- E.g. when q = 2, and n = 7, we need t such that $7|2^t 1$. We already saw that we can choose t = 3. We could also pick t = 6, but t = 3 is the smallest suitable t, thus we will choose t = 3 over t = 6.

Cyclic Codes Factors of g(X)

• A cyclic code is defined by its generator polynomial

$$g(X) = \prod_{s} M_s(X) = \prod_{s} \prod_{i \in C_s} (X - \alpha^i),$$

for g(X) a divisor of $X^n - 1$, thus by the roots α^i of g(X), and since we only have powers of α , a cyclic code is defined by the sets C_s .

E.g.
$$g(X) = 1 + X^2 + X^3 + X^4 = (X+1)(X^3 + X + 1):$$

 $C_0 = \{0\}, C_1 = \{1, 2, 4\}.$

q-cyclotomic coset

For $0 \le s < n$, the *q*-cyclotomic coset of *s* modulo *n* is

$$C_s = \{s, sq, \dots, sq^{u-1}\}$$

(mod n), u is the smallest positive integer such that $q^u \equiv 1$ (mod n). When n = 7, q = 2, u = 3, since $2, 2^2 \equiv 4, 2^3 \equiv 1 \pmod{7}$. Then we have $\{1, 2, q^{u-1} = 2^2 = 4\}$:

$$C_0 = \{0\}$$

$$C_1 = \{1, 2, 4\} = C_2 = C_4$$

$$C_3 = \{3, 6, 5\} = C_5 = C_6$$

Cyclic Codes Factors of g(X)

For
$$n = 7, q = 2$$
: $X^7 - 1 = \prod_{i=1}^7 (X - \alpha^i)$:
List all roots
Group the roots
Compose $g(X)$
 $X - 1$
 $(X - \alpha)(X - \alpha^2)(X - \alpha^4)$
 $(X - 1)(X - \alpha)(X - \alpha^2)(X - \alpha^4)$
 $(X - \alpha)(X - \alpha^2)(X - \alpha^6)$
 $(X - 1)(X - \alpha)(X - \alpha^2)(X - \alpha^6)$
 $(X - 1)(X - \alpha)(X - \alpha^2)(X - \alpha^6)$
 $(X - \alpha)(X - \alpha^2)(X - \alpha^4)(X - \alpha^3)(X - \alpha^5)(X - \alpha^6)$
 $(X - \alpha)(X - \alpha^2)(X - \alpha^4)(X - \alpha^3)(X - \alpha^5)(X - \alpha^6)$
 $X^7 - 1$

Cyclic Codes Factors of g(X)

For
$$n = 7, q = 2$$
: $X^7 - 1 = \prod_{i=1}^7 (X - \alpha^i)$:
List all roots
Group the roots
Compose $g(X)$
 $X + 1$
 $X^3 + X + 1$
 $X^4 + X^3 + X^2 + 1$
 $X^4 + X^2 + X + 1$
 $X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$

Defining set of \mathcal{C}

The set

 $T = \cup_s C_s,$ $C_s = \{s, sq, \dots, sq^{u-1}\}$ (mod n).

$$Z = \{\alpha^i, \ i \in T\}$$

is called the set of zeros of \mathcal{C} .

$$T = C_0 \cup C_1 = \{0, 1, 2, 4\}$$

is a defining set of C generated by $g(X) = 1 + X^2 + X^3 + X^4$ over \mathbb{F}_2 . Also

$$Z=\{1,\alpha,\alpha^2,\alpha^4\}$$

is the set of zeros of \mathcal{C} .

Consecutive elements

The defining set $T = \bigcup_s C_s$ contains v consecutive elements if there is a set

$$\mathcal{S} = \{b, b+1, \dots, b+v-1\}$$

of v consecutive integers (mod n) such that $S \subseteq T$.

 $T = C_0 \cup C_1 = \{0, 1, 2, 4\}$

is a defining set of C generated by $g(X) = 1 + X^2 + X^3 + X^4$ over \mathbb{F}_2 . Then T contains a set S of v = 3 consecutive elements:

 $\mathcal{S} = \{0, 1, 2\}.$

BCH Bound

Let C be an (n, k, d)cyclic code over \mathbb{F}_q with defining set $T = \bigcup_s C_s$. If T contains $\delta - 1$ consecutive elements for some integer δ , then

$$d \geq \delta$$

Let C be the cyclic code generated by $g(X) = 1 + X^2 + X^3 + X^4$ over \mathbb{F}_2 , with defining set $T = C_0 \cup C_1 = \{0, 1, 2, 4\}$ which contains a set $S = \{0, 1, 2\}$ of $v = 3 = \delta - 1$ consecutive elements. Thus

 $d \ge 4.$

BCH Bound

Let C be an (n, k, d)cyclic code over \mathbb{F}_q with defining set $T = \bigcup_s C_s$. If T contains $\delta - 1$ consecutive elements for some integer δ , then

$$d \geq \delta$$
.

The code C has zeros that include $\alpha^b, \ldots, \alpha^{b+\delta-2}$. Let c(X) be a nonzero codeword of C of weight w:

$$c(X) = \sum_{j=1}^{w} c_{i_j} X^{i_j}$$

Assume to the contrary that $w < \delta$. We have $c(\alpha^l) = 0$ for $b \le l \le b + \delta - 2$, since g(X) divides c(X).

Cyclic Codes Factors of g(X)

That $c(\alpha^l) = 0$ for $b \le l \le b + \delta - 2$ implies

$$c(\alpha^l) = \sum_{j=1}^w c_{ij} (\alpha^l)^{i_j}$$

which gives the following system of equations:

$$\begin{bmatrix} \alpha^{i_1b} & \alpha^{i_2b} & \dots & \alpha^{i_wb} \\ \alpha^{i_1(b+1)} & \alpha^{i_2(b+1)} & \dots & \alpha^{i_w(b+1)} \\ \vdots & & \vdots \\ \alpha^{i_1(b+w-1)} & \alpha^{i_2(b+w-1)} & \dots & \alpha^{i_w(b+w-1)} \end{bmatrix} \underbrace{\begin{bmatrix} c_{i_1} \\ c_{i_2} \\ \vdots \\ c_{i_w} \end{bmatrix}}_{\neq 0} = \mathbf{0}$$

 $(w < \delta \iff w + 1 \le \delta \iff w \le \delta - 1 \iff b + w - 1 \le b + \delta - 2).$

Cyclic Codes Factors of g(X)

Then M must satisfy det(M) = 0 but

with $D = diag(\alpha^{i_1 b}, \ldots, \alpha^{i_w b}).$

Cyclic Codes \blacksquare Factors of g(X)

Then M must satisfy det(M) = 0 but

$$M = \begin{bmatrix} \alpha^{i_1b} & \dots & \alpha^{i_wb} \\ \alpha^{i_1(b+1)} & \dots & \alpha^{i_w(b+1)} \\ \vdots & & \vdots \\ \alpha^{i_1(b+w-1)} & \dots & \alpha^{i_w(b+w-1)} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \dots & 1 \\ \alpha^{i_1} & \dots & \alpha^{i_w} \\ \vdots & & \vdots \\ \alpha^{i_1(w-1)} & \dots & \alpha^{i_w(w-1)} \end{bmatrix}}_{Vandermonde} D$$

with
$$D = diag(\alpha^{i_1b}, \dots, \alpha^{i_wb})$$
. Thus

$$\det(M) = \alpha^{(i_1 + \dots + i_w)b} \prod_{l < j} (\alpha^{i_j} - \alpha^{i_l}) \neq 0$$

a contradiction.

BCH codes

BCH = BoseChaudhuri-Hocquenghem. For $2 \le \delta \le n$, a cyclic code of length n over \mathbb{F}_q and designed distance δ with defining set

 $T = C_b \cup \ldots \cup C_{b+\delta-2}.$

By construction, $d \geq \delta$.

- 1. Fix q, n.
- 2. Compute the *q*-cyclotomic cosets modulo *n*.
- 3. Compute consecutive elements to find possible designed distance δ .
- 4. Find a primitive *n*th root of unity.
- 5. Map *q*-cyclotomic cosets to polynomials.

 $\begin{array}{c} \text{BCH Codes} \\ \text{Example (1)} \end{array}$

- 1. Let us fix n = 13 and q = 3.
- 2. By definition the q-cyclotomic coset of s modulo n is

$$C_s = \{s, sq, \dots, sq^{u-1}\} \pmod{n},$$

u is the smallest positive integer such that $q^u \equiv 1 \pmod{n}$.

BCH Codes Example (1)

- 1. Let us fix n = 13 and q = 3.
- 2. By definition the q-cyclotomic coset of s modulo n is

$$C_s = \{s, sq, \dots, sq^{u-1}\} \pmod{n},$$

u is the smallest positive integer such that $q^u \equiv 1 \pmod{n}$. We have $3, 3^2 = 9, 3^3 = 27 \equiv 1 \pmod{13}$ so $C_s = \{s, s3, s9\}.$ BCH Codes Example (1)

- 1. Let us fix n = 13 and q = 3.
- 2. By definition the q-cyclotomic coset of s modulo n is

$$C_s = \{s, sq, \dots, sq^{u-1}\} \pmod{n},$$

u is the smallest positive integer such that $q^u \equiv 1 \pmod{n}$. We have $3, 3^2 = 9, 3^3 = 27 \equiv 1 \pmod{13}$ so $C_s = \{s, s3, s9\}$. We compute $C_0 = \{0\}, C_1 = \{1, 3, 9\}, C_2 = \{2, 6, 5\}, C_4 = \{4, 12, 10\}, C_7 = \{7, 8, 11\}.$

BCH Codes Example (2)

3.
$$C_0 = \{0\}, C_1 = \{1, 3, 9\}, C_2 = \{2, 6, 5\}, C_4 = \{4, 12, 10\}, C_7 = \{7, 8, 11\}.$$

 $C_1:$ it has $\delta - 1 = 1$ consecutive element, so designed distance $\delta = 2$.
 $C_0 \cup C_1 = \{0, 1, 3, 9\}:$ it has $\delta - 1 = 2$ consecutive elements, so designed distance $\delta = 3$.
 $C_0 \cup C_1 \cup C_2 = \{0, 1, 2, 3, 5, 6, 9\}:$ it has $\delta - 1 = 4$ consecutive elements, so designed distance $\delta = 5$.

4. To find a primitive 13th root of unity, we know we need to find the smallest t such that $n = 13|(q^t - 1))$, that is $13|3^t - 1$. When t = 3, $3^3 - 1 = 26$ which is divisible by 13.

BCH Codes Example (3)

4. To find a primitive 13th root of unity, we know we need to find the smallest t such that $n = 13|(q^t - 1)$, that is $13|3^t - 1$. When t = 3, $3^3 - 1 = 26$ which is divisible by 13. We thus look for a primitive 13th root in \mathbb{F}_{3^3} . The polynomial $X^3 + 2X + 1 = 0$ is irreducible modulo 3. Let α be such that $\alpha^3 + 2\alpha + 1 = 0$, so $\alpha^3 = \alpha - 1$. Then $\alpha^6 = \alpha^2 + \alpha + 1$, $\alpha^{12} = \alpha^4 - \alpha^3 + 2\alpha + 1 = \alpha^2 - 1$ so $\alpha^{13} = \alpha^3 - \alpha = -1$. This shows that α^2 is a primitive 13th root of unity. BCH Codes Example (4)

5. We have α^2 a primitive 13th root of unity for α such that $\alpha^3 + 2\alpha + 1 = 0$. Thus

 $\begin{array}{c} C_0 = \{0\} \\ C_1 = \{1,3,9\} \\ C_2 = \{2,6,5\} \\ C_4 = \{4,12,10\} \\ C_7 = \{7,8,11\} \end{array} \begin{array}{c} X-1 \\ (X-\alpha^2)(X-\alpha^6)(X-\alpha^{18}) = X^3 + X^2 + X + 2 \\ (X-\alpha^4)(X-\alpha^{12})(X-\alpha^{10}) = X^3 + X^2 + 2 \\ (X-\alpha^8)(X-\alpha^{24})(X-\alpha^{20}) = X^3 + 2X^2 + 2X + 2 \\ (X-\alpha^{14})(X-\alpha^{16})(X-\alpha^{22}) = X^3 + 2X + 2 \end{array}$

BCH codes

For $2 \leq \delta \leq n$, a cyclic code of length n over \mathbb{F}_q and designed distance δ with defining set $T = C_b \cup \ldots \cup C_{b+\delta-2}$. When b = 1, \mathcal{C} is called a narrow-sense BCH code. If $n = q^t - 1$, then \mathcal{C} is called a primitive BCH code. For n = 13 and q = 3, $q^t - 1 = 3^3 - 1 = 26$, so $n = 13|q^t - 1$ so we are not getting primitive BCH codes.

The code with generator polynomial $(X - \alpha^2)(X - \alpha^6)(X - \alpha^{18})$ is a narrow-sense BCH. Parity check matrix Dual code BCH bound BCH codes (narrow-sense, primitive)