
Coding Theory: Linear Codes



What is Coding Theory?
� Communication channels

Transmitter Channel Receiver

Data Noise Corrupted Data



A Generic Communication Channel

Transmitter Channel Receiver

Data x Encoder Noise e Decoder Decoded Data x̂

x = (x1, . . . , xk) 7→ c = (c1, . . . , cn)︸ ︷︷ ︸
codeword, n≥k

−→ c+e→ x̂ = (x̂1, . . . , x̂k)



Encoding

Given an alphabet A, a
map that sends k data
symbols
(x1, . . . , xk) ∈ Ak to
n ≥ k encoded symbols
(c1, . . . , cn) ∈ An. The
encoded vector
c = (c1, . . . , cn) is called
a codeword.

An encoding for k = 1:
(x1) 7→ (x1, . . . , x1), that
is c1 = c2 = . . . = cn.

If the alphabet A is
A = {0, 1}, then
(0) 7→ (0, . . . , 0) and
(1) 7→ (1, . . . , 1).



Discrete Alphabets
� Arithmetic Modulo p

Modulo 2

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Modulo 3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Modulo p (a prime): take the remainder of the Euclidean
division by p.



Discrete Alphabets
� Arithmetic Modulo p

Modulo 4

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Modulo m (m not a prime): what is the difference?



Discrete Alphabets
� Arithmetic Modulo p

So 2 · 2 ≡ 0 (mod 4). What does it change?

Actually a lot...

• If 2x = 0, it is not true that x = 0, it could also be that
x = 2.

• This also shows that a polynomial of degree 1 can have two
solutions...

• and that two numbers different from 0 once multiplied
together actually give 0.

• Also 2x = 1 does not have a solution.
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Finite field Fp

For p a prime, the set of
integers modulo p
represented by
{0, 1 . . . , p− 1} is a
finite field, denoted by
Fp.

Fp is finite means
|Fp| = p <∞.

Informally, that Fp is a
field means that
computations work as
usual, namely we can
add, subtract, multiply, in
a commutative manner,
and divide as long as it is
not by 0.



Inverse in Fp

For x a non-zero
element in Fp, its
(multiplicative) inverse
is the element in Fp

denoted by x−1 which
satisfies that
x · x−1 = x−1 · x = 1.

The inverse of 3 modulo
5:

2 is the inverse of 3
since 2 · 3 ≡ 1 (mod 5).

Find two elements that
are their own inverse
modulo 7: 1 is its own
inverse since 1 · 1 ≡ 1
(mod 7), but so is 6 since
6 · 6 = 36 ≡ 1 (mod 7).
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Discrete Alphabets
� Arithmetic Modulo p

Exercise. Prove that if m is not a prime integer, then integers
modulo m cannot form a finite field.

If m is not a prime, then m is a composite number, that is
m = ab for a, b some integers which are not zero. Then ab ≡ 0
mod m. Now a cannot be invertible, if it were, consider a−1 and
multiply ab ≡ 0 mod m by a−1 to get b ≡ 0 mod m, a
contradiction.
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Discrete Alphabets
� Another finite field

Suppose there exists an element ω which is a zero of
X2 + X + 1 (mod 2). Then ω 6= 0, 1,

ω2 = ω + 1 (mod 2), ω3 = ω(ω + 1) = ω2 + ω = 1 (mod 2).

F4

+ 0 1 ω ω2

0 0 1 ω ω2

1 1 0 ω2 ω
ω ω ω2 0 1
ω2 ω2 ω 1 0

· 0 1 ω ω2

0 0 0 0 0
1 0 1 ω ω2

ω 0 ω ω2 1
ω2 0 ω2 1 ω
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Discrete Alphabets
� Finite fields

We will denote by Fq a finite field with q elements.

So far, we know Fp and F4, we will know more later, but in
the meantime, we will use the notation.



Linear Encoding

Given a finite field Fq, a
linear map that sends k
data symbols
(x1, . . . , xk) ∈ Fk

q to
n ≥ k encoded symbols
(c1, . . . , cn) ∈ Fn

q .

Since we work over Fq:

Codewords belong to Fn
q ,

which is a vector space.

Since the encoding is a
linear map, by definition
(1) the sum of two
codewords is again a
codeword, and (2) a
multiple of a codeword is
again a codeword.



Linear (n, k) code

Given a finite field Fq, a
set of codewords
{(c1, . . . , cn), ci ∈ Fq} ∈
Fn
q is said to form a

linear code (or
codebook) C if (1) the
sum of two codewords is
again a codeword, and
(2) a multiple of a
codeword is again a
codeword.

The whole zero codeword
0 ∈ C.
If c ∈ C, so is −c.

C forms a linear subspace
of Fn

q , it thus has a
dimension, namely k, and
we call n the length.



An (n, k) linear code C
over Fq contains qk

codewords.

We write |C| = qk.

Let b1, . . . ,bk be a basis for C.
Then codewords are obtained
as every possible linear
combination:

x1b1 + . . . + xkbk,

there are q possible values for
each xi, i = 1, . . . , k.



Linear (n, k) codes
Linear algebra

Linear algebra

For V,W finite-dimensional
vector spaces, with a basis for
each space, a linear map can be
represented by a matrix in the
given bases.

Linear codes

Given Fk
q ,Fn

q , fix a basis for
each space, a linear encoding is
represented by a generator
matrix.



Generator matrix

Given a finite field Fq, a
generator matrix G for
an (n, k) linear code C
is a k × n matrix, which
contains as rows the
basis vectors of C.

There are many generator
matrices.

There is a unique
generator matrix of the
form G = [Ik|A] where Ik
is the identity matrix.
The code is said to be in
systematic form.



Linear Codes
� Generator matrices

(x1, . . . , xk)︸ ︷︷ ︸
information data

 a11 a1,n−k

Ik
...

...
ak,1 ak,n−k


︸ ︷︷ ︸

generator matrix G

= (x1, . . . , xk, ck+1, . . . , cn)︸ ︷︷ ︸
codeword



Linear Codes
� Generator matrices

The (n, 1) repetition code

• Dimension: k = 1.

• Length: n.

• Encoding: (x1) 7→ (x1, . . . , x1) ∈ Fn
q .

(x1)[1, . . . , 1] = (x1 . . . , x1).
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Linear Codes
� Generator matrices

The (n, n− 1) single parity check code

• Dimension: k = n− 1.

• Length: n

• Encoding: (x1, . . . , xk) 7→ (x1, . . . , xk,
∑k

i=1 xi) ∈ Fn
q

(x1, . . . , xk)

 1

Ik
...
1

 = (x1 . . . , xk, x1 + . . . + xk).
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Linear Codes
� Generator matrices

Exercise. Consider the following codebook of length n = 4
over F2: {(1, 0, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1), (0, 0, 0, 1)}. Is this
code a linear code? If so, provide a generator matrix.

The code cannot be linear, because (0, 0, 0, 0) does not
belong to the code.

The code cannot be linear, because (1, 1, 0, 1) + (0, 0, 0, 1)
does not belong to the code.
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Linear Codes
� Generator matrices

Exercise. Consider the codebook of length n = 5 over F2

containing: (0, 0, 0, 0, 0),(1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),
(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code
a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every
possible vectors in F3

2, namely (0, 0, 0),(1, 0, 0), (0, 1, 0), (1, 1, 0),
(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1). We next show that there is a
generator matrix (which is enough to conclude the code is
linear):

(x1, x2, x3)

1 0 0 a11 a12
0 1 0 a21 a22
0 0 1 a31 a32

 .



Linear Codes
� Generator matrices

Exercise. Consider the codebook of length n = 5 over F2

containing: (0, 0, 0, 0, 0),(1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),
(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code
a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every
possible vectors in F3

2, namely (0, 0, 0),(1, 0, 0), (0, 1, 0), (1, 1, 0),
(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).

We next show that there is a
generator matrix (which is enough to conclude the code is
linear):

(x1, x2, x3)

1 0 0 a11 a12
0 1 0 a21 a22
0 0 1 a31 a32

 .



Linear Codes
� Generator matrices

Exercise. Consider the codebook of length n = 5 over F2

containing: (0, 0, 0, 0, 0),(1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),
(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code
a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every
possible vectors in F3

2, namely (0, 0, 0),(1, 0, 0), (0, 1, 0), (1, 1, 0),
(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1). We next show that there is a
generator matrix (which is enough to conclude the code is
linear):

(x1, x2, x3)

1 0 0 a11 a12
0 1 0 a21 a22
0 0 1 a31 a32

 .



Linear Codes
� Generator matrices

Exercise. Consider the codebook of length n = 5 over F2

containing: (0, 0, 0, 0, 0),(1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),
(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code
a linear code? If so, provide a generator matrix.

(1, 0, 0)

1 0 0 a11 a12
0 1 0 a21 a22
0 0 1 a31 a32

 = (1, 0, 0, a11, a12)

(x1, x2, x3)

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 .



Linear (n, k) codes
Linear algebra

Linear algebra

A subspace W of a vector space
V is the kernel of some linear
transformation (the projection
onto W ).

Linear codes

Given an (n, k) linear code over
Fq, there exists an (n− k)× n
matrix H such that

C = {x ∈ Fn
q , HxT = 0},

called a parity check matrix.



If G = [Ik|A] is a
generator matrix for the
(n, k) code C, then
H = [−AT |In−k].

We have

GT =

[
Ik
AT

]
and
HGT = −AT + AT = 0.

If c ∈ C, c = xG and
HcT = HGTxT .

Thus C is contained in the
kernel of the linear map
v 7→ HvT . As H has rank
n− k, this map has a kernel of
dimension k, which is the
dimension of C.



If G = [Ik|A] is a
generator matrix for the
(n, k) code C, then
H = [−AT |In−k].

We have

GT =

[
Ik
AT

]
and
HGT = −AT + AT = 0.

If c ∈ C, c = xG and
HcT = HGTxT .
Thus C is contained in the
kernel of the linear map
v 7→ HvT . As H has rank
n− k, this map has a kernel of
dimension k, which is the
dimension of C.



Linear Codes
� Parity check matrices

The (n, 1) repetition code

Generator matrix in systematic form:

[1, 1 . . . , 1︸ ︷︷ ︸
A

] = [Ik|A].

Parity check matrix in systematic form:

[−AT |In−k] =

 −1
... In−k

−1
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Data - Encoder - Channel - Decoder

(n, k) linear code

Generator matrix

Parity check matrix

Fp, F4


