Coding Theory: Linear Codes

What is Coding Theory? Communication channels

A Generic Communication Channel

$$\mathbf{x} = (x_1, \dots, x_k) \mapsto \underbrace{\mathbf{c} = (c_1, \dots, c_n)}_{\text{codeword, } n \ge k} \longrightarrow \mathbf{c} + \mathbf{e} \to \hat{\mathbf{x}} = (\hat{x}_1, \dots, \hat{x}_k)$$

Encoding

Given an alphabet A, a map that sends k data symbols $(x_1, \ldots, x_k) \in A^k$ to $n \ge k$ encoded symbols $(c_1, \ldots, c_n) \in A^n$. The encoded vector $\mathbf{c} = (c_1, \ldots, c_n)$ is called a codeword. An encoding for k = 1: $(x_1) \mapsto (x_1, \dots, x_1)$, that is $c_1 = c_2 = \dots = c_n$. If the alphabet A is $A = \{0, 1\}$, then $(0) \mapsto (0, \dots, 0)$ and

 $(0) \mapsto (0, \dots, 0)$ a $(1) \mapsto (1, \dots, 1).$

Modulo 2		Modulo 3						
+ 0 1	$\cdot 0 1$	+ 0 1 2	$\cdot 0 1 2$					
0 0 1	0 0 0	$0 \ 0 \ 1 \ 2$	0 0 0 0					
1 1 0	1 0 1	1 1 2 0	$1 \ 0 \ 1 \ 2$					
	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Modulo p (a prime): take the remainder of the Euclidean division by p.

$Modulo\ 4$

+	0	1	2	3	•	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

Modulo m (m not a prime): what is the difference?

So $2 \cdot 2 \equiv 0 \pmod{4}$. What does it change?

So $2 \cdot 2 \equiv 0 \pmod{4}$. What does it change? Actually a lot...

- If 2x = 0, it is not true that x = 0, it could also be that x = 2.
- This also shows that a polynomial of degree 1 can have two solutions...
- and that two numbers different from 0 once multiplied together actually give 0.
- Also 2x = 1 does not have a solution.

Finite field \mathbb{F}_p

For p a prime, the set of integers modulo prepresented by $\{0, 1, \ldots, p-1\}$ is a finite field, denoted by \mathbb{F}_p . \mathbb{F}_p is finite means $|\mathbb{F}_p| = p < \infty.$ Informally, that \mathbb{F}_p is a field means that computations work as usual, namely we can add, subtract, multiply, in a commutative manner, and divide as long as it is not by 0.

Inverse in \mathbb{F}_p

For x a non-zero element in \mathbb{F}_p , its (multiplicative) inverse is the element in \mathbb{F}_p denoted by x^{-1} which satisfies that $x \cdot x^{-1} = x^{-1} \cdot x = 1$.

The inverse of 3 modulo 5:

Inverse in \mathbb{F}_p

For x a non-zero element in \mathbb{F}_p , its (multiplicative) inverse is the element in \mathbb{F}_p denoted by x^{-1} which satisfies that $x \cdot x^{-1} = x^{-1} \cdot x = 1.$ The inverse of 3 modulo 5: 2 is the inverse of 3 since $2 \cdot 3 \equiv 1 \pmod{5}$. Find two elements that are their own inverse modulo 7:

Inverse in \mathbb{F}_p

For x a non-zero element in \mathbb{F}_p , its (multiplicative) inverse is the element in \mathbb{F}_p denoted by x^{-1} which satisfies that $x \cdot x^{-1} = x^{-1} \cdot x = 1.$ The inverse of 3 modulo 5: 2 is the inverse of 3 since $2 \cdot 3 \equiv 1 \pmod{5}$. Find two elements that are their own inverse modulo 7: 1 is its own inverse since $1 \cdot 1 \equiv 1 \pmod{7}$, but so is 6 since $6 \cdot 6 = 36 \equiv 1 \pmod{7}$.

Exercise. Prove that if m is not a prime integer, then integers modulo m cannot form a finite field.

Exercise. Prove that if m is not a prime integer, then integers modulo m cannot form a finite field.

If m is not a prime, then m is a composite number, that is m = ab for a, b some integers which are not zero. Then $ab \equiv 0 \mod m$.

Exercise. Prove that if m is not a prime integer, then integers modulo m cannot form a finite field.

If m is not a prime, then m is a composite number, that is m = ab for a, b some integers which are not zero. Then $ab \equiv 0 \mod m$. Now a cannot be invertible, if it were, consider a^{-1} and multiply $ab \equiv 0 \mod m$ by a^{-1} to get $b \equiv 0 \mod m$, a contradiction.

Discrete Alphabets ■ Another finite field

Suppose there exists an element ω which is a zero of $X^2 + X + 1 \pmod{2}$. Then $\omega \neq 0, 1$, $\omega^2 = \omega + 1 \pmod{2}$, $\omega^3 = \omega(\omega + 1) = \omega^2 + \omega = 1 \pmod{2}$.

Discrete Alphabets ■ Another finite field

Suppose there exists an element ω which is a zero of $X^2 + X + 1 \pmod{2}$. Then $\omega \neq 0, 1$, $\omega^2 = \omega + 1 \pmod{2}$, $\omega^3 = \omega(\omega + 1) = \omega^2 + \omega = 1 \pmod{2}$.

\mathbb{F}_4

+	0	1	ω	ω^2		0	1	ω	ω^2
0	0	1	ω	ω^2	 0	0	0	0	0
1	1	0	ω^2	ω	1	0	1	ω	ω^2
ω	ω	ω^2	0	1	ω	0	ω	ω^2	1
ω^2	ω^2	ω	1	0	ω^2	0	ω^2	1	ω

Discrete Alphabets Finite fields

We will denote by \mathbb{F}_q a finite field with q elements. So far, we know \mathbb{F}_p and \mathbb{F}_4 , we will know more later, but in the meantime, we will use the notation.

Linear Encoding

Given a finite field \mathbb{F}_q , a linear map that sends kdata symbols $(x_1, \ldots, x_k) \in \mathbb{F}_q^k$ to $n \ge k$ encoded symbols $(c_1, \ldots, c_n) \in \mathbb{F}_q^n$. Since we work over \mathbb{F}_q : Codewords belong to \mathbb{F}_{q}^{n} , which is a vector space. Since the encoding is a linear map, by definition (1) the sum of two codewords is again a codeword, and (2) a multiple of a codeword is again a codeword.

Linear (n, k) code Given a finite field \mathbb{F}_{q} , a set of codewords $\{(c_1,\ldots,c_n), c_i \in \mathbb{F}_q\} \in$ \mathbb{F}_{q}^{n} is said to form a linear code (or codebook) \mathcal{C} if (1) the sum of two codewords is again a codeword, and (2) a multiple of a codeword is again a codeword.

The whole zero codeword $\mathbf{0} \in \mathcal{C}$.

If $\mathbf{c} \in \mathcal{C}$, so is $-\mathbf{c}$.

 \mathcal{C} forms a linear subspace of \mathbb{F}_q^n , it thus has a dimension, namely k, and we call n the length. An (n, k) linear code Cover \mathbb{F}_q contains q^k codewords.

We write $|\mathcal{C}| = q^k$.

Let $\mathbf{b}_1, \ldots, \mathbf{b}_k$ be a basis for C. Then codewords are obtained as every possible linear combination:

 $x_1\mathbf{b}_1+\ldots+x_k\mathbf{b}_k,$

there are q possible values for each $x_i, i = 1, \ldots, k$. \Box Linear (n, k) codes Linear algebra

Linear algebra

For V, W finite-dimensional vector spaces, with a basis for each space, a linear map can be represented by a matrix in the given bases.

Linear codes

Given $\mathbb{F}_q^k, \mathbb{F}_q^n$, fix a basis for each space, a linear encoding is represented by a generator matrix.

Generator matrix

Given a finite field \mathbb{F}_q , a generator matrix G for an (n, k) linear code \mathcal{C} is a $k \times n$ matrix, which contains as rows the basis vectors of \mathcal{C} .

There are many generator matrices.

There is a unique generator matrix of the form $G = [\mathbf{I}_k | A]$ where \mathbf{I}_k is the identity matrix. The code is said to be in systematic form.

The (n, 1) repetition code

- Dimension: k = 1.
- Length: n.
- Encoding: $(x_1) \mapsto (x_1, \dots, x_1) \in \mathbb{F}_q^n$.

The (n, 1) repetition code

- Dimension: k = 1.
- Length: n.

• Encoding:
$$(x_1) \mapsto (x_1, \dots, x_1) \in \mathbb{F}_q^n$$
.
 $(x_1)[1, \dots, 1] = (x_1 \dots, x_1).$

The (n, n-1) single parity check code

- Dimension: k = n 1.
- Length: n
- Encoding: $(x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_k, \sum_{i=1}^k x_i) \in \mathbb{F}_q^n$

The (n, n-1) single parity check code

- Dimension: k = n 1.
- Length: n

• Encoding:
$$(x_1, \dots, x_k) \mapsto (x_1, \dots, x_k, \sum_{i=1}^k x_i) \in \mathbb{F}_q^n$$

 $(x_1, \dots, x_k) \begin{bmatrix} 1\\ \mathbf{I}_k & \vdots\\ 1 \end{bmatrix} = (x_1, \dots, x_k, x_1 + \dots + x_k).$

Exercise. Consider the following codebook of length n = 4 over \mathbb{F}_2 : {(1,0,0,0), (0,1,0,1), (1,1,0,1), (0,0,0,1)}. Is this code a linear code? If so, provide a generator matrix.

Exercise. Consider the following codebook of length n = 4 over \mathbb{F}_2 : {(1,0,0,0), (0,1,0,1), (1,1,0,1), (0,0,0,1)}. Is this code a linear code? If so, provide a generator matrix.

The code cannot be linear, because (0, 0, 0, 0) does not belong to the code.

Exercise. Consider the following codebook of length n = 4 over \mathbb{F}_2 : {(1,0,0,0), (0,1,0,1), (1,1,0,1), (0,0,0,1)}. Is this code a linear code? If so, provide a generator matrix.

The code cannot be linear, because (0, 0, 0, 0) does not belong to the code.

The code cannot be linear, because (1, 1, 0, 1) + (0, 0, 0, 1)does not belong to the code.

Exercise. Consider the codebook of length n = 5 over \mathbb{F}_2 containing: (0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code a linear code? If so, provide a generator matrix.

Exercise. Consider the codebook of length n = 5 over \mathbb{F}_2 containing: (0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every possible vectors in \mathbb{F}_2^3 , namely (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1).

Exercise. Consider the codebook of length n = 5 over \mathbb{F}_2 containing: (0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every possible vectors in \mathbb{F}_2^3 , namely (0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1). We next show that there is a generator matrix (which is enough to conclude the code is linear):

$$(x_1, x_2, x_3) \begin{bmatrix} 1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{22} \\ 0 & 0 & 1 & a_{31} & a_{32} \end{bmatrix}.$$

Exercise. Consider the codebook of length n = 5 over \mathbb{F}_2 containing: (0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0). Is this code a linear code? If so, provide a generator matrix.

$$(1,0,0) \begin{bmatrix} 1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{22} \\ 0 & 0 & 1 & a_{31} & a_{32} \end{bmatrix} = (1,0,0,a_{11},a_{12})$$
$$(x_1,x_2,x_3) \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

Linear (n, k) codes Linear algebra

Linear algebra

A subspace W of a vector space V is the kernel of some linear transformation (the projection onto W).

Linear codes

Given an (n, k) linear code over \mathbb{F}_q , there exists an $(n - k) \times n$ matrix H such that

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{F}_q^n, \ H\mathbf{x}^T = \mathbf{0} \},\$$

called a parity check matrix.

If $G = [\mathbf{I}_k | A]$ is a generator matrix for the (n, k) code \mathcal{C} , then $H = [-A^T | \mathbf{I}_{n-k}].$

We have

$$G^T = \begin{bmatrix} \mathbf{I}_k \\ A^T \end{bmatrix}$$

and $HG^T = -A^T + A^T = \mathbf{0}.$

If $\mathbf{c} \in \mathcal{C}$, $\mathbf{c} = \mathbf{x}G$ and $H\mathbf{c}^T = HG^T\mathbf{x}^T$.

If $G = [\mathbf{I}_k | A]$ is a generator matrix for the (n, k) code C, then $H = [-A^T | \mathbf{I}_{n-k}].$

We have

$$G^T = \begin{bmatrix} \mathbf{I}_k \\ A^T \end{bmatrix}$$

and $HG^T = -A^T + A^T = \mathbf{0}.$

If $\mathbf{c} \in \mathcal{C}$, $\mathbf{c} = \mathbf{x}G$ and $H\mathbf{c}^T = HG^T\mathbf{x}^T$. Thus \mathcal{C} is contained in the kernel of the linear map $\mathbf{v} \mapsto H\mathbf{v}^T$. As H has rank n - k, this map has a kernel of dimension k, which is the dimension of \mathcal{C} . \Box

Linear Codes Parity check matrices

The (n, 1) repetition code

Generator matrix in systematic form:

$$[1, \underbrace{1\dots, 1}_{A}] = [\mathbf{I}_k | A].$$

Parity check matrix in systematic form:

Linear Codes Parity check matrices

The (n, 1) repetition code

Generator matrix in systematic form:

$$[1,\underbrace{1\ldots,1}_{A}] = [\mathbf{I}_k|A].$$

Parity check matrix in systematic form:

$$[-A^T | \mathbf{I}_{n-k}] = \begin{bmatrix} -1 \\ \vdots & \mathbf{I}_{n-k} \\ -1 \end{bmatrix}$$

Data - Encoder - Channel - Decoder (n,k) linear code Generator matrix Parity check matrix $\mathbb{F}_p, \mathbb{F}_4$