Coding Theory: Linear Codes

<u> Barat da basan da basa da ba</u>

What is Coding Theory? **Communication channels**

A Generic Communication Channel Transmitter Channel Receiver Data $\mathbf{x} \mapsto \text{Encoder} \mapsto \text{Noise } \mathbf{e} \mapsto \text{Decoder} \mapsto \text{Decoder} \mapsto \text{Decoded Data } \hat{\mathbf{x}}$

$$
\mathbf{x} = (x_1, \dots, x_k) \mapsto \underbrace{\mathbf{c} = (c_1, \dots, c_n)}_{\text{codeword}, n \ge k} \longrightarrow \mathbf{c} + \mathbf{e} \to \hat{\mathbf{x}} = (\hat{x}_1, \dots, \hat{x}_k)
$$

Encoding

Given an alphabet A, a map that sends k data symbols $(x_1, \ldots, x_k) \in A^k$ to $n \geq k$ encoded symbols $(c_1, \ldots, c_n) \in A^n$. The encoded vector ${\bf c} = (c_1, \ldots, c_n)$ is called a codeword.

An encoding for $k = 1$: $(x_1) \mapsto (x_1, \ldots, x_1)$, that is $c_1 = c_2 = \ldots = c_n$. If the alphabet A is $A = \{0, 1\}$, then

 $(0) \mapsto (0, \ldots, 0)$ and $(1) \mapsto (1, \ldots, 1).$

Modulo p (a prime): take the remainder of the Euclidean division by p.

Modulo 4

Modulo m (m not a prime): what is the difference?

So $2 \cdot 2 \equiv 0 \pmod{4}$. What does it change?

So $2 \cdot 2 \equiv 0 \pmod{4}$. What does it change? Actually a lot...

- If $2x = 0$, it is not true that $x = 0$, it could also be that $x=2$.
- This also shows that a polynomial of degree 1 can have two solutions...
- and that two numbers different from 0 once multiplied together actually give 0.
- Also $2x = 1$ does not have a solution.

Finite field \mathbb{F}_p

For p a prime, the set of integers modulo p represented by $\{0, 1, \ldots, p-1\}$ is a finite field, denoted by \mathbb{F}_p .

 \mathbb{F}_p is finite means $|\mathbb{F}_p| = p < \infty$. Informally, that \mathbb{F}_p is a field means that computations work as usual, namely we can add, subtract, multiply, in a commutative manner, and divide as long as it is not by 0.

Inverse in \mathbb{F}_p

For x a non-zero element in \mathbb{F}_p , its (multiplicative) inverse is the element in \mathbb{F}_p denoted by x^{-1} which satisfies that $x \cdot x^{-1} = x^{-1} \cdot x = 1.$

The inverse of 3 modulo 5:

Inverse in \mathbb{F}_p

For x a non-zero element in \mathbb{F}_p , its (multiplicative) inverse is the element in \mathbb{F}_p denoted by x^{-1} which satisfies that $x \cdot x^{-1} = x^{-1} \cdot x = 1.$

The inverse of 3 modulo 5: 2 is the inverse of 3 since $2 \cdot 3 \equiv 1 \pmod{5}$. Find two elements that are their own inverse modulo 7:

Inverse in \mathbb{F}_p

For x a non-zero element in \mathbb{F}_p , its (multiplicative) inverse is the element in \mathbb{F}_p denoted by x^{-1} which satisfies that $x \cdot x^{-1} = x^{-1} \cdot x = 1.$

The inverse of 3 modulo 5: 2 is the inverse of 3 since $2 \cdot 3 \equiv 1 \pmod{5}$. Find two elements that are their own inverse modulo $7:1$ is its own inverse since $1 \cdot 1 \equiv 1$ (mod 7), but so is 6 since $6 \cdot 6 = 36 \equiv 1 \pmod{7}$.

Exercise. Prove that if m is not a prime integer, then integers modulo m cannot form a finite field.

Exercise. Prove that if m is not a prime integer, then integers modulo m cannot form a finite field.

If m is not a prime, then m is a composite number, that is $m = ab$ for a, b some integers which are not zero. Then $ab \equiv 0$ mod m.

Exercise. Prove that if m is not a prime integer, then integers modulo m cannot form a finite field.

If m is not a prime, then m is a composite number, that is $m = ab$ for a, b some integers which are not zero. Then $ab \equiv 0$ mod *m*. Now *a* cannot be invertible, if it were, consider a^{-1} and multiply $ab \equiv 0 \mod m$ by a^{-1} to get $b \equiv 0 \mod m$, a contradiction.

Discrete Alphabets ■ Another finite field

Suppose there exists an element ω which is a zero of $X^2 + X + 1 \pmod{2}$. Then $\omega \neq 0, 1$, $\omega^2 = \omega + 1 \pmod{2}, \ \omega^3 = \omega(\omega + 1) = \omega^2 + \omega = 1 \pmod{2}.$

Discrete Alphabets ■ Another finite field

Suppose there exists an element ω which is a zero of $X^2 + X + 1 \pmod{2}$. Then $\omega \neq 0, 1$, $\omega^2 = \omega + 1 \pmod{2}, \ \omega^3 = \omega(\omega + 1) = \omega^2 + \omega = 1 \pmod{2}.$

\mathbb{F}_4

Discrete Alphabets **Finite fields**

We will denote by \mathbb{F}_q a finite field with q elements. So far, we know \mathbb{F}_n and \mathbb{F}_4 , we will know more later, but in the meantime, we will use the notation.

Linear Encoding

Given a finite field \mathbb{F}_q , a linear map that sends k data symbols $(x_1, \ldots, x_k) \in \mathbb{F}_q^k$ to $n \geq k$ encoded symbols $(c_1, \ldots, c_n) \in \mathbb{F}_q^n$.

Since we work over \mathbb{F}_q :

Codewords belong to \mathbb{F}_q^n , which is a vector space.

Since the encoding is a linear map, by definition (1) the sum of two codewords is again a codeword, and (2) a multiple of a codeword is again a codeword.

Linear (n, k) code

Given a finite field \mathbb{F}_q , a set of codewords $\{(c_1,\ldots,c_n),\ c_i\in\mathbb{F}_q\}\in$ \mathbb{F}_q^n is said to form a linear code (or codebook) C if (1) the sum of two codewords is again a codeword, and (2) a multiple of a codeword is again a codeword.

The whole zero codeword $0 \in \mathcal{C}$.

If $c \in \mathcal{C}$, so is $-c$.

C forms a linear subspace of \mathbb{F}_q^n , it thus has a dimension, namely k, and we call n the length.

An (n, k) linear code $\mathcal C$ over \mathbb{F}_q contains q^k codewords.

We write $|\mathcal{C}| = q^k$.

Let $\mathbf{b}_1, \ldots, \mathbf{b}_k$ be a basis for \mathcal{C} . Then codewords are obtained as every possible linear combination:

 $x_1b_1 + \ldots + x_kb_k$

there are q possible values for each x_i , $i = 1, \ldots, k$.

Linear (n, k) codes Linear algebra

Linear algebra

For V, W finite-dimensional vector spaces, with a basis for each space, a linear map can be represented by a matrix in the given bases.

Linear codes

Given \mathbb{F}_q^k , \mathbb{F}_q^n , fix a basis for each space, a linear encoding is represented by a generator matrix.

Generator matrix

Given a finite field \mathbb{F}_q , a generator matrix G for an (n, k) linear code \mathcal{C} is a $k \times n$ matrix, which contains as rows the basis vectors of \mathcal{C} .

There are many generator matrices.

There is a unique generator matrix of the form $G = [\mathbf{I}_k | A]$ where \mathbf{I}_k is the identity matrix. The code is said to be in systematic form .

The $(n, 1)$ repetition code

- Dimension: $k = 1$.
- Length: n .
- Encoding: $(x_1) \mapsto (x_1, \ldots, x_1) \in \mathbb{F}_q^n$.

The $(n, 1)$ repetition code

- Dimension: $k = 1$.
- \bullet Length: $n.$

• Encoding:
$$
(x_1) \mapsto (x_1, ..., x_1) \in \mathbb{F}_q^n
$$
.
\n $(x_1)[1, ..., 1] = (x_1 ..., x_1)$.

The $(n, n-1)$ single parity check code

- Dimension: $k = n 1$.
- Length: n
- Encoding: $(x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_k, \sum_{i=1}^k x_i) \in \mathbb{F}_q^n$

The $(n, n - 1)$ single parity check code

- Dimension: $k = n 1$.
- Length: n

• Encoding:
$$
(x_1, ..., x_k) \mapsto (x_1, ..., x_k, \sum_{i=1}^k x_i) \in \mathbb{F}_q^n
$$

$$
(x_1, ..., x_k) \begin{bmatrix} 1 \\ \mathbf{I}_k & \vdots \\ 1 & \end{bmatrix} = (x_1, ..., x_k, x_1 + ... + x_k).
$$

Exercise. Consider the following codebook of length $n = 4$ over \mathbb{F}_2 : $\{(1, 0, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1), (0, 0, 0, 1)\}$. Is this code a linear code? If so, provide a generator matrix.

Exercise. Consider the following codebook of length $n = 4$ over \mathbb{F}_2 : $\{(1, 0, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1), (0, 0, 0, 1)\}$. Is this code a linear code? If so, provide a generator matrix.

The code cannot be linear, because (0, 0, 0, 0) does not belong to the code.

Exercise. Consider the following codebook of length $n = 4$ over \mathbb{F}_2 : $\{(1, 0, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1), (0, 0, 0, 1)\}$. Is this code a linear code? If so, provide a generator matrix.

The code cannot be linear, because (0, 0, 0, 0) does not belong to the code.

The code cannot be linear, because $(1, 1, 0, 1) + (0, 0, 0, 1)$ does not belong to the code.

Exercise. Consider the codebook of length $n = 5$ over \mathbb{F}_2 containing: $(0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),$ $(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0)$. Is this code a linear code? If so, provide a generator matrix.

Exercise. Consider the codebook of length $n = 5$ over \mathbb{F}_2 containing: $(0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),$ $(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0)$. Is this code a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every possible vectors in \mathbb{F}_2^3 , namely $(0,0,0), (1,0,0), (0,1,0), (1,1,0),$ $(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).$

Exercise. Consider the codebook of length $n = 5$ over \mathbb{F}_2 containing: $(0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),$ $(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0).$ Is this code a linear code? If so, provide a generator matrix.

The code is linear. The first three coefficients run through every possible vectors in \mathbb{F}_2^3 , namely $(0,0,0), (1,0,0), (0,1,0), (1,1,0),$ $(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).$ We next show that there is a generator matrix (which is enough to conclude the code is linear):

$$
(x_1, x_2, x_3)
$$

$$
\begin{bmatrix} 1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{22} \\ 0 & 0 & 1 & a_{31} & a_{32} \end{bmatrix}.
$$

Exercise. Consider the codebook of length $n = 5$ over \mathbb{F}_2 containing: $(0, 0, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 1),$ $(0, 0, 1, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0).$ Is this code a linear code? If so, provide a generator matrix.

$$
(1,0,0) \begin{bmatrix} 1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{22} \\ 0 & 0 & 1 & a_{31} & a_{32} \end{bmatrix} = (1,0,0,a_{11},a_{12})
$$

$$
(x_1, x_2, x_3) \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}.
$$

Linear (n, k) codes Linear algebra

Linear algebra

A subspace W of a vector space V is the kernel of some linear transformation (the projection onto W).

Linear codes

Given an (n, k) linear code over \mathbb{F}_q , there exists an $(n-k) \times n$ matrix H such that

$$
\mathcal{C} = \{ \mathbf{x} \in \mathbb{F}_q^n, H\mathbf{x}^T = \mathbf{0} \},\
$$

called a parity check matrix.

If $G = [\mathbf{I}_k | A]$ is a generator matrix for the (n, k) code \mathcal{C} , then $H = [-A^T | \mathbf{I}_{n-k}].$

We have

$$
G^T = \begin{bmatrix} \mathbf{I}_k \\ A^T \end{bmatrix}
$$

and $HG^{T} = -A^{T} + A^{T} = 0.$ If $c \in \mathcal{C}$, $c = xG$ and $H\mathbf{c}^T = H G^T \mathbf{x}^T.$

If $G = [\mathbf{I}_k | A]$ is a generator matrix for the (n, k) code C, then $H = [-A^T | \mathbf{I}_{n-k}].$

We have

$$
G^T=\begin{bmatrix} \mathbf{I}_k\\ A^T\end{bmatrix}
$$

and $HG^{T} = -A^{T} + A^{T} = 0.$ If $c \in \mathcal{C}$, $c = xG$ and $H\mathbf{c}^T = H G^T \mathbf{x}^T.$ Thus $\mathcal C$ is contained in the kernel of the linear map $\mathbf{v} \mapsto H\mathbf{v}^T$. As H has rank $n - k$, this map has a kernel of dimension k , which is the dimension of C.

Linear Codes **Parity check matrices**

The $(n, 1)$ repetition code

Generator matrix in systematic form:

$$
[1, \underbrace{1 \ldots, 1}_{A}] = [\mathbf{I}_k | A].
$$

Parity check matrix in systematic form:

Linear Codes **Parity check matrices**

The $(n, 1)$ repetition code

Generator matrix in systematic form:

$$
[1, \underbrace{1 \ldots, 1}_{A}] = [\mathbf{I}_k | A].
$$

Parity check matrix in systematic form:

$$
[-A^T | \mathbf{I}_{n-k}] = \begin{bmatrix} -1 \\ \vdots \\ -1 \end{bmatrix} \mathbf{I}_{n-k}
$$

Data - Encoder - Channel - Decoder (n, k) linear code Generator matrix Parity check matrix \mathbb{F}_p , \mathbb{F}_4