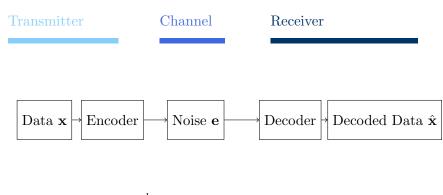
Coding Theory: Linear Codes and their Dual

A Generic Communication Channel



$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{F}_q^k \mapsto \mathbf{c} = \underbrace{(c_1, \dots, c_n)}_{\text{codeword, } n \ge k} = (x_1, \dots, x_k) \underbrace{[\mathbf{I}_k | A]}_{\text{systematic}} \in \mathbb{F}_q^n$$

Generator matrix

$$\mathcal{C} = \{\mathbf{c} = \mathbf{x}G, \ \mathbf{x} \in \mathbb{F}_q^k\}$$

Parity check matrix

$$\mathcal{C} = \{ \mathbf{v} \in \mathbb{F}_q^n, \ H \mathbf{v}^T = \mathbf{0} \}$$

Linear Codes Parity check matrices

The (7, 4) Hamming code

- Dimension: k = 4.
- Length: n = 7.
- Alphabet: \mathbb{F}_2 .
- Encoding given by the generator matrix $G = [\mathbf{I}_4|A]$, with corresponding parity check matrix $H = [-A^T |\mathbf{I}_{n-k}]$:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Linear Codes Parity check matrices

The (7, 4) Hamming code

- Dimension: k = 4.
- Length: n = 7.
- Alphabet: \mathbb{F}_2 .
- Encoding given by the generator matrix $G = [\mathbf{I}_4|A]$, with corresponding parity check matrix $H = [-A^T |\mathbf{I}_{n-k}]$:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Dual code \mathcal{C}^{\perp}

Given an (n, k) linear code \mathcal{C} over \mathbb{F}_q , \mathcal{C}^{\perp} is the (n, n - k) linear code generated by the rows of its parity check matrix H. To have a generator matrix, we simply need a matrix whose rows are independent, they then span the code.

The rows of H $(H = [-A^T | \mathbf{I}_{n-k}]$ in systematic form) are independent.

Linear Codes Parity check matrices

For \mathcal{C}

 \mathcal{C} is generated by k basis vectors in \mathbb{F}_q^n , placed as rows in G.

C is the kernel of some H, that is $HG^T \mathbf{x}^T = \mathbf{0}$ for all $\mathbf{x} \in \mathbb{F}_q^k$ and $HG^T = \mathbf{0}$.

For \mathcal{C}^{\perp}

 \mathcal{C}^{\perp} is generated by n - kbasis vectors in \mathbb{F}_q^n , placed as rows in H. \mathcal{C}^{\perp} is the kernel of some \tilde{G} , that is $\tilde{G}H^T\mathbf{x}^T = \mathbf{0}$ for all $\mathbf{x} \in \mathbb{F}_q^{n-k}$ and $\tilde{G}H^T = \mathbf{0}$.

Linear Codes Parity check matrices

For \mathcal{C}

 \mathcal{C} is generated by k basis vectors in \mathbb{F}_q^n , placed as rows in G.

C is the kernel of some H, that is $HG^T \mathbf{x}^T = \mathbf{0}$ for all $\mathbf{x} \in \mathbb{F}_q^k$ and $HG^T = \mathbf{0}$.

For \mathcal{C}^{\perp}

 \mathcal{C}^{\perp} is generated by n - kbasis vectors in \mathbb{F}_q^n , placed as rows in H. \mathcal{C}^{\perp} is the kernel of some \tilde{G} , that is $\tilde{G}H^T\mathbf{x}^T = \mathbf{0}$ for all $\mathbf{x} \in \mathbb{F}_q^{n-k}$ and $\tilde{G}H^T = \mathbf{0}$.

$$HG^T = \mathbf{0}, \ H\tilde{G}^T = \mathbf{0} \xrightarrow{\text{kernel}} \tilde{G} = G.$$

Dual code \mathcal{C}^{\perp}

Given an (n, k) linear code \mathcal{C} over \mathbb{F}_q , $\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q^n, \ \mathbf{c} \cdot \mathbf{v}^T = \mathbf{0} \text{ for all } \mathbf{c} \in \mathcal{C} \}.$ The usual inner product of vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ applies in \mathbb{F}_q^n :

$$\mathbf{x} \cdot \mathbf{y}^T = \sum_{i=1}^n x_i y_i.$$

We know:

$$\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q^n, \ \mathbf{c} \cdot \mathbf{v}^T = \mathbf{0} \text{ for all } \mathbf{c} \in \mathcal{C} \} \\ = \{ \mathbf{v} \in \mathbb{F}_q^n, \ \mathbf{x} G \cdot \mathbf{v}^T = \mathbf{0} \text{ for all } \mathbf{x} \in \mathbb{F}_q^k \}$$

Let \mathbf{g}_i , i = 1, ..., k be the rows of G. Then $0 = \sum_{i=1}^k x_i \mathbf{g}_i \cdot \mathbf{v}^T$ for any x_i implies $0 = \mathbf{g}_i \mathbf{v}^T$ for every i and

$$\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q^n, \ G \mathbf{v}^T = \mathbf{0} \}.$$

From \mathcal{C} to \mathcal{C}^{\perp}

Generator matrix of C: GParity check matrix of C^{\perp} : GGenerator matrix of C^{\perp} : H

From \mathcal{C}^{\perp} to \mathcal{C}

Generator matrix of \mathcal{C}^{\perp} : HParity check matrix of $(\mathcal{C}^{\perp})^{\perp}$: HGenerator matrix of $(\mathcal{C}^{\perp})^{\perp}$: G

From \mathcal{C} to \mathcal{C}^{\perp}

Generator matrix of C: GParity check matrix of C^{\perp} : GGenerator matrix of C^{\perp} : H

From \mathcal{C}^{\perp} to \mathcal{C}

Generator matrix of \mathcal{C}^{\perp} : HParity check matrix of $(\mathcal{C}^{\perp})^{\perp}$: HGenerator matrix of $(\mathcal{C}^{\perp})^{\perp}$: G

- Both definitions of dual are equivalent.
- The dual of \mathcal{C}^{\perp} is \mathcal{C} : $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$.

Repetition and single parity check codes

A generator matrix (in systematic form) of the repetition code:

 $[1|1\ldots,1].$

A parity check matrix (in systematic form) over \mathbb{F}_2 :

$$\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{cases} \text{generator matrix} \\ \text{for the single parity} \\ \text{check code} \end{cases}$$

A self-orthogonal code ${\mathcal C}$

A code $\mathcal C$ which is included in its dual: $\mathcal C\subseteq \mathcal C^\perp$

The (n, 1) repetition code over \mathbb{F}_2 is self-orthogonal if *n* even.

To have $(n-1) \equiv 1$ (mod 2), we need *n* even. Then $c_n = \sum_{i=1}^{n-1} x_i$ for both $(0, \ldots, 0)$ and $(1, \ldots, 1)$, and they are in the single parity check code.

A self-dual code ${\mathcal C}$

A code \mathcal{C} which is equal to its dual: $\mathcal{C} = \mathcal{C}^{\perp}$

The (4, 2) code over \mathbb{F}_3 (called tetracode) given by the generator matrix

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

is self-dual.

The (4,2) tetracode over \mathbb{F}_3

 \mathcal{C}^{\perp} has generator matrix H

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}, \ H = \begin{bmatrix} -1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

Rewrite H in systematic form:

$$\begin{split} H \to \begin{bmatrix} -1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 1 \end{bmatrix} \to \begin{bmatrix} -1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix} \to \begin{bmatrix} -1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix} \\ \to \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix} = G \end{split}$$

The (4,2) tetracode over \mathbb{F}_3

 $\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q^n, \ \mathbf{c} \cdot \mathbf{v}^T = \mathbf{0} \text{ for all } \mathbf{c} \in \mathcal{C} \}.$

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}, \ \mathbf{c} = (x_1, x_2, x_1 + x_2, x_1 - x_2)$$

Then for $\mathbf{v} = (v_1, v_2, v_3, v_4) \in \mathbb{F}_3^4$, we want:

 $(v_1, v_2, v_3, v_4) \cdot \mathbf{c}^T = v_1 x_1 + v_2 x_2 + v_3 (x_1 + x_2) + v_4 (x_1 - x_2) = 0.$

This means $v_1 + v_3 + v_4 = 0$ and $v_2 + v_3 - v_4 = 0$. Solve to find $v_3 = v_2 + v_1$ and $v_4 = v_1 - v_2$.

Two definitions of a dual code self-orthogonal code self-dual code