
Coding Theory: Linear Codes and Distances



A Generic Communication Channel

Transmitter Channel Receiver

Data x Encoder Noise e Decoder Decoded Data x̂

x = (x1, . . . , xk) ∈ Fk
q 7→ c = (c1, . . . , cn)︸ ︷︷ ︸

codeword, n≥k

= (x1, . . . , xk) [Ik|A]︸ ︷︷ ︸
systematic

generator matrix

∈ Fn
q



Generator matrix

C = {c = xG, x ∈ Fk
q}

C⊥ = {c = xH, x ∈
Fn−k
q }

Parity check matrix

C = {v ∈ Fn
q , HvT = 0}

C⊥ = {v ∈ Fn
q , GvT = 0}



Hamming distance

For two vectors
x,y ∈ Fn

q , their
Hamming distance
d(x,y) is the number of
coordinates in which
they differ.

(source: wikipedia)



Hamming Distance
� Axioms of distance

d(x,y) ≥ 0 : d counts a number of coordinates, it varies
between 0 and n for all x,y ∈ Fn

q .

d(x,y) = 0 ⇐⇒ x = y : d(x,y) = 0 means x and y differ
in zero coordinate.

d(x,y) = d(y,x) : d counts the differences between x and

y (which is the same as between y and x).

d(x, z) ≤ d(x,y) + d(y, z) : suppose x and z differ in one
coordinate; it cannot be that y agrees with both x and z
on this coordinate. If y agrees with either x or z, this
contributes to 1 to d(x,y) + d(y, z), if y disagrees with
both, it contributes to 2.



Weight of a vector

For x ∈ Fn
q , its weight

wt(x) counts the
number of nonzero
coordinates of x.

• wt((1, 0, 1, 0, 0)) = 2

• d(x,y) = wt(x− y) for
x,y ∈ Fn

q . Indeed, the
vector x− y will have
zero coordinates exactly
where x and y agree on
their coordinates.



Hamming distance of C

For an (n, k) linear code
C over Fq, its minimum
distance dH(C) is the
minimum weight of the
nonzero codewords of C.

• This works only for linear
codes.

• If dH(C) = d, the notation
(n, k, d) is sometimes
used.



Hamming Distance
� Examples

The (n, 1) repetition code

• The dimension is k = 1 and the length is n.

• (x1) 7→ (x1, . . . , x1).

• Its minimum distance is dH(C) = n: indeed, there is only
one codeword which is not zero, namely (1, . . . , 1) whose
weight is n.



Hamming Distance
� Examples

The (n, 1) repetition code

• The dimension is k = 1 and the length is n.

• (x1) 7→ (x1, . . . , x1).

• Its minimum distance is dH(C) = n: indeed, there is only
one codeword which is not zero, namely (1, . . . , 1) whose
weight is n.



Hamming Distance
� Examples

The (n, n− 1) single parity check code

• The dimension is k = n− 1 and the length is n.

• (x1, . . . , xk) 7→ (x1, . . . , xk,
∑k

i=1 xi).

• Its minimum distance is dH(C) = 2: indeed, the codeword
(1, 0, . . . , 0, 1) has weight 2. It is not possible to have a
codeword with weight 1, because if there is a single data
symbol which is not zero, then the parity symbol is also
not zero. And if there are at least two data symbols, then
the weight is at least 2.



Hamming Distance
� Examples

The (n, n− 1) single parity check code

• The dimension is k = n− 1 and the length is n.

• (x1, . . . , xk) 7→ (x1, . . . , xk,
∑k

i=1 xi).

• Its minimum distance is dH(C) = 2: indeed, the codeword
(1, 0, . . . , 0, 1) has weight 2. It is not possible to have a
codeword with weight 1, because if there is a single data
symbol which is not zero, then the parity symbol is also
not zero. And if there are at least two data symbols, then
the weight is at least 2.



Hamming Distance
� Examples

The (7, 4) Hamming code

• It has dimension k = 4, length n = 7 and alphabet F2.

• Encoding given by the generator matrix:

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 ,

so
x 7→ (x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4).



Hamming Distance
� Examples

The (7, 4) Hamming code

• x 7→ (x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4).

• If x1 = 1 and x2 = x3 = x4 = 0, then we get a weight of 3.
If we have two data symbols that are not zero, say x1 and
x2, the only way to get a smaller weight would be that all
parities are 0, which is not possible since x1 and x2 appear
at different positions. Thus dH(C) = 3.



Hamming Distance
� Examples

The (4, 2) tetracode

• It has dimension k = 2, length n = 4 and alphabet F3.

• Encoding given by the generator matrix:[
1 0 1 1
0 1 1 −1

]
so a codeword is of the form (x1, x2, x1 + x2, x1 − x2).

• If say x1 = 1 and x2 = 0, then we get a weight of 3. To get
a smaller weight, we could try to have both x1, x2 non-zero,
but then the parities should both be 0, which is not
possible. So dH(C) = 3.



Hamming Distance
� Examples

The (4, 2) tetracode

• It has dimension k = 2, length n = 4 and alphabet F3.

• Encoding given by the generator matrix:[
1 0 1 1
0 1 1 −1

]
so a codeword is of the form (x1, x2, x1 + x2, x1 − x2).

• If say x1 = 1 and x2 = 0, then we get a weight of 3. To get
a smaller weight, we could try to have both x1, x2 non-zero,
but then the parities should both be 0, which is not
possible. So dH(C) = 3.



Hamming Distance
� Examples

n k Fq name dH
n 1 Fq repetition n
n n− 1 Fq single parity check 2
7 4 F2 Hamming 3
4 2 F3 tetracode 3



Distance and Erasures

An (n, k) linear code C
over Fq with minimum
Hamming distance
dH(C) = d can recover
from d− 1 erasures.

Any two codewords differ
in d coordinates.

If up to d− 1 coordinates
are missing, there is still
at least one left to
recognize the codeword.



Erasure Recovery
� Examples

The (4, 3, 2) single parity check code

Over F2, codewords are

(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 0),
(0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 1).

If we receive (0, ∗, 1, 0),

we must have sent (0, 1, 1, 0).

If we receive (0, ∗, 1, ∗), we could have sent (0, 1, 1, 0) or
(0, 0, 1, 1).



Erasure Recovery
� Examples

The (4, 3, 2) single parity check code

Over F2, codewords are

(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 0),
(0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 1).

If we receive (0, ∗, 1, 0), we must have sent (0, 1, 1, 0).

If we receive (0, ∗, 1, ∗),

we could have sent (0, 1, 1, 0) or
(0, 0, 1, 1).



Erasure Recovery
� Examples

The (4, 3, 2) single parity check code

Over F2, codewords are

(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 0),
(0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 1).

If we receive (0, ∗, 1, 0), we must have sent (0, 1, 1, 0).

If we receive (0, ∗, 1, ∗), we could have sent (0, 1, 1, 0) or
(0, 0, 1, 1).



Erasure Recovery
� Examples

The (4, 2, 3) tetracode

Over F3, codewords are of the form
(x1, x2, x1 + x2, x1 − x2):

(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1), (1, 0, 1, 1),
(1, 1, 2, 0), (1, 2, 0, 2), (2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0).

If we receive (0, ∗, ∗, 0),

we must have sent (0, 0, 0, 0).

If we receive (∗, ∗, 1, ∗), we could have sent (0, 1, 1, 2) or
(1, 0, 1, 1) or (2, 2, 1, 0).



Erasure Recovery
� Examples

The (4, 2, 3) tetracode

Over F3, codewords are of the form
(x1, x2, x1 + x2, x1 − x2):

(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1), (1, 0, 1, 1),
(1, 1, 2, 0), (1, 2, 0, 2), (2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0).

If we receive (0, ∗, ∗, 0), we must have sent (0, 0, 0, 0).

If we receive (∗, ∗, 1, ∗),

we could have sent (0, 1, 1, 2) or
(1, 0, 1, 1) or (2, 2, 1, 0).



Erasure Recovery
� Examples

The (4, 2, 3) tetracode

Over F3, codewords are of the form
(x1, x2, x1 + x2, x1 − x2):

(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1), (1, 0, 1, 1),
(1, 1, 2, 0), (1, 2, 0, 2), (2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0).

If we receive (0, ∗, ∗, 0), we must have sent (0, 0, 0, 0).

If we receive (∗, ∗, 1, ∗), we could have sent (0, 1, 1, 2) or
(1, 0, 1, 1) or (2, 2, 1, 0).



Parity check matrix and
Hamming distance

If c ∈ C, an (n, k) code,
the columns of the
parity check matrix H
corresponding to the
nonzero coordinates of c
are linearly dependent.

C = {v ∈ Fn
q , HvT = 0}

If c ∈ C, HcT = 0.

If hi are columns of H,
then

c1h1+c2h2+. . .+hncn = 0.

The nonzero ci create a
linear dependency among
their columns.



Parity check matrix and
Hamming distance

Conversely, if a linear
dependency with
nonzero coefficients
exists among w columns
of H, then there is a
codeword of weight w
whose nonzero
coordinates correspond
to these columns.

If hi are columns of H
and

v1h1+v2h2+. . .+hnvn = 0

for exactly w nonzero vi.

Then for v = (v1, . . . , vn),
HvT = 0.

Since
C = {v ∈ Fn

q , HvT = 0}
we have that v ∈ C.



Parity check matrix and
Hamming distance

A linear code C has
minimum Hamming
distance d if and only if
its parity check matrix
H has a set of d linearly
dependent columns but
no set of d− 1 linearly
dependent columns.

C has minimum Hamming
distance d if and only if
there is a codeword c of
weight d but no codeword
of weight less than d.
Therefore there are
linearly dependent
columns of H
corresponding to the
nonzero coordinates of c,
and no d− 1 columns that
are linearly dependent.



Hamming Distance
� Examples

The (n, 1) repetition code

dH(C) = d if and only if H has a set of d linearly dependent
columns but no set of d− 1 linearly dependent columns.

• parity check matrix:  −1
... In−1
−1


• We have n linearly dependent columns since the first colum

is obtained as minus the sum of the others, but any set of
n− 1 columns is linearly independent, thus dH(C) = n.



Hamming Distance
� Examples

The (7, 4) Hamming code

dH(C) = d if and only if H has a set of d linearly dependent
columns but no set of d− 1 linearly dependent columns.

•

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


• Columns 4,5,6,7 are linearly dependent, but so are columns

1,6,7. All two columns are linearly independent, so
dH(C) = 3.



Hamming Distance
� Examples

n k Fq name dH recovers from

n 1 Fq repetition n X n− 1 erasures
n n− 1 Fq single parity check 2 1 erasure
7 4 F2 Hamming 3 X 2 erasures
4 2 F3 tetracode 3 2 erasures



Weight of a vector

Hamming distance

Connection to erasure recovery

Two ways of computing the Hamming
distance


