
Coding Theory: Errors and Decoding



A Generic Communication Channel
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dH(C) = d means C can recover from d− 1 erasures.



Binary Erasure Channel

Channel with erasure
probability Pe, binary
input 0 and 1, and
ternary output 0, 1 or ∗.
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Binary Symmetric
Channel

Channel with crossover
probability Pc, binary
input 0 and 1, and
binary output 0 and 1.
We assume Pc < 1/2.
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Decoding
� Probabilities

For c ∈ Fn
2 :

P (c|y) = probability that c is sent given that y is received.

P (y|c) = probability that y is received given that c is sent.

P (c) = probability that c is sent.

P (y) = probability that y is received.

P (c|y) =
P (c ∩ y)

P (y)
=

P (y ∩ c)

P (y)
=

P (y|c)P (c)

P (y)



MAP decoder

ĉ = arg max
c∈C

P (c|y),

maximum a posteriori
probability decoder.

Choose ĉ = c for the
codeword c with P (c|y)
maximum.

P (c|y) = P (y|c)P (c)
P (y) .



ML decoder

ĉ = arg max
c∈C

P (y|c),

maximum likelihood
decoder.

Choose ĉ = c for the
codeword c with P (y|c)
maximum.

P (c|y) =
P (y|c) P (c)

P (y) .



Decoding
� Maximum likelihood

For c = (c1, . . . , cn) sent over a binary symmetric channel:

P (y|c) =

n∏
i=1

P (yi|ci) (bit errors are independent)

= P dH(y,c)
c (1− Pc)

n−dH(y,c)

= (1− Pc)
n

(
Pc

1− Pc

)dH(y,c)



Decoding
� Maximum likelihood

P (y|c) = (1− Pc)
n
(

Pc
1−Pc

)dH(y,c)

For Pc < 1/2, Pc/(1− Pc) < 1.
Maximize P (y|c) ⇐⇒
minimize dH(y, c).
Decode the codeword closest to
the received vector.



Decoding
� Maximum likelihood



Decoding
� Error vector

y = c + e ⇐⇒ e = y − c ⇐⇒ c = y − e (the noise maps
a vector to another vector).

Noise adds an error vector e to c, the goal of decoding is to
determine e.

Nearest neighbour decoding finds a vector e (which may
not be unique) of smallest weight such that y − e is in the
code. [Maximize P (y|c) ⇐⇒ minimize dH(y, c).]



Decoding
� Hamming spheres

Hamming spheres

Sr(u) = {v ∈
Fn
q , dH(u,v) ≤ r}
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Decoding
� Hamming spheres

Hamming spheres

|Sr(u)| =∑r
i=0

(
n
i

)
(q − 1)i.

|S0(u)| = 1,

|S1(u)| = 5,

|S2(u)| = 9.
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Decoding
� Hamming spheres

Hamming spheres

|Sr(u)| =∑r
i=0

(
n
i

)
(q − 1)i.

At distance r, a vector is
distinct in r coordinates.
There are

(
n
r

)
ways to choose

these coordinates, and in each
position there are q− 1 choices
of values (any element in Fq

but the one already in u).



Decoding
� Hamming spheres

Hamming spheres

If dH(C) = d, and
t = bd−12 c, then spheres
of radius t around
distinct codewords are
disjoint.

If v ∈ St(c1) ∩ St(c2), then by
the triangle inequality:

dH(c1, c2)

≤ dH(c1,v) + dH(v, c2)

≤ 2t < d

implying c1 = c2.



Decoding
� Hamming spheres

Error correction

Nearest neighbour
decoding uniquely and
correctly decodes any
received codeword in
which at most t errors
have occurred.



maximimum likelihood decoding

Hamming spheres

Connection to error correction


