Coding Theory: Errors and Decoding

A Generic Communication Channel

Transmitter

Channel

Receiver

 $d_H(\mathcal{C}) = d$ means \mathcal{C} can recover from d-1 erasures.

Binary Erasure Channel

Channel with erasure probability P_e , binary input 0 and 1, and ternary output 0, 1 or *.

Binary Symmetric Channel

Channel with crossover probability P_c , binary input 0 and 1, and binary output 0 and 1. We assume $P_c < 1/2$.

Decoding ■ Probabilities

For $\mathbf{c} \in \mathbb{F}_2^n$:

$$P(\mathbf{c}|\mathbf{y}) = \text{probability that } \mathbf{c} \text{ is sent given that } \mathbf{y} \text{ is received.}$$

$$P(\mathbf{y}|\mathbf{c}) = \text{probability that } \mathbf{y} \text{ is received given that } \mathbf{c} \text{ is sent.}$$

$$P(\mathbf{c}) = \text{probability that } \mathbf{c} \text{ is sent.}$$

$$P(\mathbf{y}) = \text{probability that } \mathbf{y} \text{ is received.}$$

$$P(\mathbf{c}|\mathbf{y}) = \frac{P(\mathbf{c} \cap \mathbf{y})}{P(\mathbf{y})} = \frac{P(\mathbf{y} \cap \mathbf{c})}{P(\mathbf{y})} = \frac{P(\mathbf{y}|\mathbf{c})P(\mathbf{c})}{P(\mathbf{y})}$$

MAP decoder

$$\hat{\mathbf{c}} = \arg\max_{\mathbf{c} \in \mathcal{C}} P(\mathbf{c}|\mathbf{y}),$$

maximum a posteriori probability decoder.

Choose $\hat{\mathbf{c}} = \mathbf{c}$ for the codeword \mathbf{c} with $P(\mathbf{c}|\mathbf{y})$ maximum.

$$P(\mathbf{c}|\mathbf{y}) = \frac{P(\mathbf{y}|\mathbf{c})P(\mathbf{c})}{P(\mathbf{y})}$$

ML decoder

$$\hat{\mathbf{c}} = \arg \max_{\mathbf{c} \in \mathcal{C}} P(\mathbf{y}|\mathbf{c}),$$

maximum likelihood decoder.

Choose $\hat{\mathbf{c}} = \mathbf{c}$ for the codeword \mathbf{c} with $P(\mathbf{y}|\mathbf{c})$ maximum.

$$P(\mathbf{c}|\mathbf{y}) = \frac{P(\mathbf{y}|\mathbf{c}) P(\mathbf{c})}{P(\mathbf{y})}$$

Decoding Maximum likelihood

For $\mathbf{c} = (c_1, \dots, c_n)$ sent over a binary symmetric channel:

$$P(\mathbf{y}|\mathbf{c}) = \prod_{i=1}^{n} P(y_i|c_i) \text{ (bit errors are independent)}$$

$$= P_c^{d_H(\mathbf{y},\mathbf{c})} (1 - P_c)^{n - d_H(\mathbf{y},\mathbf{c})}$$

$$= (1 - P_c)^n \left(\frac{P_c}{1 - P_c}\right)^{d_H(\mathbf{y},\mathbf{c})}$$

■ Maximum likelihood

$$P(\mathbf{y}|\mathbf{c}) = (1 - P_c)^n \left(\frac{P_c}{1 - P_c}\right)^{d_H(\mathbf{y}, \mathbf{c})}$$

For $P_c < 1/2$, $P_c/(1 - P_c) < 1$. Maximize $P(\mathbf{y}|\mathbf{c}) \iff$ minimize $d_H(\mathbf{y}, \mathbf{c})$. Decode the codeword closest to the received vector.

Decoding ■ Maximum likelihood

- * * * * *
- * * * * *
- * * * * *
-
-

Decoding ■ Error vector

 $\mathbf{y} = \mathbf{c} + \mathbf{e} \iff \mathbf{e} = \mathbf{y} - \mathbf{c} \iff \mathbf{c} = \mathbf{y} - \mathbf{e}$ (the noise maps a vector to another vector).

Noise adds an error vector \mathbf{e} to \mathbf{c} , the goal of decoding is to determine \mathbf{e} .

Nearest neighbour decoding finds a vector \mathbf{e} (which may not be unique) of smallest weight such that $\mathbf{y} - \mathbf{e}$ is in the code. [Maximize $P(\mathbf{y}|\mathbf{c}) \iff \text{minimize } d_H(\mathbf{y},\mathbf{c})$.]

Decoding ■ Hamming spheres

Hamming spheres

$$S_r(\mathbf{u}) = \{ \mathbf{v} \in \mathbb{F}_q^n, \ d_H(\mathbf{u}, \mathbf{v}) \le r \}$$

Decoding ■ Hamming spheres

Hamming spheres

$$|S_r(\mathbf{u})| = \sum_{i=0}^r \binom{n}{i} (q-1)^i.$$
$$|S_0(\mathbf{u})| = 1,$$
$$|S_1(\mathbf{u})| = 5,$$
$$|S_2(\mathbf{u})| = 9.$$

Decoding Hamming spheres

Hamming spheres

$$|S_r(\mathbf{u})| = \sum_{i=0}^r \binom{n}{i} (q-1)^i.$$

At distance r, a vector is distinct in r coordinates. There are $\binom{n}{r}$ ways to choose these coordinates, and in each position there are q-1 choices of values (any element in \mathbb{F}_q but the one already in \mathbf{u}).

Decoding Hamming spheres

Hamming spheres

If $d_H(\mathcal{C}) = d$, and $t = \lfloor \frac{d-1}{2} \rfloor$, then spheres of radius t around distinct codewords are disjoint.

If $\mathbf{v} \in S_t(\mathbf{c}_1) \cap S_t(\mathbf{c}_2)$, then by the triangle inequality:

$$d_{H}(\mathbf{c}_{1}, \mathbf{c}_{2})$$

$$\leq d_{H}(\mathbf{c}_{1}, \mathbf{v}) + d_{H}(\mathbf{v}, \mathbf{c}_{2})$$

$$\leq 2t < d$$

implying $\mathbf{c}_1 = \mathbf{c}_2$.

Decoding Hamming spheres

Error correction

Nearest neighbour decoding uniquely and correctly decodes any received codeword in which at most t errors have occurred.

maximimum likelihood decoding Hamming spheres Connection to error correction