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dH(C) = d means C can recover from d− 1 erasures and bd−12 c
errors (BSC).



Packing radius

The largest radius of
spheres centered at
codewords so that the
spheres are pairwise
disjoint.

For t = bdH(C)−1
2 c, C is a

t-error-correcting code, but not a
(t+ 1)-error correcting code.

The packing radius of C is
t = bdH(C)−1

2 c.
It is such that nearest neighbour
decoding always decodes correctly
a codeword with at most t errors,
but may fail for t+ 1 errors.



Decoding
� Algorithms

Given n and k, we wish to find a code C with dH(C) as high
as possible.

Need for an efficient algorithm that will correct up to t
errors.

Option 1: Examine all codewords until one is found with
distance t or less from the received vector. ⇒ only for a
small number of codewords.

Option 2: Make a table consisting of a nearest codeword
for each of the qn vectors in Fn

q , and look up a received
vector in the table ⇒ only for small values of qn.



Coset

For an (n, k) linear code
C, a set of the form
x + C, x ∈ Fn

q .

C = {(0, 0, 0), (1, 1, 1)} over F2.

x = (1, 0, 0), then x + C =
{(1, 0, 0) + (0, 0, 0), (1, 0, 0) +
(1, 1, 1)} = {(1, 0, 0), (0, 1, 1)}.



Decoding
� Cosets

Exercise. Consider the repetition code of length 3 over F2.
Compute all its cosets.

The repetition code C of
length 3 over F2 is

C = {(0, 0, 0), (1, 1, 1)}.

x ∈ F3
2 x + C

(0, 0, 0) {(0, 0, 0), (1, 1, 1)}
(1, 0, 0) {(1, 0, 0), (0, 1, 1)}
(0, 1, 0) {(0, 1, 0), (1, 0, 1)}
(1, 1, 0) {(1, 1, 0), (0, 0, 1)}
(0, 0, 1) {(0, 0, 1), (1, 1, 0)}
(1, 0, 1) {(1, 0, 1), (0, 1, 0)}
(0, 1, 1) {(0, 1, 1), (1, 0, 0)}
(1, 1, 1) {(1, 1, 1), (0, 0, 0)}



Decoding
� Cosets

Exercise. Consider the repetition code of length 3 over F2.
Compute all its cosets.

The repetition code C of
length 3 over F2 is

C = {(0, 0, 0), (1, 1, 1)}.

x ∈ F3
2 x + C

(0, 0, 0) {(0, 0, 0), (1, 1, 1)}
(1, 0, 0) {(1, 0, 0), (0, 1, 1)}
(0, 1, 0) {(0, 1, 0), (1, 0, 1)}
(1, 1, 0) {(1, 1, 0), (0, 0, 1)}
(0, 0, 1) {(0, 0, 1), (1, 1, 0)}
(1, 0, 1) {(1, 0, 1), (0, 1, 0)}
(0, 1, 1) {(0, 1, 1), (1, 0, 0)}
(1, 1, 1) {(1, 1, 1), (0, 0, 0)}



Decoding
� Cosets

Exercise. Consider the repetition code of length 3 over F2.
Compute all its cosets.

The repetition code C of
length 3 over F2 is

C = {(0, 0, 0), (1, 1, 1)}.

x ∈ F3
2 x + C

(0, 0, 0) {(0, 0, 0), (1, 1, 1)}
(1, 0, 0) {(1, 0, 0), (0, 1, 1)}
(0, 1, 0) {(0, 1, 0), (1, 0, 1)}
(1, 1, 0) {(1, 1, 0), (0, 0, 1)}
(0, 0, 1) {(0, 0, 1), (1, 1, 0)}
(1, 0, 1) {(1, 0, 1), (0, 1, 0)}
(0, 1, 1) {(0, 1, 1), (1, 0, 0)}
(1, 1, 1) {(1, 1, 1), (0, 0, 0)}



Decoding
� Cosets

C = {(0, 0, 0), (1, 1, 1)} over F2.
x ∈ F3

2 x + C
(0, 0, 0) {(0, 0, 0), (1, 1, 1)}
(1, 0, 0) {(1, 0, 0), (0, 1, 1)}
(0, 1, 0) {(0, 1, 0), (1, 0, 1)}
(1, 1, 0) {(1, 1, 0), (0, 0, 1)}
(0, 0, 1) {(0, 0, 1), (1, 1, 0)}
(1, 0, 1) {(1, 0, 1), (0, 1, 0)}
(0, 1, 1) {(0, 1, 1), (1, 0, 0)}
(1, 1, 1) {(1, 1, 1), (0, 0, 0)}

• Cosets may appear several
times, they are not all
distinct.



Decoding
� Cosets

C = {(0, 0, 0), (1, 1, 1)} over F2.
x ∈ F3

2 x + C
(0, 0, 0) { (0, 0, 0) , (1, 1, 1)}
(1, 0, 0) { (1, 0, 0) , (0, 1, 1)}
(0, 1, 0) { (0, 1, 0) , (1, 0, 1)}
(1, 1, 0) { (1, 1, 0) , (0, 0, 1)}
(0, 0, 1) { (0, 0, 1) , (1, 1, 0)}
(1, 0, 1) { (1, 0, 1) , (0, 1, 0)}
(0, 1, 1) { (0, 1, 1) , (1, 0, 0)}
(1, 1, 1) { (1, 1, 1) , (0, 0, 0)}

• Every vector in F3
2 is

contained in the union of
cosets.



Decoding
� Cosets

C = {(0, 0, 0), (1, 1, 1)} over F2.
x ∈ F3

2 x + C
(0, 0, 0),(1, 1, 1) {(0, 0, 0), (1, 1, 1)}
(1, 0, 0),(0, 1, 1) {(1, 0, 0), (0, 1, 1)}
(0, 1, 0),(1, 0, 1) {(0, 1, 0), (1, 0, 1)}
(1, 1, 0),(0, 0, 1) {(1, 1, 0), (0, 0, 1)}

• Cosets do not intersect.

• Every coset contains
the same number |C| of
vectors.

• |F3
2| = |C|·(number of

cosets).

• Cosets of C partition F3
2.

(0,0,0) (1,0,0) (0,1,0) (1,1,0)
(1,1,1) (0,1,1) (1,0,1) (0,0,1)



Decoding
� Cosets

C = {(0, 0, 0), (1, 1, 1)} over F2.
x ∈ F3

2 x + C
(0, 0, 0),(1, 1, 1) {(0, 0, 0), (1, 1, 1)}
(1, 0, 0),(0, 1, 1) {(1, 0, 0), (0, 1, 1)}
(0, 1, 0),(1, 0, 1) {(0, 1, 0), (1, 0, 1)}
(1, 1, 0),(0, 0, 1) {(1, 1, 0), (0, 0, 1)}

• Cosets do not intersect.

• Every coset contains
the same number |C| of
vectors.

• |F3
2| = |C|·(number of

cosets).

• Cosets of C partition F3
2.

(0,0,0) (1,0,0) (0,1,0) (1,1,0)
(1,1,1) (0,1,1) (1,0,1) (0,0,1)



For a linear (n, k) code C:
(P1) Every vector in Fn

q is contained in the union of cosets: the
vector 0 always belongs to a linear code.

(P2) Cosets do not intersect: suppose v ∈ (x + C) ∩ (y + C).
Then v = x + c = y + c′ which implies
x = y + (c′ − c) ∈ y + C and x + C ⊆ y + C. Conversely
y = x− (c′ − c) ∈ x + C and y + C ⊆ x + C. Note the use
of linearity.

(P3) Every coset contains the same number of vectors, in fact
|x + C| = |C|: |x + C| ≤ |C|, since adding x to every
codeword in C cannot increase the number of vectors we
have. To have |x + C| < |C|, we would need x + c = x + c′,
but this happens only when c = c′.



For a linear (n, k) code C:
(P1) Every vector in Fn

q is contained in the union of cosets: the
vector 0 always belongs to a linear code.

(P2) Cosets do not intersect: suppose v ∈ (x + C) ∩ (y + C).
Then v = x + c = y + c′ which implies
x = y + (c′ − c) ∈ y + C and x + C ⊆ y + C. Conversely
y = x− (c′ − c) ∈ x + C and y + C ⊆ x + C. Note the use
of linearity.

(P3) Every coset contains the same number of vectors, in fact
|x + C| = |C|: |x + C| ≤ |C|, since adding x to every
codeword in C cannot increase the number of vectors we
have. To have |x + C| < |C|, we would need x + c = x + c′,
but this happens only when c = c′.



For a linear (n, k) code C:
(P1) Every vector in Fn

q is contained in the union of cosets: the
vector 0 always belongs to a linear code.

(P2) Cosets do not intersect: suppose v ∈ (x + C) ∩ (y + C).
Then v = x + c = y + c′ which implies
x = y + (c′ − c) ∈ y + C and x + C ⊆ y + C. Conversely
y = x− (c′ − c) ∈ x + C and y + C ⊆ x + C. Note the use
of linearity.

(P3) Every coset contains the same number of vectors, in fact
|x + C| = |C|: |x + C| ≤ |C|, since adding x to every
codeword in C cannot increase the number of vectors we
have. To have |x + C| < |C|, we would need x + c = x + c′,
but this happens only when c = c′.



For a linear (n, k) code C:
(P4) Cosets of C partition Fn

q : the term partition means that Fn
q

is a disjoint union of cosets, then use (P1) and (P2).

(P5) |Fn
q | = qn = |C|·(number of cosets)=qk · qn−k using (P3).

C C + x . . . C + x′

︸︷︷︸
|C|

︸ ︷︷ ︸
|C|

. . . ︸ ︷︷ ︸
|C|

(P6) The vectors x,y belong to the same coset if and only if
y − x ∈ C: x,y ∈ v + C is equivalent to x = v + c,
y = v + c′ then y − x = c′ − c ∈ C. Conversely, if
y− x = c ∈ C, then y = c+ x ∈ x+ C and y belongs to the
same coset as x.



Decoding
� Cosets

Exercise. Consider the code C over F4 given by:
(x1, x2) 7→ (x1, x2, x1 + wx2).

1. How many codewords are contained in C?
2. How many cosets of C are there?

3. List all distinct cosets (no need to give the actual list of
elements within each coset).

4. In which coset does the vector (w, 1, 0) belong to?

1. There are |C| = q2 = 42 codewords.

2. There are |F3
4| = 43 vectors, each coset contains |C| = 42

vectors. Thus 43 = 42 · 4 and there are thus 4 cosets.



Decoding
� Cosets

Exercise. Consider the code C over F4 given by:
(x1, x2) 7→ (x1, x2, x1 + wx2).

1. How many codewords are contained in C?
2. How many cosets of C are there?

3. List all distinct cosets (no need to give the actual list of
elements within each coset).

4. In which coset does the vector (w, 1, 0) belong to?

1. There are |C| = q2 = 42 codewords.

2. There are |F3
4| = 43 vectors, each coset contains |C| = 42

vectors. Thus 43 = 42 · 4 and there are thus 4 cosets.



Decoding
� Cosets

4. Recall C over F4 is given by: (x1, x2) 7→ (x1, x2, x1 + wx2).

The first coset is C itself.

The next coset is (1, 0, 0) + C which is different since
(1, 0, 0) is not in C.
The 3rd coset is (0, 1, 0) + C, since (0, 1, 0) is not in C, and
it is not in (1, 0, 0) + C either, otherwise we would need
(0, 1, 0) = (1, 0, 0) + c for c ∈ C, that is (1, 1, 0) ∈ C which is
not the case.

Finally the 4rth coset is (1, 1, 0) + C, because (1, 1, 0) is not
in C, it is not of the form
(1, 1, 0) = (1, 0, 0) + c ⇐⇒ c = (0, 1, 0), and it is not of the
form (1, 1, 0) = (0, 1, 0) + c ⇐⇒ c = (1, 0, 0).



Decoding
� Cosets

4. Recall C over F4 is given by: (x1, x2) 7→ (x1, x2, x1 + wx2).

(w, 1, 0) ∈ x + C
(w, 1, 0) = (1, 0, 0) + c ⇐⇒ (w + 1, 1, 0) ∈ C. But
w + 1 + w 6= 0.

(w, 1, 0) = (0, 1, 0) + c ⇐⇒ (w, 0, 0) ∈ C. But w 6= 0.

(w, 1, 0) = (1, 1, 0) + c ⇐⇒ (w + 1, 0, 0) ∈ C. But
w + 1 6= 0.

(w, 1, 0) = (0, 0, 0) + c and w + w = 0. So (w, 1, 0) ∈ C.



Weight of a coset and
coset leader

Smallest weight of a
vector in the coset. Any
vector of this smallest
weight in the coset is
called coset leader.

C = {(0, 0, 0), (1, 1, 1)} over
F2.

x + C weight

{ (0, 0, 0) , (1, 1, 1)} 0

{ (1, 0, 0) , (0, 1, 1)} 1

{ (0, 1, 0) , (1, 0, 1)} 1

{(1, 1, 0), (0, 0, 1) } 1



A coset of weight at
most t = bdH(C)−1

2 c has
a unique coset leader.

Suppose we have two
coset leaders, x and y,
then y − x ∈ C (by
(P6)).

Yet by the triangle inequality

wt(y − x) = dH(x,y)

≤ dH(x,0) + dH(0,y)

= wt(x) + wt(y)

≤ 2dH(C)−1
2 ≤ dH(C)− 1.

for y − x ∈ C.
• The converse is not true.

• If the coset leader is not
unique, then the coset has
weight more than t.



Syndrome

For a linear (n, k) code
C with parity check
matrix H, the syndrome
syn(x) of a vector
x ∈ Fn

q is

syn(x) = HxT .

H has rank n− k, thus
every vector in Fn−k

q is a
syndrome.



Decoding
� Syndrome

C over F4 is given by the generator matrix G = [1, 1, w].

HxT =

[
1 1 0
w 0 1

]x1x2
x3

 =

[
x1 + x2
wx1 + x3

]
= x1

[
1
w

]
+x2

[
1
0

]
+ x3

[
0
1

]
︸ ︷︷ ︸

generates F2
4

The vector (w, 1) is a syndrome. Take x1 = 0, x2 = w, x3 = 1
and (w, 1)T = syn(x).



Decoding
� Syndrome

C over F4 is given by the generator matrix G = [1, 1, w].

HxT =

[
1 1 0
w 0 1

]x1x2
x3

 =

[
x1 + x2
wx1 + x3

]
= x1

[
1
w

]
+x2

[
1
0

]
+ x3

[
0
1

]
︸ ︷︷ ︸

generates F2
4

The vector (w, 1) is a syndrome.

Take x1 = 0, x2 = w, x3 = 1
and (w, 1)T = syn(x).



Decoding
� Syndrome

C over F4 is given by the generator matrix G = [1, 1, w].

HxT =

[
1 1 0
w 0 1

]x1x2
x3

 =

[
x1 + x2
wx1 + x3

]
= x1

[
1
w

]
+x2

[
1
0

]
+ x3

[
0
1

]
︸ ︷︷ ︸

generates F2
4

The vector (w, 1) is a syndrome. Take x1 = 0, x2 = w, x3 = 1
and (w, 1)T = syn(x).



Two vectors belong to
the same coset if and
only if they have the
same syndrome.

For x,x′ in the same
coset, x− x′ = c ∈ C.
Then
syn(x) = H(x′ + c)T =
H(x′)T = syn(x′).
If syn(x) = syn(x′),
then H(x− x′)T = 0
and x− x′ ∈ C.

There is a one-to-one
correspondence ψ between
cosets of C and syndromes:
ψ(x + C) = HxT .
(1) Both sets contain qn−k

elements. (2) If y ∈ x + C,
then HyT = HxT (ψ
well-defined). (3) Injectivity:
if ψ(x + C) = ψ(x′ + C), then
HxT = H(x′)T which is
equivalent to having both x,x′

in the same coset and thus
x + C = x′ + C.



Decoding
� Cosets and Syndromes

C over F4 is given by: (x1) 7→ (x1, x1, x1w).

HxT =

[
1 1 0
w 0 1

]x1x2
x3

 =

[
x1 + x2
wx1 + x3

]

Examples of ψ(x + C) = HxT (4 out of the 16 cosets are
illustrated):

x + C HxT

C (0, 0)T

(1, 0, 0) + C (1, w)T

(0, 1, 0) + C (1, 0)T

(1, 1, 0) + C (0, w)T



ML Decoding.

Maximum likelihood ⇒Nearest neighbour decoding:
decode the codeword ĉ closest to the received vector
y = c + e (ĉ minimizes dH(y, c)).

• dH(y, c) = wt(y− c) = wt(e) so given y, we are looking for
a vector e of smallest weight such that y − e ∈ C.

ML Decoding and cosets.

y− e ∈ C if and only if y and e are in the same coset ⇒ we
are looking for a vector e of smallest weight in the coset
containing y.

• We are looking for a coset leader of the coset containing y.



ML Decoding.

Maximum likelihood ⇒Nearest neighbour decoding:
decode the codeword ĉ closest to the received vector
y = c + e (ĉ minimizes dH(y, c)).

• dH(y, c) = wt(y− c) = wt(e) so given y, we are looking for
a vector e of smallest weight such that y − e ∈ C.

ML Decoding and cosets.

y− e ∈ C if and only if y and e are in the same coset ⇒ we
are looking for a vector e of smallest weight in the coset
containing y.

• We are looking for a coset leader of the coset containing y.



ML Decoding.

Maximum likelihood ⇒Nearest neighbour decoding:
decode the codeword ĉ closest to the received vector
y = c + e (ĉ minimizes dH(y, c)).

• dH(y, c) = wt(y− c) = wt(e) so given y, we are looking for
a vector e of smallest weight such that y − e ∈ C.

ML Decoding and cosets.

y− e ∈ C if and only if y and e are in the same coset ⇒ we
are looking for a vector e of smallest weight in the coset
containing y.

• We are looking for a coset leader of the coset containing y.



Syndrome Decoding

Cs = coset consisting of
vectors in Fn

q with
syndrome s.
Step 1. For each
syndrome s ∈ Fn−k

q ,
choose a coset leader es
of the coset Cs. Create a
table pairing the
syndrome with the coset
leader.

Step 2. After receiving y,
compute its syndrome.
Step 3. y is decoded as the
codeword y − es.

This needs a table with qn−k

elements instead of qn.



The (4,2) self-dual tetracode C over F3

HxT︸ ︷︷ ︸
syndrome

=

[
1 0 1 1
0 1 1 −1

]
x1
x2
x3
x4

 =

[
x1 + x3 + x4
x2 + x3 − x4

]
=

[
x1
x2

]
︸︷︷︸

x3=x4=0

F4−2
3 HxT x + C coset leader

(0, 0) H(0, 0, 0, 0)T C (0,0,0,0)

(0, 1) H(0, 1, 0, 0)T (0, 1, 0, 0) + C (0,1,0,0)

(0, 2) H(0, 2, 0, 0)T (0, 2, 0, 0) + C (0,2,0,0)

(1, 0) H(1, 0, 0, 0)T (1, 0, 0, 0) + C (1,0,0,0)

(1, 1) H(1, 1, 0, 0)T (1, 1, 0, 0) + C (1, 1, 0, 0)?
(1, 2) H(1, 2, 0, 0)T (1, 2, 0, 0) + C (1, 2, 0, 0)?

(2, 0) H(2, 0, 0, 0)T (2, 0, 0, 0) + C (2,0,0,0)

(2, 1) H(2, 1, 0, 0)T (2, 1, 0, 0) + C (2, 1, 0, 0)?
(2, 2) H(2, 2, 0, 0)T (2, 2, 0, 0) + C (2, 2, 0, 0)?



The (4,2) self-dual tetracode C over F3

HxT︸ ︷︷ ︸
syndrome

=

[
1 0 1 1
0 1 1 −1

]
x1
x2
x3
x4

 =

[
x1 + x3 + x4
x2 + x3 − x4

]
=

[
x1
x2

]
︸︷︷︸

x3=x4=0

F4−2
3 HxT x + C coset leader

(0, 0) H(0, 0, 0, 0)T C (0,0,0,0)

(0, 1) H(0, 1, 0, 0)T (0, 1, 0, 0) + C (0,1,0,0)

(0, 2) H(0, 2, 0, 0)T (0, 2, 0, 0) + C (0,2,0,0)

(1, 0) H(1, 0, 0, 0)T (1, 0, 0, 0) + C (1,0,0,0)

(1, 1) H(1, 1, 0, 0)T (1, 1, 0, 0) + C (1, 1, 0, 0)?
(1, 2) H(1, 2, 0, 0)T (1, 2, 0, 0) + C (1, 2, 0, 0)?

(2, 0) H(2, 0, 0, 0)T (2, 0, 0, 0) + C (2,0,0,0)

(2, 1) H(2, 1, 0, 0)T (2, 1, 0, 0) + C (2, 1, 0, 0)?
(2, 2) H(2, 2, 0, 0)T (2, 2, 0, 0) + C (2, 2, 0, 0)?



The (4,2) self-dual tetracode C over F3

(x1, x2) 7→ (x1, x2, x1 + x2, x1 − x2).

(1, 1, 0, 0): (x1 + 1, x2 + 1, x1 + x2, x1 − x2), we know we
cannot have x1 + x2 = 0 = x1 − x2, take x1 = x2 ⇒
(x1 + 1, x1 + 1, 2x1, 0), take x1 = 2 ⇒ wt(0, 0, 1, 0) = 1 .

(1, 2, 0, 0): (x1 + 1, x2 + 2, x1 + x2, x1 − x2), take x2 = −x1,
(x1 + 1,−x1 + 2, 0, 2x1), take x1 = 2 and wt(0, 0, 0, 1) = 1 .

(2, 1, 0, 0): wt(x1 + 2, x2 + 1, x1 + x2, x1 − x2) =

wt(0, 0, 0, 2) = 1 with x2 = −1 and x1 = 1

(2, 2, 0, 0): wt(x1 + 2, x2 + 2, x1 + x2, x1 − x2) =

wt(0, 0, 2, 0) = 1 with x1 = x2 = 1.



The (4,2) self-dual tetracode C over F3

Step 1. For each syndrome s ∈ Fn−k
q , choose a coset leader es

of the coset Cs. Create a table pairing syndrome/coset leader.

F4−2
3 HxT x + C coset leader

(0, 0) H(0, 0, 0, 0)T C (0,0,0,0)

(0, 1) H(0, 1, 0, 0)T (0, 1, 0, 0) + C (0,1,0,0)

(0, 2) H(0, 2, 0, 0)T (0, 2, 0, 0) + C (0,2,0,0)

(1, 0) H(1, 0, 0, 0)T (1, 0, 0, 0) + C (1,0,0,0)

(1, 1) H(1, 1, 0, 0)T (1, 1, 0, 0) + C (0,0,1,0)

(1, 2) H(1, 2, 0, 0)T (1, 2, 0, 0) + C (0,0,0,1)

(2, 0) H(2, 0, 0, 0)T (2, 0, 0, 0) + C (2,0,0,0)

(2, 1) H(2, 1, 0, 0)T (2, 1, 0, 0) + C (0,0,0,2)

(2, 2) H(2, 2, 0, 0)T (2, 2, 0, 0) + C (0,0,2,0)

Since every coset weight is at most b3−12 c, there is a unique
coset leader in each coset.



Syndrome Decoding

Step 1. Create a table
pairing the syndrome
s ∈ Fn−k

q with the coset
leader es of the coset Cs.
Step 2. After receiving
y, compute its
syndrome.
Step 3. y is decoded as
the codeword
ĉ = y − es.

s ∈ F2
3 es

(0, 0) (0, 0, 0, 0)
(0, 1) (0, 1, 0, 0)
(0, 2) (0, 2, 0, 0)
(1, 0) (1, 0, 0, 0)
(1, 1) (0, 0, 1, 0)
(1, 2) (0, 0, 0, 1)
(2, 0) (2, 0, 0, 0)
(2, 1) (0, 0, 0, 2)
(2, 2) (0, 0, 2, 0)

(1, 2) 7→ c = (1, 2, 0, 2) 7→ y =
(1, 0, 0, 2), s = HyT = (0, 1),
ĉ =
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Syndrome Decoding

Step 1. Create a table
pairing the syndrome
s ∈ Fn−k

q with the coset
leader es of the coset Cs.
Step 2. After receiving
y, compute its
syndrome.
Step 3. y is decoded as
the codeword
ĉ = y − es.

s ∈ F2
3 es

(0, 0) (0, 0, 0, 0)

(0, 1) (0, 1, 0, 0)

(0, 2) (0, 2, 0, 0)
(1, 0) (1, 0, 0, 0)
(1, 1) (0, 0, 1, 0)
(1, 2) (0, 0, 0, 1)
(2, 0) (2, 0, 0, 0)
(2, 1) (0, 0, 0, 2)
(2, 2) (0, 0, 2, 0)

(1, 2) 7→ c = (1, 2, 0, 2) 7→ y =
(1, 0, 0, 2), HyT = (0, 1),
ĉ = (1, 0, 0, 2)− (0, 1, 0, 0) =
(1, 2, 0, 2) = c.



Syndrome Decoding
� Remarks

• The tetracode has minimum distance 3, it can correct up to
b3−12 c = 1 error. Syndrome decoding achieves this: for one
error (1) y = c + e where e has weight 1, (2) e is in the
same coset as y, (3) every coset (and thus the one in which
y belongs) contains a unique coset leader, namely e.

• If more than one error occurs, y will belong to one of the
cosets but will not be not decoded, since it will have weight
2, and there is coset leader of weight 1 that will be decoded.



Syndrome Decoding
� Remarks

In general, for an (n, k) linear code C of minimum Hamming
distance dH(C):

• It can correct up to t = bdH(C)−1
2 c errors. Syndrome

decoding achieves this: for up to t errors (1) y = c + e
where e has weight at most t, (2) e is in the same coset as
y, thus this coset cannot have weight more than t (3) this
coset contains a unique coset leader, namely e.

• If more than t errors occur, y will belong to one of the
cosets but will not be not decoded, since it will have weight
more than t, and there is coset leader of weight at most t
that will be decoded.
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more than t, and there is coset leader of weight at most t
that will be decoded.



Syndrome Decoding
� Remarks

In this table, cosets are computed to emphasize the one-to-one
correspondance with F2

3.

F2
3 HxT x + C coset leader

(0, 0) H(0, 0, 0, 0)T C (0,0,0,0)

(0, 1) H(0, 1, 0, 0)T (0, 1, 0, 0) + C (0,1,0,0)

(0, 2) H(0, 2, 0, 0)T (0, 2, 0, 0) + C (0,2,0,0)

(1, 0) H(1, 0, 0, 0)T (1, 0, 0, 0) + C (1,0,0,0)

(1, 1) H(1, 1, 0, 0)T (1, 1, 0, 0) + C (0,0,1,0)

(1, 2) H(1, 2, 0, 0)T (1, 2, 0, 0) + C (0,0,0,1)

(2, 0) H(2, 0, 0, 0)T (2, 0, 0, 0) + C (2,0,0,0)

(2, 1) H(2, 1, 0, 0)T (2, 1, 0, 0) + C (0,0,0,2)

(2, 2) H(2, 2, 0, 0)T (2, 2, 0, 0) + C (0,0,2,0)

This could be done differently.



Syndrome Decoding
� Remarks

Consider instead cosets of weight at most 1 (2n+ 1 of them).

x + C coset leader
C (0, 0, 0, 0)

(1, 0, 0, 0) + C (1, 0, 0, 0)
(2, 0, 0, 0) + C (2, 0, 0, 0)
(0, 1, 0, 0) + C (0, 1, 0, 0)
(0, 2, 0, 0) + C (0, 2, 0, 0)
(0, 0, 1, 0) + C (0, 0, 1, 0)
(0, 0, 2, 0) + C (0, 0, 2, 0)
(0, 0, 0, 1) + C (0, 0, 0, 1)
(0, 0, 0, 2) + C (0, 0, 0, 2)



Syndrome Decoding
� Remarks

More generally, one can compute cosets of weight 1 first
((q − 1)n of them), then cosets of weight 2 ((q − 1)

(
n
2

)
of

them), then cosets of weight 3, . . . , t, this allows to decode
up to t errors.

If the received vector has more than t errors, it will be
either incorrectly decoded, or not decoded at all (if the
syndrome is not in the table).



maximum likelihood decoding

Hamming spheres

Connection to error correction

Cosets and syndrome decoding


