
Coding Theory: Equivalent Codes



Fundamental Problem
� Equivalent codes

Given n and k, when are two (n, k) codes “essentially the
same”?



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F2

G1 =

[
1 0 1
0 1 1

]
, G2 =

[
0 1 1
1 0 1

]
,

are the corresponding codes C1, C2 “the same”?

Yes they are, since permuting the rows of G2 (putting G2 in a
systematic form) gives G1.



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F2

G1 =

[
1 0 1
0 1 1

]
, G2 =

[
0 1 1
1 0 1

]
,

are the corresponding codes C1, C2 “the same”?
Yes they are, since permuting the rows of G2 (putting G2 in a
systematic form) gives G1.



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F3

G1 =

[
1 0 2 2
0 1 1 2

]
, G2 =

[
1 2 2 0
0 1 2 1

]
,

are the corresponding codes C1, C2 “the same”?

In G2, add the second row to the first one to get:[
1 0 1 1
0 1 2 1

]



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F3

G1 =

[
1 0 2 2
0 1 1 2

]
, G2 =

[
1 2 2 0
0 1 2 1

]
,

are the corresponding codes C1, C2 “the same”?
In G2, add the second row to the first one to get:[

1 0 1 1
0 1 2 1

]



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F3

(x1, x2)G1 = (x1, x2)

[
1 0 2 2
0 1 1 2

]
= (x1, x2, 2x1 + x2, 2x1 + 2x2),

(x1, x2)G2 = (x1, x2)

[
1 2 2 0
0 1 2 1

]
= (x1, 2x1 + x2, 2x1 + 2x2, x2),

Yes they are essentially the same codes, since we have the same
codewords up to permuting coordinates.



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F3

(x1, x2)G1 = (x1, x2)

[
1 0 2 2
0 1 1 2

]
= (x1, x2, 2x1 + x2, 2x1 + 2x2),

(x1, x2)G2 = (x1, x2)

[
1 2 2 0
0 1 2 1

]
= (x1, 2x1 + x2, 2x1 + 2x2, x2),

Yes they are essentially the same codes, since we have the same
codewords up to permuting coordinates.



Equivalent Codes
� Example

(x1, x2)G1 = (x1, x2, 2x1 + x2, 2x1 + 2x2),

(x1, x2)G2 = (x1, 2x1 + x2, 2x1 + 2x2, x2)

(x1, 2x1+x2, 2x1+2x2, x2)


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 = (x1, x2, 2x1+x2, 2x1+2x2)



Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F3

(x1, x2)G1 = (x1, x2)

[
1 0 2 2
0 1 1 2

]
= (x1, x2, 2x1 + x2, 2x1 + 2x2),

(x1, x2)G2


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


︸ ︷︷ ︸

G1

= (x1, x2)

[
1 2 2 0
0 1 2 1

]
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



= (x1, 2x1 + x2, 2x1 + 2x2, x2)


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 = (x1, x2)G1.



Permutation equivalent

Two linear codes C1 and
C2 are permutation
equivalent provided
there is a permutation
matrix P such that G1

is a generator matrix of
C1 if and only if G1P is
a permutation matrix of
C2.

Applying P to a generator
matrix rearrange the
columns of the generator
matrix.



A linear (n, k) code C is
permutation equivalent
to a code which has
generator matrix in
systematic form.

Apply elementary row
operations to any k × n
generator matrix of C to
transform it into row
echelon form: every row
will be nonzero (it has
rank k).

Each row contains a pivot, a 1st
nonzero number from the left,
always strictly to the right of the
pivot of the row above.

Multiply every row so that the
pivot is 1, repeat row operations
so that zeroes are introduced
above pivots. Because of the pivot
positions, all the columns of Ik are
present, permute then.



A linear (n, k) code C is
permutation equivalent
to a code which has
generator matrix in
standard form.

Consider the following
generator matrix (k = 3
over F2):1 0 1 0 0

0 1 1 0 1
1 0 1 1 1



Row echelon form (pivots are 1):

→

1 0 1 0 0
0 1 1 0 1
0 0 0 1 1


All the columns of Ik are present,
permute then.

→

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1


(here best to permute rather than
removing 0 above pivots.)



Monomial matrix

A square matrix with
exactly one nonzero
entry in each row and
column.

M =

0 a 0
0 0 b
c 0 0



Over F2, every monomial
matrix is a permutation
matrix: 0 1 0

0 0 1
1 0 0





Every monomial matrix
can be written either as
DP or PD′, D,D′ are
diagonal matrices, P is
a permutation matrix.

M =

0 a 0
0 0 b
c 0 0



DP =

a 0 0
0 b 0
0 0 c

0 1 0
0 0 1
1 0 0



PD′ =

0 1 0
0 0 1
1 0 0

c 0 0
0 a 0
0 0 b





Monomial matrix:
convention

We usually choose
M = DP and apply it
on the right of row
vectors.

xM =

(x1, x2, x3)

0 a 0
0 0 b
c 0 0



(x1, x2, x3)

a 0 0
0 b 0
0 0 c


︸ ︷︷ ︸

scaling

0 1 0
0 0 1
1 0 0



= (ax1, bx2, cx3)

0 1 0
0 0 1
1 0 0


︸ ︷︷ ︸

permutation



Monomially equivalent

Two linear codes C1
(with generator matrix
G1) and C2 are
monomially equivalent
provided there is a
monomial matrix M
such that G1M is a
generator matrix of C2.

We can also say that C2 = C1M .

Monomial equivalence and
permutation equivalence are
the same for binary codes.



Monomially Equivalent Codes
� Example

Given the following two generator matrices G1 and G2 over F3

G1 =

[
1 0 2 2
0 1 1 2

]
,

G2 =

[
1 0 1 1
0 1 2 1

]
=

[
1 0 2 2
0 1 1 2

]
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 ,
there is a monomial matrix M such that G1M = G2, so
C2 = C1M .



Code Equivalences
� One more equivalence

Suppose there exists an element ω which is a zero of
X2 +X + 1 (mod 2). Then ω 6= 0, 1,

ω2 = ω + 1 (mod 2), ω3 = ω(ω + 1) = ω2 + ω = 1 (mod 2).

F4

+ 0 1 ω ω2

0 0 1 ω ω2

1 1 0 ω2 ω
ω ω ω2 0 1
ω2 ω2 ω 1 0

· 0 1 ω ω2

0 0 0 0 0
1 0 1 ω ω2

ω 0 ω ω2 1
ω2 0 ω2 1 ω



Automorphisms of Fq

A map σ from Fq to
itself, such that
σ(x+ y) = σ(x) + σ(y),
σ(xy) = σ(x)σ(y),
σ(0) = 0 and σ(1) = 1.

Consider F4 = {0, 1, w, w2 = w + 1}.

• σ(0) = 0, σ(1) = 1.

• σ(w2) = σ(w)σ(w)
= σ(w) + σ(1) = σ(w) + 1. So
x = σ(w) satisfies x2 = x+ 1.
So σ(w) can be either w or w2.

• Thus σ : a+ bw 7→ a+ bw or
σ : a+ bw 7→ a+ bw2, a, b ∈ F2.



Automorphisms of Fq

A map σ from Fq to
itself, such that
σ(x+ y) = σ(x) + σ(y),
σ(xy) = σ(x)σ(y),
σ(0) = 0 and σ(1) = 1.

Consider F4 = {0, 1, w, w2 = w + 1}.

• σ(0) = 0, σ(1) = 1.

• σ(w2) = σ(w)σ(w)
= σ(w) + σ(1) = σ(w) + 1. So
x = σ(w) satisfies x2 = x+ 1.
So σ(w) can be either w or w2.

• Thus σ : a+ bw 7→ a+ bw or
σ : a+ bw 7→ a+ bw2, a, b ∈ F2.



Automorphisms of Fq

A map σ from Fq to
itself, such that
σ(x+ y) = σ(x) + σ(y),
σ(xy) = σ(x)σ(y),
σ(0) = 0 and σ(1) = 1.

Consider F4 = {0, 1, w, w2 = w + 1}.

• σ(0) = 0, σ(1) = 1.

• σ(w2) = σ(w)σ(w)
= σ(w) + σ(1) = σ(w) + 1. So
x = σ(w) satisfies x2 = x+ 1.
So σ(w) can be either w or w2.

• Thus σ : a+ bw 7→ a+ bw or
σ : a+ bw 7→ a+ bw2, a, b ∈ F2.



Automorphisms of Fq

A map σ from Fq to
itself, such that
σ(x+ y) = σ(x) + σ(y),
σ(xy) = σ(x)σ(y),
σ(0) = 0 and σ(1) = 1.

Consider F4 = {0, 1, w, w2 = w + 1}.

• σ(0) = 0, σ(1) = 1.

• σ(w2) = σ(w)σ(w)
= σ(w) + σ(1) = σ(w) + 1. So
x = σ(w) satisfies x2 = x+ 1.
So σ(w) can be either w or w2.

• Thus σ : a+ bw 7→ a+ bw or
σ : a+ bw 7→ a+ bw2, a, b ∈ F2.



Automorphisms of Fq

A map σ from Fq to
itself, such that
σ(x+ y) = σ(x) + σ(y),
σ(xy) = σ(x)σ(y),
σ(0) = 0 and σ(1) = 1.

Consider F4 = {0, 1, w, w2 = w + 1}.

• σ(0) = 0, σ(1) = 1.

• σ(w2) = σ(w)σ(w)
= σ(w) + σ(1) = σ(w) + 1. So
x = σ(w) satisfies x2 = x+ 1.
So σ(w) can be either w or w2.

• Thus σ : a+ bw 7→ a+ bw or
σ : a+ bw 7→ a+ bw2, a, b ∈ F2.



Equivalent

Two linear codes C1 and
C2 are equivalent
provided there is a
monomial matrix M
and an automorphism σ
of Fq such that
C1Mσ = C2.

For a vector
x = (x1, . . . , xn) ∈ Fn

q ,
xσ = (σ(x1), . . . , σ(xn)).

For a codeword
c = (c1, . . . , cn) ∈ Fn

q and
M = DP a monomial
matrix:

cMσ = cDPσ

so
C1Mσ = {cDPσ, c ∈ C1}.



Code Equivalences
� Example

Consider the code C1 over F4 with generator matrix[
1 0 1
0 1 w

]
, (x1, x2) 7→ (x1, x2, x1 + wx2).

c cσ c cσ

(0, 0, 0) (0, 0, 0) (0, w, w2) (0, w2, w)
(1, 0, 1) (1, 0, 1) (1, w, w) (1, w2, w2)
(w, 0, w) (w2, 0, w2) (w,w, 1) (w2, w2, 1)

(w2, 0, w2) (w, 0, w) (w2, w, 0) (w,w2, 0)
(0, 1, w) (0, 1, w2) (0, w2, 1) (0, w, 1)
(1, 1, w2) (1, 1, w) (1, w2, 0) (1, w, 0)
(w, 1, 0) (w2, 1, 0) (w,w2, w2) (w2, w, w)
(w2, 1, 1) (w, 1, 1) (w2, w2, w) (w,w,w2)



Equivalent

Two linear codes C1 and
C2 are equivalent
provided there is a
monomial matrix M
and an automorphism σ
of Fq such that
C1Mσ = C2.

• Most general form of
equivalence we will consider.

• For binary codes, permutation
equivalence, monomial
equivalence and equivalence
are the same.

• For p-ary codes, monomial
equivalence and equivalence
are the same.



Equivalent

Two linear codes C1 and
C2 are equivalent
provided there is a
monomial matrix M
and an automorphism σ
of Fq such that
C1Mσ = C2.

• Hamming distances are
preserved by code equivalences
(permutating, scaling,
applying an automorphism,
none changes the number of
zero coordinates).

• Self-duality is preserved by
permutation equivalence, but
not by other equivalences.



For r ≥ 2, any
(2r − 1, 2r − 1− r, 3)
binary code is equivalent
to the binary Hamming
code with these
parameters.

Consider a code C with
n = 2r−1, and k = n− r,
that is n− k = r. It has
a parity check matrix H
with n− k = r rows, and
n columns.

• To create columns of length r
over F2, we have 2r choices,
and 2r − 1 distinct choices
excluding the whole zero
vector.

• If we try to repeat one
column, the minimum distance
drops since we have two
columns which are multiples of
each other. Therefore we can
only obtain a Hamming code.



For r ≥ 2, any
(2r − 1, 2r − 1− r, 3)
binary code is equivalent
to the binary Hamming
code with these
parameters.

Consider a code C with
n = 2r−1, and k = n− r,
that is n− k = r. It has
a parity check matrix H
with n− k = r rows, and
n columns.

• To create columns of length r
over F2, we have 2r choices,
and 2r − 1 distinct choices
excluding the whole zero
vector.

• If we try to repeat one
column, the minimum distance
drops since we have two
columns which are multiples of
each other. Therefore we can
only obtain a Hamming code.



The (4, 2) tetracode
over F3 is equivalent to
a Hamming code.

A generator matrix is[
1 0 1 1
0 1 1 −1

]
which is also a parity
check matrix since the
code is self-dual.

• Over F3, it is[
1 0 1 1
0 1 1 2

]
.

• The columns contain all
1-dimensional subspaces of F2

3,

the 32−1
3−1 = 4 of them. So this

is a ternary Hamming code.

• Finally the only perfect codes
we know are Hamming codes.



Permutation equivalence

Monomial equivalence

Code equivalence


