Coding Theory: Golay Codes



Good Codes

B Codes seen so far

(n,k,dm)q k/n name
(n,1,n), % repetition
(n,n—1,2), n=l " pbarity check
[(7,4,3)2 % Hamming]
[(4,2,3)3 5 tetracode |
(I= _11 ,n—r,3)g "  Hamming



Golay Codes

4 codes named Golay
codes: Gaa, Gos, Gi2, G11

ref: https://ethw.org/Marcel_J._E._Golay


https://ethw.org/Marcel_J._E._Golay
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1°,3=5%,4=2°5=49=

0% 1

row i + 1 is a shift on the left of row 7 for ¢

circulant matrix).

row 2: mod 11, we have 0

bordered reverse

(

> 2



Codes

s self-orthogonal

Rows of the generator matrix have weights 8 and 12 = the
inner product of any row with itself is 0 mod 2.



Rows of the generator matrix have weights 8 and 12 = the
inner product of any row with itself is 0 mod 2.

Row i for ¢ > 2 has weight 6+2 (they are shifts of row 2),
thus the inner product of row 1 and row ¢ is 6 =0 mod 2.



Rows of the generator matrix have weights 8 and 12 = the
inner product of any row with itself is 0 mod 2.

Row i for ¢ > 2 has weight 6+2 (they are shifts of row 2),
thus the inner product of row 1 and row ¢ is 6 =0 mod 2.

The inner product of row 2 with row i > 3is 4 =0 mod 2
by direct inspection.



Codes

s self-orthogonal

Rows of the generator matrix have weights 8 and 12 = the
inner product of any row with itself is 0 mod 2.

Row i for ¢ > 2 has weight 6+2 (they are shifts of row 2),
thus the inner product of row 1 and row ¢ is 6 =0 mod 2.
The inner product of row 2 with row i > 3is 4 =0 mod 2
by direct inspection.

For rows ¢ and j, ¢,j > 3, since both rows are shifts of row
2, shift both rows so row i is mapped to row 2, and use the
previous argument.



For g; a row of G, we showed that g; - ng =0 for all 4, 5.

. k
For ¢ a codeword in Goy, ¢ = >/ | xig;.



For g; a row of G, we showed that g; - ng =0 for all 4, 5.

For ¢ a codeword in Goy, ¢ = Zle Tigi.
By definition Q2L4 ={xe€ ]F%4, x-cl'=0forall ce Goa}.
k k
O wigi)- O wig)" =0 thus Gag C Gay.
i=1 j=1

~——
c’'€Gaq cT'eGoy



For g; a row of G, we showed that g; - ng =0 for all 4, 5.

For ¢ a codeword in Goy, ¢ = Zle Tigi.
By definition Q2L4 ={xe€ ]F%4, x-cl'=0forall ce Goa}.

k k
O " algi) - O wig;)" =0 thus Gay C G3y.
i=1 j=1

c'€Gay cTeGa

Since Gos C Gy and dim(Gay) = dim(Gyy) = 12, we have
Gos = Gy



Golay Codes

Hamming dista

Since Goyq is self-dual and rows of G have weights 8 or 12,
codewords of Gay have weights divisible by 4 (see HW).
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Hamming dista

Since Goyq is self-dual and rows of G have weights 8 or 12,
codewords of Gay have weights divisible by 4 (see HW).

Thus the Hamming distance is either 4 or 8.



Golay Codes

Hamming dista

Since Goyq is self-dual and rows of G have weights 8 or 12,
codewords of Goy have weights divisible by 4 (see HW).

Thus the Hamming distance is either 4 or 8.
Suppose wt(c) = 4. Write ¢ = (c1,cz), c1,co € Fi2.

1. wt(c1) =0, wt(cz) = 4: wt(cy) = 0 implies that the data
symbols are all 0.

2. wt(cy) =1, wt(ca) = 3: wi(cy) = 1 implies ¢ is a row of G.

3. wt(cy) =2, wt(ca) = 2: c¢ is the sum of two rows of G.



Golay Codes

Hamming dista

Since Goyq is self-dual and rows of G have weights 8 or 12,
codewords of Goy have weights divisible by 4 (see HW).

Thus the Hamming distance is either 4 or 8.

Suppose wt(c) = 4. Write ¢ = (c1,cz), c1,co € Fi2.

. wt(cr) =0, wt(cg) = 4: wt(cy) = 0 implies that the data
symbols are all 0.

2. wt(cy) =1, wt(ca) = 3: wi(cy) = 1 implies ¢ is a row of G.

3. wt(cy) =2, wt(ca) = 2: c¢ is the sum of two rows of G.
4. A= AT and since Gy is self-dual, H = [A[I2] is a

generator matrix. Thus if (c1,c2) € Gio, so is (co,cq).



Golay Codes

Hamming distance

Since Goyq is self-dual and rows of G have weights 8 or 12,
codewords of Goy have weights divisible by 4 (see HW).

Thus the Hamming distance is either 4 or 8.
Suppose wt(c) = 4. Write ¢ = (c1,cz), c1,co € Fi2.
1. wt(c1) =0, wt(cz) = 4: wt(cy) = 0 implies that the data
symbols are all 0.
2. wt(cy) =1, wt(ca) = 3: wi(cy) = 1 implies ¢ is a row of G.
3. wt(cy) =2, wt(ca) = 2: c¢ is the sum of two rows of G.
4. A= AT and since Gy is self-dual, H = [A[I2] is a
generator matrix. Thus if (c1,c2) € Gio, so is (co,cq).
o dp(Gos) = 8.



Puncturing Consider the tetracode C over
1 Fs, ($1,x2) —

For a linear (n, k, d), (r1, 2,21 + T2, 21 — X2):
code C, puncturing

means deleting the same G — {1 01 1 ] _
coordinate ¢ in each 01 1 —1
codeword. The resulting
code is denoted by C*.
(1) C* has length n — 1.
(2) Delete column 1
from the generator
matrix (so C* is linear).

Puncture in coordinate 3 to get
(21, 22,21 — x2), puncture in
coordinate 4 to get

(w1, 2, 21 + 22).




Dimension after

} Puncturing does not increase the
puncturing.

number of codewords. Can it

| .
reduce it?




Dimension after . .
Puncturing does not increase the

number of codewords. Can it
reduce it?

puncturing.
I —

To have less codewords, we would
need two codewords of C that
agree in all coordinates but ¢, then
when ¢ is punctured, both
codewords become the same and
the number reduces, but that
would mean that the Hamming
distance of C is 1.




Minimum distance after

) Puncturing does not increase the
puncturing.

minimum distance. Can it reduce

| .
it?




Minimum distance after
puncturing.
|

Puncturing does not increase the
minimum distance. Can it reduce
it?

The minimum Hamming distance
will decrease by 1 only if a
codeword with minimum weight
has a nonzero ith coordinate.



Puncturing. For the (5,2,2)5 code given by
|

For C* the code G = [1 100 0}
punctured on the ith 001 1 1}’
coordinate: (1) ifd > 1,
C*isan (n—1,k,d")
code where d* =d — 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d* = d otherwise.

puncture in coordinate 1:

,_[1 000
Gl_[0111]’

since G has distance 2 and the
codeword (1,1,0,0,0) of weight
2 which is punctured in 1, the
new minimum distance is 1.




Puncturing. For the (5,2,2)2 code given by
|

For C* the code G = [1 100 0}
punctured on the ith 001 1 1}’
coordinate: (1) ifd > 1,
C*isan (n—1,k,d")
code where d* =d — 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d* = d otherwise.

puncture in coordinate 5:

. [T 100
G5_[0011]'

Since C contains (0,0,0,0,0),
(07 07 17 17 1)7 (17 ]‘? 0? 07 0)7
(1,1,1,1,1), wt(1,1,0,0,0) = 2
with a 0 in the 5th coordinate,
so the minimum distance is 2.




Puncturing. For the (4,2,1)2 code given by
I

For C* the code G — [1 0 0 O]
punctured on the ith 01 1 1}’
coordinate: (2)if d =1,
C*isan (n—1,k,1)
code if C has no
codeword of weight 1
whose nonzero entry is
in coordinate i,
otherwise, if £k > 1, C* is
an (n—1,k—1,d")
code with d* > 1.

puncture in coordinate 4:

. (1 00
G4_[O 1 1]’

since C has a codeword of
weight 1 but its nonzero entry
is in coordinate 1, the distance
is still 1.




Puncturing. For the (4,2,1)2 code given by
I

For C* the code G — [1 0 0 O]
punctured on the ith 01 1 1}’
coordinate: (2) if d =1,
C*isan (n—1,k,1)
code if C has no
codeword of weight 1
whose nonzero entry is
in coordinate i,
otherwise, if £k > 1, C* is
an (n—1,k—1,d")
code with d* > 1.

puncture in coordinate 1:
Gi=[1 1 1],

the dimension drops. Since C
has a unique codeword of
weight 1 and its nonzero entry
is in coordinate 1, this
codeword disappears and the
new distance is actually 3.




[112, A*] and

Binary (23, 12) code, with generator matrix G*

O A 4O - OO O
O A O A A O -~ OO
—O0O OO —H O A 1O - O
O OO —H O A~ O~~~
O OO O — = O —
N A O OO A O A - O -
e O OO O O
O A A O OO O~
O A —H O OO A O~
Nl O - — O OO0 O
O ™ = = =
L 1

I

*

<

This is G54, that is Go4 punctured in the last coordinate.



Puncturing.
|
For C* the code
punctured on the ith
coordinate: (1) if d > 1,
C*isan (n—1,k,d")
code where d* =d — 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d* = d otherwise.




Puncturing.
|
For C* the code
punctured on the ith
coordinate: (1) if d > 1,
C*isan (n—1,k,d")
code where d* =d — 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d* = d otherwise.

Several rows of G have
weight 8, and a 1 in the
last coordinate, after
puncturing the last
column, they will yield
codewords of weight 7.

o dy(Gas) =1.



Golay Codes

H G

Ternary (12,6) code, with generator matrix G = [Ig, A] and

0j1 1 1 11
110 1 2 2 1
1/1 0 1 2 2
A= 112 1 0 1 2
112 2 1 0 1
111 2 2 1 0

This code is a (12,6, 6) self-dual ternary code (see HW).



Golay Codes

O

Ternary (11,6) code, with generator matrix G* = [Ig, A*| and

e e e el k=)
— NN = O
NN = O =
N O~ N
— O = NN

This is Gjy, that is G12 punctured in the last coordinate.



Sphere Packing Bound

B Examples

Binary Golay codes

S NPT



Sphere Packing Bound

B Examples

Binary Golay codes

n

q

Zﬁ:o (TZ) (¢—1)

Both codes contain 2'2 codewords, t = 3 (dg = 7,8) and

SPB =

2 = Trorareoonl = ey 1 = 24
Yoo () T TH24+276+2024 T 2325 -
SPB = g2 223 923 23
T (@) T TEmeess o2n P
- 2

S0 Gog is perfect.



Sphere Packing Bound

B Examples

Ternary Golay codes

S NPT



Sphere Packing Bound

B Examples

Ternary Golay codes
|

n

q

Yico (a=1)

Both codes contain 3% codewords, t = 2 (dg = 6,5) and

SPB =

312 . 312 _ 312 .
. (11.2)21' = 17017961 — 259 N = 12
SPB = o’ 311 311 1
Z (D2 ~ THezF220 T 243 n=
= 3

so Gq1 is perfect.



Extending.
|
If Cis an (n, k,d)q code,
the extended code C is
the code

{(z1,. -y &n, Tnt1) €
F2tL, (21,...,20) €

C, 1+ -+ Tpta 20}




Extending.
|
If Cis an (n, k,d)q code,
the extended code C is
the code

{(z1,. -y &n, Tnt1) €
F2tL, (21,...,20) €

C, 1+ -+ Tpta 20}

A generator matrix G for C
can be obtained from G by
adding an extra column to
G, so that the sum of the
coordinates of each row of
G is 0.

Thus the code C is linear.



Extending.
|
If C is an (n, k,d)q code,
the extended code C is
the code

{(z1,.. s &n, Tnt1) €
F2tL, (21,...,20) €

C, z1+ -+ Tp+1 20}




Extending.
|
If C is an (n, k,d)q code,
the extended code C is
the code

{(z1,.. s &n, Tnt1) €
F2tL, (21,...,20) €

C, z1+ -+ Tp+1 20}

Parity check matrix:



Extending.
|
If C is an (n, k,d)q code,
the extended code C is
the code

{(z1,.. s &n, Tnt1) €
F2tL, (21,...,20) €

C, z1+ -+ Tp+1 20}

Parity check matrix: For H
a parity check matrix of C,

e Minimum distance:



Extending.
|
If C is an (n, k,d)q code,
the extended code C is
the code

{(z1,.. s &n, Tnt1) €
F2tL, (21,...,20) €

C, z1+ -+ Tp+1 20}

Parity check matrix: For H
a parity check matrix of C,

e Minimum distance:

~

di(C) =dg(C) or
du(C) + 1.



Extended tetracode over g

1 01 1 ~ 101 1 0
6=lo 11 4]-e-|



Extended Codes

B Example

Extended tetracode over g
|

101 1] - [Lo1 1 0
G_[0111}_>G_[0111 -1

InC, (1,0,1,1) has weight 3, it is extended to (1,0,1,1,0)
which still has weight 3, so d = 3.



Puncturing/Extending.
I
If we extend C and then
puncture the new
coordinate, we get C.

If we puncture C in its
last coordinate and
extend it, we may not
get C back.




Puncturing/Extending.
I
If we extend C and then
puncture the new
coordinate, we get C.

If we puncture C in its
last coordinate and
extend it, we may not
get C back.

Puncture in the last

coordinate
1 1 001
G = [O 011 0]
to get

., 1100
G_[0011}

then extend

. [1 1000
G_{00110]

to find a different code.



Codes seen so far

(n,k,dm)q k/n name perfect
(n, 1,n)q % repetition
(n,n—1,2); 221 parity check

(q;__ll ,n—r,3), L  Hamming yes
(24,12,8), 3 Goa no
(23,12,7)2 = Go3 yes
(12,6,6)3 3 Gio no

6

(117675)3 11 gll yes



Golay codes
Puncturing

Extending




