
Coding Theory: Golay Codes



Good Codes
� Codes seen so far

(n, k, dH)q k/n name

(n, 1, n)q
1
n repetition

(n, n− 1, 2)q
n−1
n parity check

[(7, 4, 3)2
4
7 Hamming]

[(4, 2, 3)3
1
2 tetracode ]

( q
r−1
q−1 , n− r, 3)q

n−r
n Hamming



Golay Codes

4 codes named Golay
codes: G24, G23, G12, G11

ref: https://ethw.org/Marcel_J._E._Golay

https://ethw.org/Marcel_J._E._Golay


Golay Codes
� G24

Binary (24, 12) code, with generator matrix G = [I12, A] and

A =



0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1





Golay Codes
� G24

A =



0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1


row 2: mod 11, we have 0 ≡ 02, 1 ≡ 12, 3 ≡ 52, 4 ≡ 22, 5 ≡ 42, 9 ≡ 32

row i+ 1 is a shift on the left of row i for i ≥ 2 (bordered reverse
circulant matrix).



Golay Codes
� G24 is self-orthogonal

Rows of the generator matrix have weights 8 and 12 ⇒ the
inner product of any row with itself is 0 mod 2.

Row i for i ≥ 2 has weight 6+2 (they are shifts of row 2),
thus the inner product of row 1 and row i is 6 ≡ 0 mod 2.

The inner product of row 2 with row i ≥ 3 is 4 ≡ 0 mod 2
by direct inspection.

For rows i and j, i, j ≥ 3, since both rows are shifts of row
2, shift both rows so row i is mapped to row 2, and use the
previous argument.
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Golay Codes
� G24 is self-dual

For gi a row of G, we showed that gi · gT
j = 0 for all i, j.

For c a codeword in G24, c =
∑k

i=1 xigi.

By definition G⊥24 = {x ∈ F24
2 , x · cT = 0 for all c ∈ G24}.

(
k∑

i=1

x′igi)︸ ︷︷ ︸
c′∈G24

· (
k∑

j=1

xjgj)
T

︸ ︷︷ ︸
cT∈G24

= 0 thus G24 ⊆ G⊥24.

• Since G24 ⊆ G⊥24 and dim(G24) = dim(G⊥24) = 12, we have
G24 = G⊥24.
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Golay Codes
Hamming distance

Since G24 is self-dual and rows of G have weights 8 or 12,
codewords of G24 have weights divisible by 4 (see HW).

Thus the Hamming distance is either 4 or 8.

Suppose wt(c) = 4. Write c = (c1, c2), c1, c2 ∈ F12
2 .

1. wt(c1) = 0, wt(c2) = 4: wt(c1) = 0 implies that the data
symbols are all 0.

2. wt(c1) = 1, wt(c2) = 3: wt(c1) = 1 implies c is a row of G.

3. wt(c1) = 2, wt(c2) = 2: c is the sum of two rows of G.

4. A = AT and since G24 is self-dual, H = [A|I12] is a
generator matrix. Thus if (c1, c2) ∈ G12, so is (c2, c1).

• dH(G24) = 8.
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Puncturing

For a linear (n, k, d)q
code C, puncturing
means deleting the same
coordinate i in each
codeword. The resulting
code is denoted by C∗.
(1) C∗ has length n− 1.
(2) Delete column i
from the generator
matrix (so C∗ is linear).

Consider the tetracode C over
F3, (x1, x2) 7→
(x1, x2, x1 + x2, x1 − x2):

G =

[
1 0 1 1
0 1 1 −1

]
.

Puncture in coordinate 3 to get
(x1, x2, x1 − x2), puncture in
coordinate 4 to get
(x1, x2, x1 + x2).



Dimension after
puncturing.

Puncturing does not increase the
number of codewords. Can it
reduce it?

To have less codewords, we would
need two codewords of C that
agree in all coordinates but i, then
when i is punctured, both
codewords become the same and
the number reduces, but that
would mean that the Hamming
distance of C is 1.
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Minimum distance after
puncturing.

Puncturing does not increase the
minimum distance. Can it reduce
it?

The minimum Hamming distance
will decrease by 1 only if a
codeword with minimum weight
has a nonzero ith coordinate.
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Puncturing.

For C∗ the code
punctured on the ith
coordinate: (1) if d > 1,
C∗ is an (n− 1, k, d∗)
code where d∗ = d− 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d∗ = d otherwise.

For the (5, 2, 2)2 code given by

G =

[
1 1 0 0 0
0 0 1 1 1

]
,

puncture in coordinate 1:

G∗1 =

[
1 0 0 0
0 1 1 1

]
,

since G has distance 2 and the
codeword (1, 1, 0, 0, 0) of weight
2 which is punctured in 1, the
new minimum distance is 1.



Puncturing.

For C∗ the code
punctured on the ith
coordinate: (1) if d > 1,
C∗ is an (n− 1, k, d∗)
code where d∗ = d− 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d∗ = d otherwise.

For the (5, 2, 2)2 code given by

G =

[
1 1 0 0 0
0 0 1 1 1

]
,

puncture in coordinate 5:

G∗5 =

[
1 1 0 0
0 0 1 1

]
.

Since C contains (0, 0, 0, 0, 0),
(0, 0, 1, 1, 1), (1, 1, 0, 0, 0),
(1, 1, 1, 1, 1), wt(1, 1, 0, 0, 0) = 2
with a 0 in the 5th coordinate,
so the minimum distance is 2.



Puncturing.

For C∗ the code
punctured on the ith
coordinate: (2) if d = 1,
C∗ is an (n− 1, k, 1)
code if C has no
codeword of weight 1
whose nonzero entry is
in coordinate i,
otherwise, if k > 1, C∗ is
an (n− 1, k − 1, d∗)
code with d∗ ≥ 1.

For the (4, 2, 1)2 code given by

G =

[
1 0 0 0
0 1 1 1

]
,

puncture in coordinate 4:

G∗4 =

[
1 0 0
0 1 1

]
,

since C has a codeword of
weight 1 but its nonzero entry
is in coordinate 1, the distance
is still 1.



Puncturing.

For C∗ the code
punctured on the ith
coordinate: (2) if d = 1,
C∗ is an (n− 1, k, 1)
code if C has no
codeword of weight 1
whose nonzero entry is
in coordinate i,
otherwise, if k > 1, C∗ is
an (n− 1, k − 1, d∗)
code with d∗ ≥ 1.

For the (4, 2, 1)2 code given by

G =

[
1 0 0 0
0 1 1 1

]
,

puncture in coordinate 1:

G∗1 =
[
1 1 1

]
,

the dimension drops. Since C
has a unique codeword of
weight 1 and its nonzero entry
is in coordinate 1, this
codeword disappears and the
new distance is actually 3.



Golay Codes
� G23

Binary (23, 12) code, with generator matrix G∗ = [I12, A
∗] and

A∗ =



0 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1
1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1 1 1
1 0 1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0


This is G∗24, that is G24 punctured in the last coordinate.



Puncturing.

For C∗ the code
punctured on the ith
coordinate: (1) if d > 1,
C∗ is an (n− 1, k, d∗)
code where d∗ = d− 1 if
C has a minimum
weight codeword with a
nonzero ith coordinate
and d∗ = d otherwise.

Several rows of G have
weight 8, and a 1 in the
last coordinate, after
puncturing the last
column, they will yield
codewords of weight 7.

• dH(G23) = 7.
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Golay Codes
� G12

Ternary (12, 6) code, with generator matrix G = [I6, A] and

A =


0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0


This code is a (12, 6, 6) self-dual ternary code (see HW).



Golay Codes
� G11

Ternary (11, 6) code, with generator matrix G∗ = [I6, A
∗] and

A∗ =


0 1 1 1 1
1 0 1 2 2
1 1 0 1 2
1 2 1 0 1
1 2 2 1 0
1 1 2 2 1


This is G∗12, that is G12 punctured in the last coordinate.



Sphere Packing Bound
� Examples

Binary Golay codes

SPB =
qn∑t

i=0

(
n
i

)
(q − 1)i

Both codes contain 212 codewords, t = 3 (dH = 7, 8) and

SPB =


224∑3

i=0 (24i )
= 224

1+24+276+2024 = 224

2325 n = 24

223∑3
i=0 (23i )

= 223

1+23+253+1771 = 223

211
n = 23

so G23 is perfect.
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Sphere Packing Bound
� Examples

Ternary Golay codes

SPB =
qn∑t

i=0

(
n
i

)
(q − 1)i

Both codes contain 36 codewords, t = 2 (dH = 6, 5) and

SPB =


312∑2

i=0 (12i )2i
= 312

1+24+264 = 312

289 n = 12

311∑2
i=0 (11i )2i

= 311

1+22+220 = 311

243 n = 11

so G11 is perfect.
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Extending.

If C is an (n, k, d)q code,
the extended code Ĉ is
the code
{(x1, . . . , xn, xn+1) ∈
Fn+1
q , (x1, . . . , xn) ∈
C, x1 + · · ·+ xn+1 = 0}

A generator matrix Ĝ for Ĉ
can be obtained from G by
adding an extra column to
G, so that the sum of the
coordinates of each row of
Ĝ is 0.

Thus the code Ĉ is linear.
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{(x1, . . . , xn, xn+1) ∈
Fn+1
q , (x1, . . . , xn) ∈
C, x1 + · · ·+ xn+1 = 0}

Parity check matrix: For H
a parity check matrix of C,

Ĥ =


1 . . . 1 1

0

H
...
0


• Minimum distance:
dH(Ĉ) = dH(C) or
dH(C) + 1.
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Extended Codes
� Example

Extended tetracode over F3

G =

[
1 0 1 1
0 1 1 −1

]
→ Ĝ =

[
1 0 1 1 0
0 1 1 −1 −1

]

In C, (1, 0, 1, 1) has weight 3, it is extended to (1, 0, 1, 1, 0)
which still has weight 3, so d̂ = 3.
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[
1 0 1 1
0 1 1 −1

]
→ Ĝ =
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Puncturing/Extending.

If we extend C and then
puncture the new
coordinate, we get C.
If we puncture C in its
last coordinate and
extend it, we may not
get C back.

Puncture in the last
coordinate

G =

[
1 1 0 0 1
0 0 1 1 0

]
to get

G∗ =

[
1 1 0 0
0 0 1 1

]
then extend

Ĝ∗ =

[
1 1 0 0 0
0 0 1 1 0

]
to find a different code.
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[
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0 0 1 1 0
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to find a different code.



Codes seen so far

(n, k, dH)q k/n name perfect

(n, 1, n)q
1
n repetition

(n, n− 1, 2)q
n−1
n parity check

( q
r−1
q−1 , n− r, 3)q

n−r
n Hamming yes

(24, 12, 8)2
1
2 G24 no

(23, 12, 7)2
12
23 G23 yes

(12, 6, 6)3
1
2 G12 no

(11, 6, 5)3
6
11 G11 yes
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