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These notes were written to suit the contents of the course “Abstract Algebra
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The main structure of the notes comes from some notes I wrote for the course
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Chapter

Group Theory

1.1 Groups and subgroups

Definition 1.1. A group is a non-empty set G on which there is a binary
operation (a,b) — ab such that

e if ¢ and b belong to G then ab is also in G (closure),
e a(bc) = (ab)c for all a,b,c in G (associativity),
e there is an element 1 € G such that al = la = a for all a € G (identity),

e if @ € G, then there is an element a~! € G such that aa™ = ¢ ta =1
(inverse).

One can check (see Exercise 1) that this implies the unicity of the identity
and of the inverse.

A group G is called abelian if the binary operation is commutative, i.e.,
ab = ba for all a,b € G.

Remark. There are two standard notations for the binary group operation: ei-
ther the additive notation, that is (a,b) — a + b in which case the identity is
denoted by 0, or the multiplicative notation, that is (a,b) — ab for which the
identity is denoted by 1.

Examples 1.1. 1. Z with the addition and 0 as identity is an abelian group.

2. Z with the multiplication is not a group since there are elements which
are not invertible in Z.

3. The set of n x n invertible matrices with real coefficients is a group for
the matrix product and identity the matrix I,,. It is denoted by GL,,(R)
and called the general linear group. It is not abelian for n > 2.
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Figure 1.1: Felix Klein (1849-1925)

4. A permutation of a set S is a bijection on S. The set of all such functions

(with respect to function composition) is a group called the symmetric
group on S. We denote by S,, the symmetric group on n elements. It is
not abelian when n > 3. Consider the symmetric group S5 of permutations
on 3 elements. It is given by (note here that by ab we mean that we first
apply the permutation b, then a)

;123 —» 123 or ()
a : 123 — 213 or

12)
b : 123 — 132 or (23)
ba : 123 — 312 or (132)

ab : 123 — 231 or (123)

(

(

(

(

(
aba : 123 — 321 or (13)
One can check that this is indeed a group. The notation (132) means
that the permutation sends 1 to 3, 3 to 2, and 2 to 1. We can generally
write a permutation on m elements as (i1, ...,%,), which is called a cycle
notation. The permutation (i1,...,4,) is called an m-cycle

. The set of isometries of the rectangle (not a square) is an abelian group
containing 4 elements: the identity, the reflection with respect to the
vertical axis, the reflection with respect to the horizontal axis, and the
composition of both reflections. It is called the Klein group in honor of
the mathematician Felix Klein.

The modern definition of group was given in 1854 by the mathematician

Cayley:

“A set of symbols all of them different, and such that the product of any two of
them (no matter in what order), or the product of any one of them into itself,
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Figure 1.2: Arthur Cayley (1821-1895): he was the first to define the concept of
a group in the modern way. Before him, groups referred to permutation groups.

belongs to the set, is said to be a group. These symbols are not in general con-
vertible [commutative], but are associative.”

It took about one hundred years from Lagrange’s work of 1770 on permu-
tations for the abstract group concept to evolve. This was done by abstracting
what was in common to permutation groups (studied e.g. by Galois (1811-1832)
who was motivated by the solvability of polynomial equations, by Cauchy who
from 1815 to 1844 looked at permutations as an autonomous subject, by Jordan
who around 1870 made explicit the notions of homomorphism and isomorphism
for permutation groups), abelian groups, and groups of isometries (studied e.g.
by Klein.)

Definition 1.2. The order of a group G, denoted by |G|, is the cardinality of
G, that is the number of elements in G.

A crucial definition is the definition of the order of a group element.

Definition 1.3. The order of an element a € G is the least positive integer n
such that a™ = 1. If no such integer exists, the order of a is infinite. We denote
it by |al.

Note that the critical part of this definition is that the order is the least
positive integer with the given property. The terminology order is used both for
groups and group elements, but it is usually clear from the context which one
is considered.

Let us give some more examples of finite groups.

Examples 1.2. 1. The trivial group G = {0} may not be the most exciting
group to look at, but still it is the only group of order 1.
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2. The group G ={0,1,2,...,n—1} of integers modulo n is a group of order
n. It is sometimes denoted by Z,.

3. The set of invertible elements modulo n forms a group under multiplica-
tion. Consider the group Zg = {0,1,2,3,4,5}, the group Z{ of invertible
elements in Zg is Z§ = {1,5}.

Definition 1.4. A group G is cyclic if it is generated by a single element, which
we denote by G = (a). We may denote by C,, a cyclic group of n elements.

Note that in a cyclic group G, there exists an element a whose order is the
same as that of G.

Example 1.3. A finite cyclic group generated by a is necessarily abelian, and
can be written (multiplicatively)

{1,a,a?,...,a" '} with a" =1

or (additively)
{0,a,2a,...,(n—1)a} with na = 0.

Example 1.4. An nth root of unity is a complex number z which satisfies the
equation 2" = 1 for some positive integer n. Let ¢, = 2™/ be an nth root
of unity. All the nth roots of unity form a group under multiplication. It is
a cyclic group, generated by (,, which is called a primitive root of unity. The
term “primitive” exactly refers to being a generator of the cyclic group, namely,
an nth root of unity is primitive when there is no positive integer k smaller than
n such that ¢¥ = 1.

Definition 1.5. A subgroup H of a group G is a non-empty subset of G that
forms a group under the binary operation of G.

Examples 1.5. 1. If we consider the group G = Z4 = {0, 1,2, 3} of integers
modulo 4, H = {0, 2} is a subgroup of G.

2. The set of n x n matrices with real coefficients and determinant of 1 is
a subgroup of GL,(R), denoted by SL,(R) and called the special linear
group.

At this point, in order to claim that the above examples are actually sub-
groups, one has to actually check the definition. There is an easier criterion to
decide whether a subset of a group G is actually a subgroup, namely given G
a group, and H a non-empty subset of G, H is a subgroup of G if and only if
x,y € H implies zy~* € H for all z,y (see Exercise 2 for a proof).

Now that we have these structures of groups and subgroups, let us intro-
duce a map that allows to go from one group to another and that respects the
respective group operations.

Definition 1.6. Given two groups G and H, a group homomorphism is a map
f: G — H such that

flzy) = f(2)f(y) for all z,y € G.



1.2. COSETS AND LAGRANGE’S THEOREM 9

Note that this definition immediately implies that the identity 14 of G is
mapped to the identity 1y of H. The same is true for the inverse, that is

f@™) = f()~"

Example 1.6. The map exp : (R,+) — (R*,:), = — exp(z) is a group homo-
morphism.

Definition 1.7. Two groups G and H are isomorphic if there is a group homo-
morphism f : G — H which is also a bijection.

Roughly speaking, isomorphic groups are “essentially the same”.

Examples 1.7. 1. If we consider again the group G = Z4 = {0,1,2,3} of
integers modulo 4 with subgroup H = {0, 2}, we have that H is isomorphic
to Zs, the group of integers modulo 2.

2. A finite cyclic group with n elements is isomorphic to the additive group
Z, of integers modulo n.

1.2 Cosets and Lagrange’s Theorem

Definition 1.8. Let H be a subgroup of a group G. If g € G, the right coset
of H generated by g is
Hg={hg, he H}

and similarly the left coset of H generated by g is
gH ={gh, h € H}.

In additive notation, we get H + g (which usually implies that we deal with
a commutative group where we do not need to distinguish left and right cosets).

Example 1.8. If we consider the group Z, = {0,1,2,3} and its subgroup
H = {0,2} which is isomorphic to Zs, the cosets of H in G are

0+H=H, 1+H={1,3}, 2+ H=H, 3+ H={1,3}.
Clearly 0O+ H =2+ Hand 1+ H=3+ H.

We see in the above example that while an element of ¢ € G runs through
all possible elements of the group G, some of the left cosets gH (or right cosets
Hg) may be the same. It is easy to see when this exactly happens.

Lemma 1.1. We have that Ha = Hb if and only if ab™* € H for a,b € G.
Similarly, aH = bH if and only if a='b € H for a,b € G.

Proof. If two right cosets are the same, that is Ha = Hb, since H is a subgroup,
we have 1 € H and a = hb for some h € H, so ab™! = h € H.

Conversely, if ab™! = h € H, then Ha = Hhb = Hb, again since H is a
subgroup. O
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While one may be tempted to define a coset with a subset of G which is not
a subgroup, we see that the above characterization really relies on the fact that
H is actually a subgroup.

Example 1.9. It is thus no surprise that in the above example we have 0+ H =
2+ H and 1+ H = 3+ H, since we have modulo 4 that 0 —2 =2 € H and
1-3=2€H.

Saying that two elements a,b € G generate the same coset is actually an
equivalence relation in the following sense. We say that a is equivalent to b
if and only if ab~! € H, and this relation satisfies the three properties of an
equivalence relation:

o reflexivity: aa" ! =1¢€ H.
o symmetry: if ab=! € H then (ab=!)"1 =ba"! € H.
e transitivity: if ab=! € H and be™! € H then (ab=!)(bc™!) = ac™! € H.

The equivalence class of a is the set of elements in G which are equivalent
to a, namely

{b, ab~t € H}.

Since ab™! € H <= (ab™')"! =ba~! € H <= b € Ha, we further have that
{b, ab™' € H} = Ha,
and a coset is actually an equivalence class.

Example 1.10. Let us get back to our example with the group Z, = {0, 1, 2,3}
and its subgroup H = {0,2}. We compute the first coset 0 + H = H, and thus
we now know that the equivalence class of 0 is H, and thus there is no need to
compute the coset generated by 2, since it will give the same coset. We then
compute the coset 1 + H = {1,3} and again there is no need to compute the
one of 3 since it is already in the coset of 1. We thus get 2 cosets, and clearly
they partition Z4:

Zy={0,2}U{1,3} = HU(1+ H).

It is important to notice that the right (resp. left) cosets partition the group
G (that the union of all cosets is G is clear since we run through all elements
of G and H contains 1, and it is easy to see that if € Ha and = € Hb then
Ha = Hb).

Example 1.11. Consider R as an additive group with subgroup Z. Every real
number up to addition by an integer looks like a number in [0,1). Thus

R = Up<z<1(z + Z),

and the cosets of Z partition R.
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Furthermore, since the map h — ha, h € H, is a one-to-one correspondence,
each coset has |H| elements.

Definition 1.9. The index of a subgroup H in G is the number of right (left)
cosets. It is a positive number or co and is denoted by [G : H].

If we think of a group G as being partitioned by cosets of a subgroup H,
then the index of H tells how many times we have to translate H to cover the
whole group.

Let us get convinced that the number of left cosets is equal to the number
of right cosets. In order to do that, we will show that the map ¢ such that
#(gH) = Hg~ " is a bijection.

But before doing even that, we need to show that ¢ is well-defined, a concept
which is important to understand when dealing with cosets. That ¢ is well-
defined means that it does not depend on the choice of the coset representative,
which means that if aH = bH, either a or b are valid coset representatives,
and it does not matter whether we choose a or b, when we apply ¢, we get the
same result. Thus we have to prove that if aH = bH, then ¢(aH) = ¢(bH),
that is Ha~! = Hb~!. But we know how to characterize coset equality: aH =
bH < a b€ Hand Ha™' = Hb™! < a '(b7')"' =a'be H. So we
are safe and ¢ is well-defined.

Now we can proceed to show that ¢ is a bijection. To show it is injective,
suppose that ¢(aH) = ¢(bH), and we need to prove that aH = bH, or equiva-
lently a=*b € H. Then Ha=! = Hb=! and since 1 € H, a=' = hb=! for h € H
and a~'b € H as needed. To show that ¢ is surjective, we take a right coset
Ha, and we need to show there is a left coset that is mapped to it. So take the
left coset a1 H.

Example 1.12. In Example 1.11, the index [R : Z] is infinite, since there are
infinitely many cosets of Z in R.

Theorem 1.2. (Lagrange’s Theorem). If H is a subgroup of G, then |G| =
|H||G : H]|. In particular, if G is finite then |H| divides |G| and [G : H| =
GI/|H].

Proof. Let us start by recalling that the left cosets of H forms a partition of G,
that is

G = UgH,

where g runs through a set of representatives (one for each coset). Let us look
at the cardinality of G:

G| =|ugH| = |gH]|

since we have a disjoint union of cosets, and the sum is again over the set of

representatives. Now
> lgH| = |H|
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Figure 1.3: Joseph-Louis Lagrange (1736-1813)

since we have already noted that each coset contains |H| elements. We then
conclude that

Gl=)_|H| =[G : H]|H|.

Example 1.13. Consider G = Z, H = 3Z, then [G : H| = 3.

Of course, Lagrange did not prove Lagrange’s theorem! The modern way
of defining groups did not exist yet at his time. Lagrange was interested in
polynomial equations, and in understanding the existence and nature of the
roots (does every equation has a root? how many roots?...). What he actually
proved was that if a polynomial in n variables has its variables permuted in
all n! ways, the number of different polynomials that are obtained is always a
factor of n!. Since all the permutations of n elements are actually a group, the
number of such polynomials is actually the index in the group of permutations
of n elements of the subgroup H of permutations which preserve the polynomial.
So the size of H divides n!, which is exactly the number of all permutations of
n elements. This is indeed a particular case of what we call now Lagrange’s
Theorem.

Corollary 1.3. 1. Let G be a finite group. If a € G, then |a| divides |G|. In
particular, alGl = 1.

2. If G has prime order, then G is cyclic.

Proof. 1. If a € G has order say m, then the subgroup H = {1,a,...,a™ 1}
is a cyclic subgroup of G with order |H| = m. Thus m divides |G| by the
theorem.
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G| G
1 {1}
2 Co
3 Cs
4 047 CQ X CQ
5 Cs

Table 1.1: Groups of order from 1 to 5. (), denotes the cyclic group of order n.

2. Since |G| is prime, we may take a # 1 in G, and since the order of a has
to divide |G|, we have |a|] = |G|. Thus the cyclic group generated by a
coincides with G.

O

Example 1.14. Using Lagrange’s Theorem and its corollaries, we can already
determine the groups of order from 1 to 5, up to isomorphism (see Table 1.1).
If |G| is prime, we now know that G is cyclic.

Let us look at the case where G is of order 4. Let ¢ € G. We know that
the order of g is either 1,2 or 4. If the order of g is 1, this is the identity. If G
contains an element g of order 4, then that means that g generates the whole
group, thus G is cyclic. If now G does not contain an element of order 4, then
apart the identity, all the elements have order 2. From there, it is easy to obtain
a multiplication table for G, and see that it coincides with the one of the group

Z2 XZ2 = {(l‘,y) | xvyEZQ}

with binary operation (z,y)+ (¢/,y") = (x +2',y+y'). This group is called the
Klein group, and it has several interpretations, the one we already encountered
earlier is the group of isometries fixing a rectangle. We will discuss more this
idea of building new groups from known ones using the operation x in the
section on direct products.

Remark. The above example also shows that the converse of Lagrange’s Theo-
rem is not true. If we take the group G = Cy x Cs, then 4 divides the order of
G, however there is no element of order 4 in G.

Once Lagrange’s Theorem and its corollaries are proven, we can easily deduce
Euler’s and Fermat’s Theorem.

Theorem 1.4. (Euler’s Theorem). If a and n are relatively prime positive
integers, with n > 2, then

a?™ =1 mod n.

Proof. Since a and n are relatively prime, then by Bezout identity, there exist
r, s such that 1 = ar+ns and thus ar = 1 modulo n and a has an inverse modulo
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n. Now the group of invertible elements modulo n has order ¢(n), where the
Euler function ¢(n) by definition counts the number of positive integers less
than n that are relatively prime to n. Thus

a?™ =1 mod n
by Lagrange’s Theorem first corollary. O

Corollary 1.5. (Fermat’s Little Theorem). If p is a prime and a is a
positive integer not divisible by p, then

a*'=1 mod p.

This is particular case of Euler’s Theorem when n is a prime, since then
p(n)=p—1.

1.3 Normal subgroups and quotient group

Given a group G and a subgroup H, we have seen how to define the cosets of H,
and thanks to Lagrange’s Theorem, we already know that the number of cosets
[G : H] is related to the order of H and G by |G| = |H|[G : H|. A priori, the
set of cosets of H has no structure. We are now interested in a criterion on H
to give the set of its cosets a structure of group.

In what follows, we may write H < G for H is a subgroup of G.

Definition 1.10. Let G be a group and H < G. We say that H is a normal
subgroup of G, or that H is normal in G, if we have

cHe™ ' =H, forall c € G.

We denote it H <G, or H < G when we want to emphasize that H is a proper
subgroup of G.

The condition for a subgroup to be normal can be stated in many slightly
different ways.

Lemma 1.6. Let H < G. The following are equivalent:
1. cHc ' C H for allc € G.
2. cHe ! = H for all c € G, that is cH = Hc for all c € G.

3. Every left coset of H in G is also a right coset (and vice-versa, every right
coset of H in G is also a left coset).

Proof. Clearly 2. implies 1., now cHc™! C H for all ¢ € G if and only if
cH C He. Let © € He, that is x = hc for some h € H, so that

x = (cc V)he = c(c  he) = ch’



1.3. NORMAL SUBGROUPS AND QUOTIENT GROUP 15

for some h/ € H since cHc™' C H for all ¢ and thus in particular for ¢~*. This
shows that Hc is included in cH or equivalently that H C cHc™!.

Also 2. clearly implies 3. Now suppose that cH = Hd. This means that ¢
belongs to ¢H by definition of subgroup (H contains 1), thus ¢ belongs to Hd
by assumption (that cH = Hd), so cd~' € H and so does its inverse de~!. This
implies that cH = Hd(c"'c) = He. O

Example 1.15. Let GL,(R) be the group of n x n real invertible matrices, and
let SL,,(R) be the subgroup formed by matrices whose determinant is 1. Let us
see that SL,(R) < GL,(R).

For that, we have to check that ABA™! € SL,(R) for all B € SL,(R) and
A € GL,(R). This is clearly true since

det(ABA™!) = det(B) = 1.
Proposition 1.7. If H is normal in G, then the cosets of H form a group.

Proof. Let us first define a binary operation on the cosets: (aH,bH) — (aH)(bH)
{(ah)(bK'), ah € aH, bh' € bH}. We need to check that the definition of group
is satisfied.

e closure. This is the part which asks a little bit of work. Since cH = Hc
for all ¢ € G, then

(aH)(bH) = a(Hb)H = a(bH)H = abHH = abH.

Note that this product does not depend on the choice of representatives.
Suppose indeed that aH = o’ H and bH = 'H. Then (o’H)(b'H) = o'VVH
and for things to be well-defined, we need to have a’b'H = abH. Since
a' € aH,V € bH, write a’ = ahy,b’ = bhs and it is enough to show that
ah1bhy = abhg for some hs € H, or equivalently that hi1b = bh, for some
hy € H, which is true since H is normal in G.

e Associativity comes from G being associative.
e The identity is given by the coset 1H = H.
e The inverse of the coset aH is a = H.
O

Definition 1.11. The group of cosets of a normal subgroup N of G is called
the quotient group of G by N. It is denoted by G/N.

Let us finish this section by discussing some connection between normal
subgroups and homomorphisms. The first normal subgroup of interest will be
the kernel of a group homomorphism.

Recall that if f : G — H is a group homomorphism, the kernel of f is defined
by

Ker(f) ={a € G, f(a) =1}.
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It is easy to see that Ker(f) is a normal subgroup of G. It is a subgroup of G:
take a,b € Ker(f). Then to see that ab=! € Ker(f), we just need to compute
flab™) = f(a)f(b)~! =1 and ab~! € Ker(f) which is thus a subgroup of G.
It is normal since

flaba™") = f(a)f(0)f(a)™" = fla)f(a)™' =1
for all b € Ker(f) and all a € G.
Definition 1.12. Let N < G. The group homomorphism
7:G— G/N, ar— aN
is called the natural or canonical map or projection.

Recall for further usage that for f a group homomorphism, we have the
following characterization of injectivity: a homomorphism f is injective if and
only if its kernel is trivial (that is, contains only the identity element). Indeed,
suppose that f is injective. Since f is a homomorphism, then f(1) = 1. If
b € Ker(f) = {a, f(a) = 1}, it must be that f(b) = 1 = f(1) but since f is
injective b = 1 and Ker(f) = {1}. Conversely, if Ker(f) = {1} and we assume
that f(a) = f(b), then

flab™") = f(a)f(0)~" = fla)f(a)~" =1
and ab~! = 1 implying that a = b and thus f is injective.
Terminology.
monomorphism=injective homomorphism
epimorphism=surjective homomorphism
isomorphism=nbijective homomorphism
endomorphism=homomorphism of a group to itself

automorphism=isomorphism of a group with itself

1.4 The isomorphism theorems

This section presents different isomorphism theorems which are important tools
for proving further results. The first isomorphism theorem, that will be the
second theorem to be proven after the factor theorem, is easier to motivate,
since it will help us in computing quotient groups.

But let us first start with the so-called factor theorem. Assume that we
have a group G which contains a normal subgroup N, another group H, and
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f + G — H a group homomorphism. Let 7 be the canonical projection (see
Definition 1.12) from G to the quotient group G/N:

¢ 1. m

| 7

G/N

We would like to find a homomorphism f : G/N — H that makes the diagram
commute, namely

fla) = f(n(a))
for all a € G.

Theorem 1.8. (Factor Theorem). Any homomorphism f whose kernel K
contains N can be factored through G/J\[ In other words, there is a unique
homomorphism f : G/N — H such that f om = f. Furthermore

1. f is an epimorphism if and only if f is.
2. f is a monomorphism if and only if K = N.
3. f is an isomorphism if and only if f is an epimorphism and K = N.

Proof. Unicity. Let us start by proving that if there exists f such that for = f,
then it is unique. Let f be another homomorphism such that fom = f. We
thus have that

(fom)(a) = (fom)(a) = f(a)
for all a € G, that is

f(aN) = f(aN) = f(a).
This tells us that for all bN € G//N for which there exists an element b in G
such that m(b) = bNV, then its image by either f or f is determined by f(b).
This shows that f = f by surjectivity of .
Existence. Let aN € G/N such that w(a) = aN for a € G. We define

f(aN) = f(a).

This is the most natural way to do it, however, we need to make sure that this
is indeed well-defined, in the sense that it should not depend on the choice of
the representative taken in the coset. Let us thus take another representative,
say b € aN. Since a and b are in the same coset, they satisfy a='b € N C K,
where K = Ker(f) by assumption. Since a='b € K, we have f(a~'b) = 1 and
thus f(a) = f(b).

Now that f is well defined, let us check this is indeed a group homomorphism.
First note that G/N is indeed a group since N < G. Then, we have

f(aNbN) = f(abN) = f(ab) = f(a) f(b) = f(aN)F(bN)

and f is a homomorphism.
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1. The fact that f is an epimorphism if and only if f is comes from the fact
that both maps have the same image.

2. First note that the statement f is a monomorphism if and only if K = N
makes sense since K = Ker(f) is indeed a normal subgroup, as proved
earlier.

To show that f is a monomorphism is equivalent to show that Ker(f) is
trivial. By definition, we have

Ker(f) = {aN € G/N, f(aN)=1}

= {aN €G/N, f(r(a)) = f(a) =1}
{aN € G/N, a € K =Ker(f)}.

So the kernel of f is exactly those cosets of the form aN with a € K, but
for the kernel to be trivial, we need it to be equal to N, that is we need
K=N.

3. This is just a combination of the first two parts.

We are now ready to state the first isomorphism theorem.

Theorem 1.9. (1st Isomorphism Theorem). If f: G — H is a homomor-
phism with kernel K, then the image of f is isomorphic to G/K :

Im(f) ~ G/Ker(f).
Proof. We know from the Factor Theorem that
f:G/Ker(f) - H

is an isomorphism if and only if f is an epimorphism, and clearly f is an epi-
morphism on its image, which concludes the proof. O

Example 1.16. We have seen in Example 1.15 that SL,(R) < GL,(R). Con-
sider the map
det : GLn(R) — (R*, "),

which is a group homomorphism. We have that Ker(det) = SL,(R). The 1st
Isomorphism Theorem tells that

Im(det) ~ GL,(R)/SL,(R).

It is clear that det is surjective, since for all a € R*, one can take the diagonal
matrix with all entries at 1, but one which is a. Thus we conclude that

R* ~ GL,(R)/SL,(R).

Let us state the second and third isomorphism theorem.
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Theorem 1.10. (2nd Isomorphism Theorem). If H and N are subgroups

of G,

with N normal in G, then

H/(HNN)~ HN/N.

There are many things to discuss about the statement of this theorem.

First we need to check that HN is indeed a subgroup of GG. To show that,
notice that HN = NH since N is a normal subgroup of G. This implies
that for hn € HN, its inverse (hn)~! = n~th~! € G actually lives in HN,
and so does the product (hn)(h'n") = h(nh')n'.

Note that by writing HN/N, we insist on the fact that there is no reason
for N to be a subgroup of H. On the other hand, N is a normal subgroup
of HN, since for all hn € HN, we have

hnNn 'h~'=hNR'C N
since N is normal in G.

We now know that the right hand side of the isomorphism is a quotient
group. In order to see that so is the left hand side, we need to show that
H N N is a normal subgroup of H. This comes by noticing that H N N is
the kernel of the map ¢ : H — HN/N such that ¢(h) = hN. We repeat
that N is a subgroup of HN, not necessarily of H. Then ker(¢) = {h €
H, ¢(h)y=1}={he H, hN=N}={he H, he N} =HNN.

Now that all these remarks have been done, it is not difficult to see that the
2nd Isomorphism Theorem follows from the 1st Isomorphism Theorem. The
map ¢ : H — HN/N such that ¢(h) = AN is a group homomorphism: ¢(hh') =
hh/N = (hN)(W'N) = ¢(h)p(h') whose kernel is HN K. So the 1st Isomorphism
Theorem tells us that Im(¢) ~ H/(H N N). We just need to then show that ¢
is surjective. So consider the coset hnN € HN/N. Since hnN = hN = ¢(h), ¢
is surjective and the theorem is proven.

Example 1.17. Let G be the group Z of integers with addition, let H =
aZ = {...,—2a,a,—0,a,2a,...} and N = bZ = {...,—2b,b,—0,b,2b,...} be
two cyclic subgroups of G, for a, b positive integers. Both are normal subgroups

since

G is abelian. We have
HNN={geG, g=ma=m'b, m,m' € Z} =lem(a,b)Z.

Also (in additive notation)

H+N ={g € G, g = ma+m'b = gcd(a, b)(ma’+m'b"), m,m’ € Z} = ged(a, b)Z.

Thus

H/(HNN) =aZ/lem(a,b)Z ~ H + N/N = gcd(a, b)Z/VZ.

This proves

aZ/lem(a,b)Z ~ ged(a, b)Z/VZ.

In particular we recover the known fact that a - b = lem(a, b) ged(a, b).
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Theorem 1.11. (3rd Isomorphism Theorem). If N and H are normal
subgroups of G, with N contained in H, then

G/H ~ (G/N)/(H/N).
The proof is given in Exercise 19.

Example 1.18. We have

(Z/12Z)/(62,/12Z) ~ 7./6Z.

1.5 Direct and semi-direct products

So far, we have seen how given a group G, we can get smaller groups, such as
subgroups of G or quotient groups. We will now do the other way round, that
is, starting with a collection of groups, we want to build larger new groups.

Let us start with two groups H and K, and let G = H x K be the cartesian
product of H and K, that is

G={(h,k), he H, ke K}.

We define a binary operation on this set by doing componentwise multiplication
(or addition if the binary operations of H and K are denoted additively) on G:

(hl,kl)(hQ,kg) = (hlhg,klkg) c H x K.

Clearly G is closed under multiplication, its operation is associative (since both
operations on H and K are), it has an identity element given by 1¢ = (1g,1k)
and the inverse of (h,k) is (h=1,k71). In summary, G is a group.

Definition 1.13. Let H, K be two groups. The group G = H x K with binary
operation defined componentwise as described above is called the external direct
product of H and K.

Examples 1.19. 1. Let Zy be the group of integers modulo 2. We can
build a direct product of Zs with itself, namely Zs x Zo with additive law
componentwise. This is actually the Klein group, also written Cy x Cs.
This group is not isomorphic to Z,!

2. Let Zs be the group of integers modulo 2, and Z3 be the group of integers
modulo 3. We can build a direct product of Zy and Zs, namely Zo x Z3
with additive law componentwise. This group is actually isomorphic to
Zg!

3. The group (R, +)x (R, +) with componentwise addition is a direct product.

Note that G contains isomorphic copies H and K of respectively H and K,
given by ~ B
H={(h,1k), he H}, K ={(1n,k), k € K},
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which furthermore are normal subgroups of G. Let us for example see that H
is normal in G. By definition, we need to check that

(h,k)H(h™ ', k=Y C H, (h,k) €G.
Let (h/,1x) € H, we compute that
(h, k)W, 1) (Rt k™) = (R~ 1) € H,

since hh'h~! € H. The same computation holds for K.
If we gather what we know about G, H and K, we get that

e by definition, G = HK and HN K = {15},
e by what we have just proved, H and K are two normal subgroups of G.
This motivates the following definition.

Definition 1.14. If a group G contains normal subgroups H and K such that
G = HK and HNK = {l1¢}, we say that G is the internal direct product of H
and K.

Examples 1.20. 1. Consider the Klein group Zs X Zo, it contains the two
subgroups H = {(h,0), h € Zs} and K = {(0,k), k € Zz}. We have that
both H and K are normal, because the Klein group is commutative. We
also have that H N K = {(0,0)}, and that HK = {(h,0) + (0, k), h,k €
Zs} = {(h,k), h,k € Zs} = Zy X Z2 so the Klein group is indeed an
internal direct product. On the other hand, Z4 only contains as subgroup
H ={0,2}, so it is not an internal direct product!

2. Consider the group Zs x Zs, it contains the two subgroups H = {(h,0), h €
Zs} and K = {(0,k), k € Z3}. We have that both H and K are normal,
because the group is commutative. We also have that H N K = {(0,0)},
and that HK = {(h,0) + (0,k), h € Zs, k € Zs} = {(h, k), h € Zs, k €
Z3} = Zy X Zsg so this group is indeed an internal direct product. Also Zg
contains the two subgroups H = {0,3} ~ Zs and K = {0,2,4} ~ Z3. We
have that both H and K are normal, because the group is commutative.
We also have that H N K = {0}, and that HK = {h+k, h € H, k €
K} = Zg so this group is indeed an internal direct product, namely the
internal product of Zs and Zg. This is in fact showing that Zg ~ Zs X Z3.

The next result makes explicit the connection between internal and external
products.

Proposition 1.12. If G is the internal direct product of H and K, then G is
isomorphic to the external direct product H x K.

Proof. To show that G is isomorphic to H x K, we define the following map

f:HxK— G, f(hk)=hk.
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First remark that if h € H and k € K, then hk = kh. Indeed, we have using
that both K and H are normal that

(hkh™Yk™ € K, h(kh™*k~Y) € H

implying that
hkh~'k~' e KN H = {1}.

We are now ready to prove that f is a group isomorphism.

1. This is a group homomorphism since

F((h, kYW, E)) = f(RW kE') = h(W'k)K = h(kh)K' = f(h, k) f(R' K.

2. The map f is injective. This can be seen by checking that its kernel is
trivial. Indeed, if f(h,k) =1 then

hk=1=h=k"'=hecK=hcHNK = {1}.
We have then that h = k = 1 which proves that the kernel is {(1,1)}.

3. The map f is surjective since by definition G = HK.

O

Note that the definitions of external and internal product are surely not re-

stricted to two groups. One can in general define them for n groups Hy, ..., H,.
Namely

Definition 1.15. If Hy,..., H, are arbitrary groups, the external direct prod-
uct of Hy, ..., H, is the cartesian product

G:H1XH2><'”XHn

with componentwise multiplication.

If G contains normal subgroups Hi,..., H, such that G = H;--- H, and
each g can be represented as hj - - h,, uniquely, we say that G is the internal
direct product of Hy,..., H,.

We can see a slight difference in the definition of internal product, since
in the case of two subgroups, the condition given was not that each g can
be represented uniquely as hjhg, but instead that the intersection of the two
subgroups is {1}, from which the unique representation is derived (see Exercise
20).

Let us get back to the case of two groups. We have seen above that we can
endow the cartesian product of two groups H and K with a group structure by
considering componentwise binary operation

(h1,k1)(h2, k2) = (hiho, k1ko) € H x K.
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The choice of this binary operation of course determines the structure of G =
H x K, and in particular we have seen that the isomorphic copies of H and
K in G are normal subgroups. Conversely in order to define an internal direct
product, we need to assume that we have two normal subgroups.

We now consider a more general setting, where the subgroup K does not
have to be normal (and will not be in general), for which we need to define a
new binary operation on the cartesian product H x K. This will lead us to the
definition of internal and external semi-direct product.

Recall that an automorphism of a group H is a bijective group homomor-
phism from H to H. It is easy to see that the set of automorphisms of H forms a
group with respect to the composition of maps and identity element the identity
map Idy. We denote it by Aut(H).

Proposition 1.13. Let H and K be groups, and let
p: K — Auwt(H), k— pg
be a group homomorphism. Then the binary operation
(Hx K)x (HxK)— (HxK), ((hk),(W,k"))— (hpx(h'), k")
endows H x K with a group structure, with identity element (1,1).

Proof. First notice that the closure property is satisfied.
(Identity). Let us show that (1,1) is the identity element. We have

(h7 k)(lv 1) = (hpk(l)’ k) = (h’ k)

for all h € H, k € K, since py, is a group homomorphism. We also have

(LK) = (pa(R), K') = (W, k)

for all B’ € H, k' € K, since p being a group homomorphism, it maps 1x to
Lau(r) = ldg.

(Inverse). Let (h,k) € H x K and let us show that (p;'(h™'),k™1) is the
inverse of (h, k). We have

(R, k) (o (R 1), k™) = (how(py (1), 1) = (R 1) = (1,1).
We also have

(plzl(h_l)vk_l)(hvk) = (Pil(h )pk 1(h )’1)
= (pr-1(h"Ypr-1(h), 1)

using that p,?l = pp—1 since p is a group homomorphism. Now

(P (R )i (), 1) = (pi1 (R R), 1) = (p2(1),1) = (1,1)

using that py-1 is a group homomorphism for all k € K.
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Associativity. This is the last thing to check. On the one hand, we have

[(h, k)(h/v k/)](h//» k”) = (hpy (h/), kk/)(h//» k//)
= (hpr(h)prr (R"), (KK E"),

while on the other hand

(h, (W', KR K] = (b, B) (R pier (R7), K'E")
= (hp (W pre (W), E(K'E")).

Since K is a group, we have (kk")k” = k(E'k"). We now look at the first
component. Note that pgr = pg o prr using that p is a group homomorphism,
so that

hpr(R') prir (B") = hpi(h) pic (prr (B")).

Furthermore, py is a group homomorphism, yielding

hpk(B)pr(prr (B)) = hpr (W prr (R))

which concludes the proof. O

We are now ready to define the first semi-direct product.

Definition 1.16. Let H and K be two groups, and let
p: K — Aut(H)
be a group homomorphism. The set H x K endowed with the binary operation
((h, k), (W', K1) = (hpr(h'), k')

is a group G called an external semi-direct product of H and K by p, denoted
by G=H x, K.

Example 1.21. Let us consider the group Z, of integers modulo 2. Suppose
we want to compute the semi-direct product of Zo with itself, then we need to
first determine Aut(Zz). Since an automorphism of Zs must send 0 to 0, it has
no other choice than send 1 to 1, and thus Aut(Zs) is only the identity map Id.
Since Id = p(a+b) = p(a)op(b) = Id for a,b € Zs, p is a group homomorphism
and we get the direct product of Zy with itself, not a semi-direct product. To
have a bigger automorphism group, let us consider H = Zs. In that case, apart
the identity map, we also have the map x ~ 2~!, that is 0 +— 0, 1+ 2, 2+ 1.
Thus p(0) = pg is the identity, p(1) = p; is the inverse map, p is indeed a group
homomorphism since it sends the element of order 2 in K to the element of order
2 in Aut(Zy) and we can form the external semi-direct product G = Zs x, Zs.

In fact, this example holds for Z,,, n > 3.
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Example 1.22. Let H = Z,, be the group of integers mod n, K = Zs be the
group of integers mod 2, and let p : K — Aut(H) be the homomorphism that
sends 0 to the identity, and 1 to the inverse map of H, given by x — z~!, which
is indeed a group homomorphism of H since H is abelian. Since the subgroup
of Aut(H) generated by the inverse map is of order 2, it is isomorphic to K.
We can thus define the external semi-direct product G = Z,, x, Zs. Note that
Aut(H) ~ ZZ, this is because an automorphism f of H = Z,, must send 0 to 0,
but since H = (1), it is enough to decide where 1 is sent to completely determine
f, since by definition of group homomorphism, f(m) = mf(1). Now f(1) can
be any element of order n, and for an element m to be of order n, m must be
coprime to n.

We can make observations similar to what we did for direct products. Namely,
we can identify two isomorphic copies H and K of respectively H and K, given
by

H={(h1g), he H}Y, K ={(1g,k), k€ K},
and look at the properties of these subgroups.

e The subgroup H = {(h,1), h € H} is normal in H x, K. Indeed, we have
that to see that (h, k)H (p;, " (h=1),k~1) € H. So (h,k)(h',1)(p;, " (h™1), k1) =
(hor(W), k) (p ' (h1), k=) = (hpe(h/)h ™1, 1) which belongs to H as de-
sired. The same calculation does not work for K. We have that

(h, k)1, K (o (™), k™1) = (how(1), kK" (o3 (h™1), k71 = (hpr (L) pwr i (RH), kKK T).

Since p is a group homomorphism which maps 1 to 1, we have that
hpi (1) prar oy H(h™Y) = hprrrp (K1) but we still cannot conclude it is 1
(apart of course in the particular case where py, is the identity map for all
k, but then, we have a direct product, for which we already know that K
is normal in H x K).

e We have HK = H x, K, since every element (h,k) € H x, K can be
written as (h,1)(1, k) (indeed (h,1)(1,k) = (hp1(1),k) = (h,k)).

e We have HN K = {15}.
This motivates the definition of internal semi-direct products.

Definition 1.17. Let G be a group with subgroups H and K. We say that G
is the internal semi-direct product of H and K if H is a normal subgroup of G,
such that HK = G and H N K = {1¢}. It is denoted by

G=HxK.

Example 1.23. The dihedral group D,, is the group of all reflections and ro-
tations of a regular polygon with n vertices centered at the origin. It has order
2n. Let a be a rotation of angle 27 /n and let b be a reflection. We have that

D,={a'V,0<i<n-—1, j =01},
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with
a” =b* = (ba)? = 1.

We thus have that (a) = C), and (b) = Cy, where C,, denotes the cyclic group
of order n.

The geometric interpretation of D,, as symmetries of a regular polygon with
n vertices holds for n > 3, however, note that when n = 2, we can still look
at the relations defined above: we then have a? = b = (ba)? = 1, thus Dy
contains only 4 elements, the identity and 3 elements of order 2, showing that
it is isomorphic to the Klein group Cy x Cs.

To prove, for n > 3, that

Dn:C’n NCQ,

we are left to check that (a)N(b) = {1} and that (a) is normal in D,,. The former
can be seen geometrically (a reflection cannot be obtained by possibly successive
rotations of angle 27 /n, n > 3). For the latter, the fastest way is to use the fact
that a subgroup of index 2 is normal (see Exercise 12). Alternatively, we can
do it by hand: we first show that

bab~! € (a),

which can be easily checked, since (ba)? = baba = 1, thus bab = a~' = bab™*
using that b = 1. This also shows that ba = a~'b from which we have:

ba*b™ = baab™ = a"(bab™!) € (a),

similarly
ba*b™ = baa’b ! = a7 (ba*b™ ) € (a).

Again similarly to the case of direct products, these assumptions guarantee
that we can write uniquely elements of the internal semi-direct product. Let us
repeat things explicitly.

The internal and external direct products were two sides of the same objects,
so are the internal and external semi-direct products. If G = H x, K is the
external semi-direct product of H and K, then H = H x {1} is a normal
subgroup of G and it is clear that G is the internal semi-direct product of
H x {1} and {1} x K. This reasoning allows us to go from external to internal
semi-direct products. The result below goes in the other direction, from internal
to external semi-direct products.

Proposition 1.14. Suppose that G is a group with subgroups H and K, and
G is the internal semi-direct product of H and K. Then G ~ H x, K where
p: K — Aut(H) is given by pp(h) = khk™', k€ K, h € H.

Proof. Note that py belongs to Aut(H) since H is normal.
By Exercise 20, every element g of G can be written uniquely in the form
hk, with h € H and k € K. Therefore, the map

¢:Hx,K—G, ¢o(h,k)=hk
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is a bijection. It only remains to show that this bijection is a homomorphism.
Given (h,k) and (R, k") in H x, K, we have

e((h, k)W k) = o((hpr(h'), kk')) = o(hkh k™" kK') = hkR'K = o(h, k)p(h', k).
Therefore ¢ is a group isomorphism, which concludes the proof. O

In words, we have that every internal semi-direct product is isomorphic to
some external semi-direct product, where p is the conjugation.

Example 1.24. Consider the dihedral group D,, from the previous example:
Dn ~ Cn X CQ.

According to the above proposition, D, is isomorphic to an external semi-direct
product
D, ~ Cn Xp 02,

where
p: Cy — Aut(C,),

maps to the conjugation in Aut(C,,). We have explicitly that
1 p1=1d¢g,, b py, pola) =bab™ ' =a™t,

since (ba)? = baba = 1 = bab = a~! = bab~! = a~!. Similarly, since ba = a~'b,
ba’a = baab = a~'bab = a~2. In fact, we are back to Example 1.22!

Before finishing this section, note the following distinction: the external
(semi-)direct product of groups allows to construct new groups starting from
different abstract groups, while the internal (semi-)direct product helps in ana-
lyzing the structure of a given group.

Example 1.25. Thanks to the new structures we have seen in this section,
we can go on our investigation of groups of small orders. We can get two new
groups of order 6 and 4 of order 8:

e (3 x (Y5 is the direct product of C'5 and Cs. You may want to check that
it is actually isomorphic to Cg.

e The dihedral group D3 = C3 x Cs is the semi-direct product of C3 and
Cs. We get similarly Dy = Cy x Cs.

e The direct product Cy x Cy and the direct product of the Klein group
CQ X CQ with CQ.

The table actually gives an exact classification of groups of small order (ex-
cept the missing non-abelian quaternion group of order 8), though we have not
proven it. The reason why the quaternion group of order 8 is missing is exactly
because it cannot be written as a semi-direct product of smaller groups (see
Exercises).
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G abelian G non-abelian

{1} -
Cs

Cs -

04, CQ X CQ -

Cs -
CGZCSXCQ D3:C3><]CQ

Cr -
Cg,C4XCQ,CQXCQXCQ D4:C4>402

(O IR - NS, BN JUR \CRTS e

Table 1.2: C,, denotes the cyclic group of order n, D,, the dihedral group

1.6 Group action

Since we introduced the definition of group as a set with a binary operation
which is closed, we have been computing things internally, that is inside a group
structure. This was the case even when considering cartesian products of groups,
where the first thing we did was to endow this set with a group structure.

In this section, we wonder what happens if we have a group and a set, which
may or may not have a group structure. We will define a group action, that is a
way to do computations with two objects, one with a group law, not the other
one.

Definition 1.18. The group G acts on the set X if for all g € G, there is a
map
GxX—=X, (gx) —»g-z

such that
1. h-(g-x) = (hg) -z for all g,h € G, for all z € X.
2. 1-z=xzforall z € X.

The first condition says that we have two laws, the group law between ele-
ments of the group, and the action of the group on the set, which are compatible.

Examples 1.26. Let us consider two examples where a group G acts on itself.

1. Every group acts on itself by left multiplication. This is called the regular
action.

2. Every group acts on itself by conjugation. Let us write this action as

g-xz=gzg "

Let us check the action is actually well defined. First, we have that
h-(g-2)=h-(gzg~") = hgag™'h™" = (hg)zg™'h™" = (hg) - z.
As for the identity, we get

1-z=1z1"' =z
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Similarly to the notion of kernel for a homomorphism, we can define the
kernel of an action.

Definition 1.19. The kernel of an action G x X — X, (g,z) — ¢ - x is given
by

Ker={g€ G, g-x=ua for all z}.
This is the set of elements of G that fix everything in X. When the group G
acts on itself, that is X = G and the action is the conjugation, we have

Ker={g € G, grg ' =z for all 2} = {g € G, gx = g for all z}.
This is called the center of G, denoted by Z(G).

Definition 1.20. Suppose that a group G acts on a set X. The orbit Orb(x)
of x under the action of G is defined by

Orb(z) ={g -z, g € G}.

This means that we fix an element x € X, and then we let g act on x when g
runs through all the elements of G. By the definition of an action, g - x belongs
to X, so the orbit gives a subset of X.

It is important to notice that orbits partition X. Clearly, one has that
X = UyexOrb(z). But now, assume that one element x of X belongs to two
orbits Orb(y) and Orb(z), then it means that z = g-y = ¢’ - z, which in turn
implies, due to the fact that G is a group, that

y=9'9 -z z2=(9)""9v.

In words, that means that y belongs to the orbit of z, and vice-versa, z be-
longs to the orbit of y, and thus Orb(y) = Orb(z). We can then pick a set of
representatives for each orbit, and write that

X = UOrb(x),
where the disjoint union is taken over a set of representatives.

Definition 1.21. Suppose that a group G acts on a set X. We say that the
action is transitive, or that G acts transitively on X if there is only one orbit,
namely, for all z,y € X, there exists g € G such that g -z = y.

Definition 1.22. The stabilizer of an element x € X under the action of G is
defined by
Stab(zx) ={g € G, g -z =z}.

Given z, the stabilizer Stab(z) is the set of elements of G that leave x
fixed. One may check that this is a subgroup of G. We have to check that if
g,h € Stab(z), then gh~! € Stab(z). Now

(gh™')-x=g-(h" )
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by definition of action. Since h € Stab(x), we have h -z = = or equivalently
x=h"1 2, so that
g-(ht-a)=g z=uz,

which shows that Stab(z) is a subgroup of G.

Examples 1.27. 1. The regular action (see the previous example) is tran-
sitive, and for all z € X = G, we have Stab(z) = {1}, since z is invertible
and we can multiply g -z = x by 2~ L.
2. Let us consider the action by conjugation, which is again an action of G
on itself (X = G): g-x = grg~'. The action has no reason to be transitive
in general, and for all z € X = G, the orbit of z is given by

Orb(z) = {gzg™*, g € G}.

This is called the conjugacy class of z. Let us now consider the stabilizer
of an element z € X:

Stab(z) = {g € G, grg~' =} = {g € G, gz = zg},

which is the centralizer of z, that we denote by Cg(x). Note that we can
define similarly the centralizer C¢(S) where S is an arbitrary subset of
G as the set of elements of G which commute with everything in S. The
two extreme cases are: if S = {x}, we get the centralizer of one element,
if S =G, we get the center Z(G).

3. An (n, k)-necklace is an equivalence class of words of length n over an
alphabet of size k, where two words are considered equivalent if one is
obtained as a shift of the other (modulo n, that is for example GGRR =
RGGR = RRGG = GRRG). We represent these words as necklaces, that
is n beads, positioned as the vertices of a regular n-gon, each of the beads
can be of k colors. Counting (n,k)-necklaces thus means, given n and
k, to count how many orbits of X (the set of words of length n over an
alphabet of size k) under the action of C,. Suppose n = 4 and k = 2
as above. Let us try to count how many necklaces with 4 beads and two
colors there are. We have necklaces with a single color, these give us two
orbits, each orbit contains a single element.

Then we have necklaces with only one blue bead, and those with only
one green bead, and their respective rotations which are not counted as
different necklaces, that is we have two orbits, each containing 4 elements:
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Sa,

Then we have necklaces with exactly two beads of each color, which could
be contiguous or not. Thus we have 2 more orbits, the first one with 2
elements, the second one with 4 elements.

B3,

This gives us a total of 6 necklaces. We observe that the 2* words of length
4 over an alphabet of length 2 are partitioned into these 6 orbits.

Theorem 1.15. (The Orbit-Stabilizer Theorem). Suppose that a group
G acts on a set X. Let Orb(z) be the orbit of x € X, and let Stab(x) be the
stabilizer of x. Then the size of the orbit is the index of the stabilizer, that is

|Orb(z)| = [G : Stab(x)].

If G is finite, then
|Orb(z)| = |G]/|Stab(z)].

In particular, the size of an orbit divides the order of the group.

Proof. Fix x € X, consider Orb(z), the orbit of x, which contains the elements
g1 Ty...ygn-x for G ={g1,...,9n}. Look at g; - z, and gather all the g; -
such that g; - = g1 - x, and call A; the set that contains all the g;. Do the
same process with gs - « (assuming go is not already included in A;), to obtain
a set A,, and iterate until all elements of G are considered. This creates m sets
Ay, ..., Ay, which are in fact equivalence classes for the equivalence relation
~ defined on G by g ~h <= g¢g-x = h-x. We have m = |Orb(z)|, since
there is a distinct equivalence class for each distinct g - x in the orbit, and since

Ay, ..., Ay, partition G
Gl =) |Ail.
i=1

Now |A;| = |Stab(z)| for all 7. Indeed, fix ¢ and g € A;. Then
he A <= gar=hx < x=g 'ha < g 'hcStab(z) <= h € gStab(x).

This shows that |A;| = |gStab(z)| = |Stab(x)]|, the last equality being a conse-
quence of g being invertible.
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Thus

G

Gl = Y |4| = m|Stab()| = |Orb(x)||Stab(x)| = |Orb(x)| = e

i=1
O

Example 1.28. For n = 4 and k = 2, we considered the 4 rotations (by 7/2, 7,
37/2 and the identity, denoted by g, g%, g%, g* = 1). Then consider the ornament
x

on which we apply the 4 rotations starting from the identity, to get the
following orbit, formed of z, g - x, g°

QOO

Then Stab(x) is given by g% and g* = 1, and |Stab(z since
the orbit contalns only 2 distinct colorings.

The same example can be used to illustrate the proof of the Orbit-Stabilizer
Theorem. Let us look again at these 4 ornaments, given by z,g-x,¢°-x,¢> - x.
Since = and g2 -z give the same coloring, group 1, g into a set A1, and since g-x
and g3-x give the same coloring, group g, g® into a set As. Then |G| = |A1|+|Az].
We also see that A; is actually the stabilizer of x, and that A, is gStab(z), thus
|A1] = |Az| = |Stab(x)|, and the number of A; is the number of distinct colorings
in Orb(x), so |G| = 2|Stab(z)| = |Orb(x)||Stab(x)|.

x

Let G be a finite group. We consider again as action the conjugation (X =
G), given by: g-x = grg~!. Recall that orbits under this action are given by

Orb(z) = {gzg™*, g € G}.

Let us notice that = always is in its orbit Orb(z) (take g = 1). Thus if we have
an orbit of size 1, this means that

gx971 = < gr =229

and we get an element x in the center Z(G) of G. In words, elements that have
an orbit of size 1 under the action by conjugation are elements of the center.
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Recall that the orbits Orb(x) partition X:
X = UOrb(x)
where the disjoint union is over a set of representatives. We get
S [Orb()]

1Z(G)] + ) _ |Orb(x)|
1Z(G)|+ ) _[G : Stab(z)],

G

where the second equality comes by splitting the sum between orbits with 1
element and orbits with at least 2 elements, while the third follows from the
Orbit-Stabilizer Theorem. By remembering that Stab(z) = Cg(x) when the
action is the conjugation, we can alternatively write

Gl =12(A)| + Y _IG : Co(x)].

This formula is called the class equation.

Example 1.29. Consider the dihedral D4 of order 8, given by
Dy ={1,s,7m,7% 1% rs,r?s, s},

with s = 1, 74 = 1 and srs = r=1. We have that the center Z(Dy) of Dy is
{1,7%} (just check that 72s = sr?). There are three conjugacy classes given by

{r,r3}, {rs,r*s}, {s,rs}.

Thus
|Dy| = 8 = |Z(Dy)| + |Orb(r)| + |Orb(rs)| + |Orb(s)].

The following result has many names: Burnside’s lemma, Burnside’s count-
ing theorem, the Cauchy-Frobenius lemma or the orbit-counting theorem. This
result is not due to Burnside himself, who only quoted it. It is attributed to
Frobenius.

Theorem 1.16. (Orbit-Counting Theorem). Let the finite group G act on
the finite set X, and denote by X9 the set of elements of X that are fized by g,
that is X9 ={x € X, g-x =x}. Then

1
number of orbits = — Z | X9,
G| =2

that is the number of orbits is the average number of points left fixed by elements

of G.
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Proof. We have

DX = Hlgw) eGx X, g-x=u}|
geG
= ) [Stab(z)
rzeX
= Y |G|/|Orb(x)|

by the Orbit-Stabilizer Theorem. We go on:

> IG|/|0b(@)] = |G| Y 1/|0rb(x)

rzeX zeX

= |G| Z Z|

Be set of orbits z€B

= |G| > 1

Be set of orbits

which concludes the proof. Note that the second equality comes from the fact
that we can write X as a disjoint union of orbits. O

Example 1.30. Suppose we want to count (n,k)-necklaces, with n = 6 and
k = 2. The group action on X is Cj, it has a generator g, which in cycle notation
(g is understood as a permutation) is g = (1,2,3,4,5,6). Then

g> = (135)(246)

g° = (14)(25)(36)

g* = (153)(264)

g® = (165432)

q° (1)(2)(3)(4)(5)(6)

and we need to compute X9 for each 4, that is we want ornaments which
are invariant under rotation by ¢°. Now ¢ fixes only 2 words, BBBBBB and
GGGGGG, so | X9 = 2. Then g¢? fixes words with the same color in position
1,3,5 and in position 2,4,6, these are BBBBBB, GGGGGG, BGBGBG and
GBGBGB (yes, the last two are obtained by rotation of each other, but re-
member that there is also an average by the number of elements of the group
in the final formula), so |X9'| = 4. We observe in fact that within one cycle,
all the beads have to be of the same color, thus what matters is the number of
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cycles. Once this observation is made, we can easily compute:

g= (123456) |X9| = 2!
g2 = (135)(246) | X9 | = 22
= (14)(25)(36) |X7[=2
gt = (153)(264) | X9 | = 22
¢ = (165432) |X9°| = 2
P = (HRB)HG)6) X7 | =2

and we see that the number of necklaces is

1
6(2+22+23+22+2+26):14.

We can also check what we actually find 14 necklaces:
e BBBBBB and GGGGGG,
e GBBBBB and BGGGGG,

e GGBBBB, GBGBBB, GBBGBB, and the same pattern with reversed
colors, BBGGGG, BGBGGG, BGGBGG,

e GGGBBB, GGBGBB, GGBBGB, GBGBGB (note that the reversed
colors do not give anything new up to rotation).

The above example shows that the number k& of colors does not play a role
but for being the basis of the exponents, so for n = 6 beads in general, we have

g = (123456) | X9 =k
¢> = (135)(246) X9 | = k2
= (4)25)(36) |X7[=k
gt = (153)(264) 1X9"| = k2
g° = (165432) X9 | =k
P = (HRB)HE)6) X7 | =k

and we see that the number of necklaces is

1
G2k + 2k? + k3 + K°).

1.7 Classification of abelian groups

We have seen examples of small abelian groups: C),, for n some positive integer,
Cy x Oy, Cy x Uy x Cy, to name a few. We will in this section that actually
all abelian groups look like that. In other words, the classification theorem for
finite groups goes as follows:
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Theorem 1.17. Any finite abelian group is a direct product of cyclic subgroups
of prime-power order.

In the context of abelian groups, direct product is also sometimes referred
to as direct sum.

To see how the proof goes, we will need an abelian version of the so-called
Cauchy Theorem.

Theorem 1.18. If G is a finite abelian group, and p is a prime such that p||G|,
then G contains an element of order p.

The standard Cauchy Theorem does not need the assumption that G is
abelian.

Proof. Write |G| = n = pi'---p* for pi,...,py distinct primes, and define
P(n) =e1+...+ex. We will provide a proof by induction on P(n). If P(n) =1,
then G has prime order, therefore it is a cyclic group of order p, with generator
of order p, and we are done.

Suppose the statement true for groups H such that P(|H|) < P(n). Take

geG, g#0.

e If p divides |g|, then |g| = pm, for some m, and take g™ (we use the
multiplicative notation even though G is abelian). Then it has order p,
and we are done.

e If p does not divide |g|, set m = |g|, then (g) is a normal subgroup of G
(recall that G is abelian), of order m by definition, and P(|G/{g)|) < P(n).
Notice that p||G/{g)| = |G|/|{g)| since p divides |G| but not |g|. We can
thus use our induction hypothesis, and claim that there is an element h{g)
of order p in the quotient group G/{g). But then, p = |h{g)| divides ||
(see Exercise 34), and |h| = pl for some [, and we have found an element
of order p (take h').

O

Definition 1.23. Let p be a prime. The group G is said to be a p-group if the
order of each element of G is a power of p.

Examples 1.31. We have already encountered several 2-groups.

1. We have seen in Example 1.14 that the cyclic group Cy has elements of
order 1,2 and 4, while the direct product C5 x C3 has elements of order 1
and 2.

2. The dihedral group Dy is also a 2-group.

Corollary 1.19. A finite group is a p-group if and only if its order is a power
of p.
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Proof. If |G| = p™, then by Lagrange Theorem, for any g € G, its order divides
p", and thus is a power of p. Conversely, if |G| is not a power of p, then it has
some other prime factor ¢, so by Cauchy Theorem, G has an element of order
q, and thus is not a p-group. O

Note that we care only about abelian groups here, so we could state the
corollary for abelian groups, and use the version of Cauchy Theorem that we
have proven, though it does not hurt to state the corollary in general, which
assumes the general version of Cauchy Theorem, even though it has not been
proven here.

We are now able to give the proof of the classification of abelian groups
(based on an article by Navarro, Amer. Math Monthly, 2003).

Proof. Take an abelian group G of order n, and for any prime p that divides
|G|, define

Gy ={g. l9| =p"}, Gy ={g, p Nlg|}-

By Cauchy Theorem, G, is not trivial, and is a p-group. Now take g € G of
order p*m, with p which does not divide m. Then p*mg = 0 (recall that we use
the additive notation), that is (p¥g)m = 0 and p*g € G, while p*(mg) = 0 and
mg € Gp. Since p* and m are coprime, there exist 7, s such that rp* + sm =1,
that is ¢ = 7(p¥g) + s(mg), and we get a sum of elements in G, and in G,,
that is G = G, @ Gpy. We now repeat this process for the remaining primes
dividing |G,/|. This results in a decomposition of G as a direct sum of p-groups
for different primes. Thus it suffices to prove the theorem for p-groups of order
p*. This is done by induction on k, using the following claim: if G is a finite
abelian p-group, and C is a cyclic subgroup of maximal order, then G = C & H
for some subgroup H (the proof is given below). Suppose this claim is true for
now. If &k = 1, then we have a cyclic group. Then let C' be a cyclic subgroup
of G, of maximal order. Then G, = C' @ H with |H| < |G,|. By induction
hypothesis, H is a direct sum of cyclic subgroups, and we are done. O

We see from the above proof that the decomposition of an abelian group G is
unique. Indeed, G is first decomposed into a sum of G, where each G,, contains
only elements of order a power of p. Then each p-group G}, is decomposed into
cyclic subgroups, starting from that of maximal order.

Example 1.32. Suppose we want to list all the abelian groups of order 72. We
first note that 72 = 23-32. So G will be decomposed as G ~ G5 ® G5 (using the
notation of the proof). Then G, is decomposed into cyclic subgroups, starting
from that of maximal order. Since the order of a subgroup divides the order of
a group, G could contain Cg, in which case G5 = Cg. If it does not contain a
cyclic group of order 8, then it may contain Cy, and Gy = C4 & Cs, otherwise
we will have G = Cy @ Cy ® Cs. For the same reasons, either G = Cy or
C3 = C3 @ C3. Thus the list of groups of order 72 is:

o C3®Cy, Cy®Cr®Cy, Co @ Cor®Cy® Cy,
e Cs 3 C3, CydCodC3dC3, Co®Coy®Cy®dC3 D Chs.
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To complete the classification of finite abelian groups, we are thus left with
proving the following claim: if G is a finite abelian p-group, and C is a cyclic
subgroup of maximal order, then G = C' & H for some subgroup H. Even to
prove this result, we will need one more intermediate lemma.

Lemma 1.20. If G is a finite abelian p-group and G has a unique subgroup H
of order p, then G is cyclic.

Proof. We proceed by induction on |G|, noting that the case |G| = p is clear.
Define ¢ : G — G such that ¢(g) = pg, and let K be the kernel of ¢. Then
K consists exactly of the elements of order p, or 1 (pay attention to the use of
the additive notation). Then let H be the unique subgroup of order p from the
hypothesis, it must be that H < K, and K is not trivial. But now take g € K,
g not trivial, then (g) has order p, and thus must be H. This shows that K = H
and that the unique subgroup H of order p from the hypothesis is the kernel of
o.

If K =@, then G is cyclic and we are done. If K # G, then ¢(G) is a non-
trivial proper subgroup of G, while K is a normal subgroup of G. Look at the
quotient group G/K. Then by the first isomorphism theorem, ¢(G) ~ G/K. By
Cauchy theorem for abelian groups, ¢(G) has a subgroup of order p. But since
any such subgroup is also a subgroup of GG, and G has a unique such subgroup,
namely H, it must be that ¢(G) also has a unique subgroup of order p, which
is H. By induction, it must be that the group ¢(G) ~ G/K is cyclic. So let us
pick a generator of this cyclic group, say g + K. We claim that this g actually
generates G.

By Cauchy theorem again, (g) < G has a subgroup of order p, which by
uniqueness must be K, and thus there are p multiples of g which are in K. Now
let us look at the order of g + K: it is the smallest positive integer ¢ such that
ig € K. Say |G| = p", since |K| = p, then |G|/|K| = |G/K| = p"~ !, and since
lg + K| = p"~! divides the order of |g|, either |g| is p"~* or |g + K| = p™. But
if |g| = p™~!, this means that all the multiples of |g| generate G/K without
intersecting K, which is not possible. Thus |g| = p™. O

This lemma and Cauchy Theorem for abelian groups are what is needed to
prove the following:

Lemma 1.21. If G is a finite abelian p-group, and C is a cyclic subgroup of
mazimal order, then G = C @& H for some subgroup H.

Proof. We proceed by induction on |G|. When G is cyclic, then C = G, H =
{1}, and G = C & {15} as needed. When G is not cyclic, we use the above
lemma, which proves that G has more than one subgroup of order p, while C'
has a unique such subgroup. This tells us that G contains a subgroup K of
order p which is not contained in C. Since K has order p, not only K is not
contained in C, but KNC = {1¢}. Since K is normal in C @ K, we can consider
the quotient (C @ K)/K ~ C.

Given any g € GG, we know that the order of g + K divides the order of g,
which is at most |C| (recall that C has maximal order, if |g| is more than |C| then
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|{(g)| is more too, a contradiction). Thus the cyclic subgroup (C @ K)/K ~ C
has maximal order in G/K, and we can apply the induction hypothesis to prove
that G/K ~ (C + K)/K @ H' for some H' < G/K. The preimage of H’
under the canonical map G — G/K is a group H with K < H < G. But
G/K ~ (C@® K)/K & H/K, which means that G = (C® K)+ H = C + H.
Since HN(C+K) = K, we have HNC = {1} and we are done: G = C®H. O

Now that we are done with the classification of abelian groups, you may
wonder how complicated it gets in general. Well, the answer is ... quite com-
plicated. Let us recall what we know in general so far. The case where |G| is
prime is the easy case: we only have the cyclic group. This solves the problem
for |G| = {1,2,3,5,7,11} when |G| < 11. What about |G| = p*?

Proposition 1.22. A group of G of order |G| = p?* is abelian.

Proof. We consider Z(G) the center of G, which is the set of elements in G
which commute with every other element of G. It is a subgroup of G, thus by
Lagrange Theorem, |Z(G)| = 1,p,p?. We need to show that |Z(G)| = 1,p are
both impossible.

Suppose that |Z(G)| = 1 and recall that the class equation tells us that

Gl =12(G)| + ) _IG : Ca()]

where Ca(z) = {g € G, gz = zg}. Since Z(G) = {1}, Cg(x) is a proper sub-
group of G (it cannot be G otherwise x would be in the center), and |Cg(x)| > 1
since surely as least 1 and z are in Cg(z), thus p|[G : Cg(x)], and since p||G|,
it cannot be that |Z(G)| = 1.

Suppose that |Z(G)| = p, then Z(G) is cyclic and so is G/Z(G), but then
by Exercise 14, G is abelian. O

We already knew this for |G| = 4, but then this also solves the case |G| = 9.
For the case |G| = pg, the classification result goes as follows.

Theorem 1.23. Suppose that |G| = pq, p > q two primes.
o Ifq f(p—1), then G =~ Cpq.

o Ifq|(p—1) then either G is abelian and G ~ Cp, x Cy, or G is not abelian
and G ~ C, x, Cy where p : Cq — Aut(C)) is any non-trivial automor-
phism.

Even with a proof of this result, which takes care of |G| = 6,10, we would
still be left to discuss the case |G| = 8, and we cannot move past |G| = 11, since
|G| = 12 means considering |G| = p?q. The proof of the above theorem typically
uses the Sylow Theorems which we did not cover, there are other proofs that
do not rely on them, but then they require more work. Other small cases can
be done also, such as |p - ¢ - r| for distinct primes.

To know the number of groups of order n, for n > 1, see http://oeis.org/
A000001/1ist. This is how it looks for groups of order n < 93.
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|G| G abelian G non-abelian
1 5! -

2 Co -

3 Cs -

4 C4, CQ X CQ -

5 Cs -

6 06=C3><02 D3:C3>402
7 Cr -

8 (5,04 xCy Cox Uy xCy Dy=CyxCa, Qg
9 Cg, Cg X Cg -

10 010205><02 D5:C5><102
11 Ch1 -

Table 1.3: C), denotes the cyclic group of order n, D,, the dihedral group

300
250 - 4
200 - 4
150 7

100 - 7
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The main definitions and results of this chapter are

(1.1). Definitions of: group, subgroup, group ho-
momorphism, order of a group, order of an element,
cyclic group.

(1.2-1.3). Lagrange’s Theorem. Definitions of:
coset, normal subgroup, quotient group

(1.4). 1st, 2nd and 3rd Isomorphism Theorems.

(1.5). Definitions of: external (semi-)direct product,
internal (semi-)direct product.

(1.6). The Orbit-Stabilizer Theorem, the Orbit-
Counting Theorem. Definitions of: group action, or-
bit, transitive action, stabilizer, centralizer. That the
orbits partition the set under the action of a group

(1.7). The classification result for abelian groups.
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Chapter

Exercises on Group Theory

Exercises marked by (*) are considered difficult. Exercises marked by (**) were
previous midterm/exam questions.

2.1 Groups and subgroups

Exercise 1.  a) Show the unicity of the identity element in a group.

b) For g an element in a group G, show the unicity of its inverse.
Answer.

a) Suppose that we have two identities e and e’. Then ee’ = ¢’ because e is
an identity, but also ee’ = e because €’ is an identity, and therefore e = €’.

b) Let g be an element in G. Suppose it has two inverses g—! and (g')~!.
Then gg~* =1 = g(g')~". Thus g7 (g97") = 97" = (97 '9)(¢')"" and
g =)

Exercise 2. Let G be a group and let H be a nonempty subset of G. Prove
that the following are equivalent by proving 1. = 3. = 2. = 1.

1. H is a subgroup of G.

2. (a) z,y € H implies zy € H for all z,y.
(b) x € H implies 21 € H.

3. x,y € H implies xy~! € H for all z,y.
Now that we have seen that the two following statements are equivalent:
a) H is a subgroup of G,

b) b)) z,ye H=>aye H
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2.
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be) x€ H=2"1€ H.

Show that b1) is not sufficient to show that H is a subgroup of G.

Show that however, if G is a finite group, then b,) is sufficient.

Answer. We prove that 1. = 3. = 2. = 1.

1.= 3.

3. = 2.

This part is clear from the definition of subgroup.

Since H is non-empty, let x € H. By assumption of 3., we have that
zx~! =1 € H and that 1z=! € H thus z is invertible in H. We now
know that for x,y € H, x and y~! are in H, thus z(y~!)~! = xy is in H.

. To prove this direction, we need to check the definition of group. Since

closure and existence of an inverse are true by assumption of 2., and
that associativity follows from the associativity in G, we are left with the
existence of an identity. Now, if z € H, then z=! € H by assumption of
2., and thus zz~! = 1 € H again by assumption of 2., which completes
the proof.

Now for the second part of the exercise:

1.

Consider for example the group G = Q* with multiplication. Then the
set Z* with multiplication satisfies that if z,y € Z then xy € Z. However,
Z is not a group with respect to multiplication since 2 € Z but 1/2 is not
in Z.

Let € H. Then take the powers z,z2,23,... of 2. Since G is finite,
there is some n such that ™ = 1, and by b1), 2™ € H thus 1 € H, and
" l=gx"lecH.

Exercise 3. Let G be a finite group of order n such that all its non-trivial
elements have order 2.

1. Show that G is abelian.
2. Let H be a subgroup of G, and let g € G but not in H. Show that HUgH
is a subgroup of G.
3. Show that the subgroup H U gH has order twice the order of H.
4. Deduce from the previous steps that the order of G is a power of 2.
Answer.
1. Let z,y € G, x,y not 1. By assumption, 22 = y? = 1, which also means

that x,y and zy are their own inverse. Now

(zy)(zy) =1 = zy = (zy) ' =y 'z~ =ya.
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2. First note that H U gH contains 1 since 1 € H. Let x,y € H UgH. Then
re€HorxegH,andy € Horye€ gH. If both z,y € H, then clearly
zy € H since H is a subgroup. If both =,y € gH, then x = gh,y = gh’
and zy = ghgh’' = hh' € H since G is commutative and ¢g? = 1. If say
x € H and y € gH (same proof vice-versa), then zy = xgh = g(zh) € gH
since G is commutative. For the inverse, if z € H, then ~! € H since H
is a subgroup. If x € gH, then = gh, and 27! = h~'g~! = gh since G
is commutative and all elements have order 2.

3. It is enough to show that the intersection of H and gH is empty. Let
x € H and z € gH. Then x = gh for h € H, so that zh = gh? = g, which
is a contradiction, since xh € H and g is not in H by assumption.

4. Take h an element of order 2 in G, and take H = {1,h}. If G = H we
are done. If not, there is a g not in H, and by the previous point H U gH
has order 4. We can now iterate. If G = H UgH we are done. Otherwise,
H UgH = H' is a subgroup of G, and there exists a ¢’ not in H', so that
H'Ug’H' has order 8. One can also write a nice formal proof by induction.

Exercise 4. Let G be a group and let H and K be two subgroups of G.

1. Is H N K a subgroup of G?7 If your answer is yes, prove it. If your answer
is no, provide a counterexample.

2. Is HU K a subgroup of G? If your answer is yes, prove it. If your answer
is no, provide a counterexample.

Answer.

1. This is true. It is enough to check that zy=* € HN K for x,y € HN K.
But since x,y € H, we have 2y~ € H since H is a subgroup, and likewise,
xy~! € K for z,y € K since K is a subgroup.

2. This is false. For example, take the group Z with subgroups 3Z and 2Z.
Then 2 and 3 are in their union, but 5 is not.

Exercise 5. Show that if G has only one element of order 2, then this element is
in the center of G (that is the elements of G which commute with every element
in G).

Answer. Let = be the element of order 2. Then for any y, yxy~' is such
that (yzy~1)(yzy~!) = 1. Thus the order of yzy~! is either 1 or 2, that is,
yxy~ ' must be either 1 or . If yzy~! =1, then 2 = 1 a contradiction. Thus

ymy‘l =

Exercise 6. Let G be a group and H be a subgroup of G. Show that

Ng(H) ={g € G, gH = Hg}
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and
Co(H)={g€ G, gh=hgtforallhe H}
are subgroups of G.
Answer. Take x,y € Ng(H). We have to check that xy~! € Ng(H), that is,
that xy 'H = Haxy~!. But Hry ! = xHy ! since x € Ng(H), and xHy ! =
xy 1H since yH = Hy <= y 'H = Hy .
Now take z,y € Cg(H). We have to check that zy~'h = hay~! for all

h € H. But hay~! = xhy~! because v+ € Cg(H), and xhy~' = zy~'h since
yh=hy < y 'h=hy '

Exercise 7. Let G = Z3, be the group of invertible elements in Zsy. Find two
subgroups of order 4 in G, one that is cyclic and one that is not cyclic.

Answer. The group G contains
|G| = ¢(20) = p(4)p(5) =2 -4 =8.
These 8 elements are coprime to 20, that is
G=1{1,3,7,9,11,13,17,19}.

The subgroup
(3)=1{3,32=9,33=7,3"=21 =1}

is cyclic of order 4. We have that
11,112 =121 =1,19,19* = (-1)* = 1,11-19 = (-11) = 9,9 =81 =1

and
{1,11,19,9}

is a group of order 4 which is not cyclic.

2.2 Cosets and Lagrange’s Theorem

Exercise 8. Let G = S3 be the group of permutations of 3 elements, that is
G ={(1),(12),(13),(23), (123), (132)}
and let H = {(1), (12)} be a subgroup. Compute the left and right cosets of H.

Answer. We have

g gH Hyg

(1) {(1),(12)} {(1),(12)}
(12)  {(1),(12)} {(1),(12)}
(13)  {(13),(123)} {(13),(132)}
(23)  {(23),(132)} {(23),(123)}
(123)  {(13),(123)} {(23),(123)}
(132) {(23),(132)} {(13),(132)}
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For example, H(23) is {(1)(23), (12)(23)}. Clearly (1)(23) = (23). Now (12)(23)
sends 123 — 132 via (23), and then sends 132 — 231 via (12), so that finally
we have 123 — 231 which can be written (123).

Exercise 9. Let GG be a finite group and let H and K be subgroups with rela-
tively prime order. Then H N K = {1}.

Answer. Since H N K is a subgroup of both H and K, we have
[HNK|||H]|, [HNK]|]|K]|

by Lagrange’s Theorem. Since (|H|,|K|) = 1, it must be that |[H N K| =1
implying that H N K = {1}.

Exercise 10. (**) Let G be a finite group, and let H and K be subgroups G.
1. Show that H N K is a subgroup of H.

2. Since HNK is a subgroup of H, we consider the set of distinct left cosets of
HNK in H, given by {h1 (HNK),...,h.(HNK)} for some hy,...,h, € H.
For any element hk € HK, show that hk € h; K.

3. Prove that the left cosets h1 K,...,h.K of K in HK are all disjoint (I
would suggest to do it by contradiction).

4. Deduce from the above steps that

|H||K]|
HK|=————.
HE = 1A g

Answer.

1. Since a,b € H N K, then a,b € H and a,b € K and both H and K are
subgroups, so it must be that ab~! € H and ab~' € K. Thus ab~! €
H N K, which is a subgroup, contained in H by definition.

2. For any element hk € HK, since the union of the r cosets give H, h = h;g
for some element g € H N K. Then hk = h,gk = h;(gk) € h; K since both
k and g belong to the subgroup K.

3. Suppose by contradiction that there are some h;, h; for which h; K = h; K.
But then this would mean that h;lhi € K. Now since we also have

hj_lhi € H, this would imply that hj_lhi € HNK, that is h,(HNK) =
hj(H N K), which cannot happen since these cosets are distinct.

4. From the above, we know from 2. that

|H]|

"THNK[
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Then from 4., we know that

_ |HK]|
K|

This is because the cosets are forced to be distinct, and there cannot have
more than r of them since in 3., every hk belongs to one of the h; K. Thus

|HI K|

HK| = —r7—.
| | |HN K]

2.3 Normal subgroups and quotient group

Exercise 11. Consider the following two sets:

a b X (1 b
r={(2 ) wecwerbv={(2 ). ves)

1. Show that T is a subgroup of GLy(R).
2. Show that U is a normal subgroup of 7.
Answer.

1. It is enough to show that if X,Y € T, then XY ! € T. Let

a b a b
=0 =0 )
then

~1_fa b\ 1 ([ =0\ _ 1 fac —ab' +a'b
XY B <O C) a'c <0 a T oald 0 a'c €T
2. We have to show that XY X ! € U when Y € U and X € T. We have
a v 1 by 1 d =bv
0 ¢ 0 1) ac \O a
_ a adb+b\ 1 [ =V
- 0 c ac \0 a

1 !0 _ WA ! !/ /
_ <ac ba —i—a(ab—i—b))eU‘

a'c 0 a'c

Xyx!

Exercise 12. Let G be a group, and let H be a subgroup of index 2. Show
that H is normal in G.

Answer. If H is of index 2, that means by definition that there are only 2
cosets, say H and g1 H for some g1 not in H. Note that if g; # g2 € G are not
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in H,then g1g92 € H. Indeed, we have that either g1g2 € H or g1g2 € g1 H (recall
that the cosets partition the group), and g1g2 € g1 H is not possible since g is
not in H. In other words, if both g1, go are not in H, then (g192)H(g1g2) "' € H.

Now let h € H, g € G. If g € H, then ghg~! € H and we are done. If
g is not in H, then gh is not in H and by the above remark we have that
ghg™! = (gh)g™! € H (take g1 = gh,g2 = g~ '). Alternatively by the same
above remark, since (g192)H (g192) " € H for every g1, g2 not in H, it is enough
to wrote g as g1ge, say g1 = g (g is not in H) and go = g~ *h (which is not in
H either).

Exercise 13. (*) If GG is normal in Gy and G5 is normal in G3, then G is
normal in G'3. True or false?

Answer. This is wrong (it takes the notion of characteristic subgroup to get
transitivity). An example is the dihedral group Dy:

Dy=(r,flf>=1r"=1,fr=r"1f).

The subgroup
H=(rf, fr)={L,rf,r* fr} = Cs x C
is isomorphic to the Klein group. We have that H < G. Finally

K={fy={1,rf}<H
but K is not normal in G, since f-rf-f~! = f-rf-f= fr which is not in K.

Exercise 14. Let G be a group and let Z(G) be its center (that is the elements
of G which commute with every element in G). Show that if G/Z(G) is cyclic
then G is abelian. Give an example to show that if G/Z(G) is only abelian,
then G does not have to be abelian.

Answer. If G/Z(G) is cyclic, then G/Z(G) = (9Z(G)). Let x,y € G, then
their corresponding cosets are ©Z(G), yZ(G) which can be written

2Z(G) = (9Z(G)* = ¢*Z(G), yZ(G) = (9Z(G))' = ¢ Z(G)

and
v=g"2, y=g'z, 2,2 € Z(G).

Now
ay = g"z219'%0 = yx

since 21,22 € Z(G). For example, consider the dihedral group Dy = {r, f|f* =
Lt = 1, fr = v71f}y = {L,r,02 03, forf,r2f,r3f}. Tts center is Z(Dy) =
{1,72}: indeed,  cannot be in the center since fr = r~!f, then r? commutes
with ¢ for all 4, and 2 commutes with f since fr?2 = (fr)r =r"1fr =r=2f =
r2f, so r2 is in the center. This also shows that r3 cannot be inside since r is
not. Then f cannot be in the center since fr = r~!'f, and fr cannot be either
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since (fr)f = r~'ff = r—! while ffr = r. Then fr? cannot be since f is
not and r? is, fr3 cannot be since fr is not and r? is. Thus Dy;/Z(D,) is a
group of order 4, it contains 4 cosets: Z(Dy),rZ(Dy), fZ(D4),rfZ(D4), which
is isomorphic to the Klein group, which is abelian but not cyclic. One can check
directly that every element has order 2, and therefore it cannot be cyclic and it
must be abelian.

Exercise 15. 1. Let G be a group. Show that if H is a normal subgroup of
order 2, then H belongs to the center of G.

2. Let G be a group of order 10 with a normal subgroup H or order 2. Prove
that G is abelian.
Answer.

1. Since H is of order 2, then H = {1, h}. It is furthermore normal, so that
gHg™' = {1,ghg~'} is in H, thus ghg~! = h and we are done, since this
is saying that h commutes with every g € G.

2. Since H is normal in G, G/H has a group structure, and |G/H| =
|G|/|H| = 10/2 = 5. Thus the quotient group G/H is a group of or-
der 5, implying that it is cyclic. Now take z,y in G, with respective coset
xH, yH. Since the quotient group is cyclic, there exists a coset gH such
that H = (¢H)* = ¢*H, and yH = (gH)' = ¢g'H for some k,l. Thus
x = g*h, y = g'h’ for some h,h’ € H. We are left to check that zy = yz,
that is g®hg'h’ = ¢'h’g*h, which is true since we know that h,h’ € H
which is contained in the center of G (by the part above).

2.4 The isomorphism theorems
Exercise 16. Consider A the set of affine maps of R, that is
A={f:z—ax+b, aeR", beR}
1. Show that A is a group with respect to the composition of maps.

2. Let
N={g:z—2x2+0b, beR}.

Show that N is a normal subgroup of A.
3. Show that the quotient group A/N is isomorphic to R*.
Answer.

1. Let f,g € A. Then

(fog)(x)= flax+b) =d(ax+b)+ b =dax+db+V,
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where a’a € R* thus the closure property is satisfied. The composition
of maps is associative. The identity element is given by the identity map
since

Idof=fold=f.

Finally, we need to show that every f € A is invertible. Take f~!(z) =
a 'z —a~'bh. Then

fltof(x)=ftax+b)=a "(ax +b) —a ‘b=

To show that N is a subgroup, the same above proof can be reused with
a=1. Let g € N and let f € A. We have to show that

fogofﬁ1 € N.
We have
foglatz —a ') = fla*(z) —a b+ b)=2—b+ab +be N.

Define the map
p: A—=R" f(z)=ax+b— a.
It is a group homomorphism since

o(fog)=da=o(f)elg).

The kernel of ¢ is IV and its image is R*. By the 1st isomorphism theorem,
we thus have that

A/N ~R*.
Exercise 17. Use the first isomorphism theorem to
1. show that
GL,(R)/SL,(R) ~ R*.
2. show that
C*/U ~R%,
where

U={zeC||z] =1}.

3. compute

R/277Z.

Answer.

1. Consider the map:

det : GL,(R) — R*, X — det(X).

It is a group homomorphism. Its kernel is SL,(R), its image is R* and
thus by the 1st isomorphism theorem, we have

GL,(R)/SL,(R) =~ R*.
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2. Consider the map
|- ]:C* = RY, 2z |2].

It is a group homomorphism. Its kernel is U, and its image is R* and thus
by the 1st isomorphism theorem, we have

C*/U ~R}.
3. Define the map
f:R—=C* z—€”.

It is a group homomorphism. Its kernel is 27Z. Its image is {e®, z €
R} = U. Thus by the 1st isomorphism theorem

R/27Z ~ U.
Exercise 18. Let G = (x) be a cyclic group of order n > 1. Let h, : Z — G,
m— ™.
e Show that h, is surjective and compute its kernel.
e Show that G ~ Z/nZ.
Answer.

e Let g € G. Since G = (), g = 2* for some 0 < k < n — 1 and thus h, is
surjective. Its kernel is the set of m such that " = 1, thus m must be a
multiple of n and Ker(h,) = nZ.

e By the 1st isomorphism theorem, since h, is a group homomorphism, we
have

G ~7Z/nZ.

Exercise 19. Prove the third isomorphism theorem for groups, namely that if
N and H are normal subgroups of G, with IV contained in H, then

G/H ~ (G/N)/(H/N).

Answer. This follows from the 1st isomorphism theorem for groups, if we can
find an epimorphism of G/N into G/H with kernel H/N: take f(aN) = aH.
Now f is well-defined, since if aN = bN, then a='b € N C H so aH = bH.
Since a is arbitrary in G, f is surjective. By definition of coset multiplication,
f is a homomorphism. The kernel is

{aN, aH=H}={aN, a€ H} = H/N.
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2.5 Direct and semi-direct products

Exercise 20. Let G be a group with subgroups H and K. Suppose that
G = HK and HN K = {lg}. Then every element g of G can be written
uniquely in the form hk, for h € H and k € K.

Answer. Since G = HK, we know that g can be written as hk. Suppose it
can also be written as h'k’. Then hk = W'k so W' 'h =Kk ' e HNK = {1}.
Therefore h = h' and k = k'.

Exercise 21. The quaternion group Qg is defined by
QS = {15 717 i7 71’7]" 7]" k? 7k}
with product - computed as follows:

la=a-1=a, VaecQg

(-1)-(=1)=1, (-1)-a=a-(=1) = —a, Vac Qg
ivi=j-j=k-k=—1

ij=k, j-i=—k,

Show that Qg cannot be isomorphic to a semi-direct product of smaller groups.

Answer. By definition, a semi direct product must contain two smaller sub-
groups of trivial intersection {1}. Now the smaller subgroups of Qg are {1, —1},
{1,i,—i,—1}, {1,5,—4,—1}, {1,k,—k,—1}, and each contains —1 so that it is
not possible that Qg is a semi-direct product.

Exercise 22. Consider the set of matrices

a b
c={(8 1) ako.uses)

(where F,, denotes the integers mod p).
1. Show that G is a subgroup of SLy(F,).
2. Write GG as a semi-direct product.
Answer.

1. That G is a subset of SLy(F,) is clear because the determinant of every
matrix in G is 1. We have to show that for X, Y € G, XY ! € G. This
is a straightforward computation:

a b b —d\ ([ ac! —da+bc
(O a1>(0 c)_( 0 ate >€G'
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K{(B‘ a91 > a0, ag]Fp}
ne{(1 V) ven)

Both K and H are subgroups of G. Their intersection is the 2-dimensional
identity matrix, and HK = G, since

10 a 0 [ a ba~?

0 1 0 a* ) 0 at
and ba~! runs through every possible element of F,, (since b does). Also
H is normal in G, since

a b 10 ab —=b\ (1 a% cH

0 a! 0 1 0 a Lo 1 '
Note that K is not normal, which can be seen by doing the same compu-
tation. Thus G is the semi-direct product of H and K.

2. Take

and

Exercise 23. Show that the group Z,, x Z,, is isomorphic to Z,., if and only
if m and n are relatively prime. Here Z,, denotes the integers modulo n.

Answer. If m and n are relatively prime, then for a multiple of (1,0) to be
zero, it must be a multiple of n, and for a multiple of (0, 1) to be zero, it must
be a multiple of m. Thus for a multiple k of (1,1) to be zero, it must be a
multiple of both n and m, and since they are coprime, the smallest possible
value of k is mn. Hence Z, X Z,, contains an element of order mn, showing
that Z,, X Z, is isomorphic to Z,,,. Conversely, suppose that ged(m,n) > 1.
Then the least common multiple of m and n is smaller than mn, let us call it d.
This shows that every element of Z,,, X Z,, has order at most d and thus none of
them can generate the whole group, so that it cannot be cyclic, and thus cannot
be isomorphic to Z,,,.

Note that one can also prove this result by the definition of direct product:
we have that Z,, and Z,, are both normal subgroups of Z,,, because this is an
abelian group. We are thus left to look at the intersection of Z,, and Z,,. Recall
that Z,, and Z,, are embedded into Z,,, as respectively

Zm ={0,n,2n,...,(m—1)n}, Z, ={0,m,2m,...,(n—1)m}.

If m and n are coprime, then Z,, N Z, = {0}. Conversely, if « belongs to the
intersection and is non-zero, then x must be a multiple of both n and m which
is not congruent to 0 modulo mn, and thus m and n cannot be coprime.

Exercise 24. Let Z3 denote the group of integers modulo 3.
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1. Show that the map
g Z3 X Z3 *>Z3 X Z37(Iay) = (I+y7y)
is an automorphism of Zz x Zs of order 3.

2. Show that the external semi-direct product of Z3 x Z3 and Zs3 by p, p :
Z3 — Aut(Zz x Z3), i+ o', is a non-abelian group G satisfying that

a®b® = (ab)?
for any a,b in G.
Answer.
1. So to be an automorphism, o has to be a group homomorphism, but
o((z+a',y+y") = (z+a’+y+y', y+y) = (a+y, )+ +y. ) = o2, y)+o(@',y).
It clearly goes from the group to itself, and it is a bijection. It is an
injection
o(x,y) =o@,y) = (x+yy) =@ +y,y)=y=y,z=2
and thus it is a surjection since the group is finite. It is of order 3, since

o(z,y) = (+y,y), o*(z,y) = (x+2y,y), o*(z,y) = (x+3y,y) = (z,y).

2. An element in the external semi-direct product is of the form ((z,y),1),
and we have

((z,9), 1) (2, 9),9) = ((z,9) + (2, y), 20),
((z,y),9)? ((z,y) + o' (z,y) + 0¥ (x,y), 3i)
((z,y) + (z + iy, y) + (z + 2iy,y), 37)
= ((3z + 31y, 3y), 37)

((0,0),0).

This shows that for any element a of the semi-direct product a® = 0, thus
b3 = 0, ab is another element of the group thus (ab)® = 0 which shows
that a®b® = 0 = (ab)?, though the group is non-abelian (because o is not
the identity).

Exercise 25. (**)

1. Given a group G and a subgroup H, suppose that H has two left cosets
(and thus two right cosets), that is [G : H|] = 2. Consider the two cases
g € H and g € H and show that in both cases gH = Hg, that is H is
normal in G.
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2. Consider the dihedral group D,, = {ris/, " = s? = (rs)? = 1}. Prove or
disprove that Dg >~ D3 x Cy where Cs is the cyclic group with 2 elements
(you may want to use 1.).

Answer.

1. If g € H, then gH = H = Hg. Now if g € H, then gH cannot intersect
with H (cosets are either disjoint or the same), but since we have only
two cosets, both of them of size |H| (and thus |G| = 2|H|), we have that
gH must be everything in G which is not in H: G\H. But the same is
true for the right coset Hg, and so gH = Hg.

2. Let us first see if we can find a copy of D3 inside Dg. In order to compute
in Dg, we need to remember that:

rsrs=1 < rsr=s5 < rs=sr ' =>rls=rsr =g 2 = rls=gr*

for any i. To have D3, we need rotations by (27/3)l, I = 0,1,2, so they
are found by considering the rotations r%, [ = 0,1,2. We thus have that
(r?1)? = 1 and (r2s)? = r2sr2s = 1 and D3 ~ {r?'s* 3 = 52 = (r5)? = 1}.
We need to see whether the two subgroups H ~ D3 and K ~ Cj are
normal and such that Dg = HK and H N K = {1}. For Ds, it is normal
because of 1., while for Cy we still need to identify which subgroup this
is, and whether it is normal. We know that we will need H N K = {1}
to be true, so we look for a subgroup of order 2 which does not intersect
the one we have. Rotations r, 73,75 are good candidates since they do not
intersect with 72/s*, so we choose the one of order 2, that is Cy >~ (r3). It
is a normal subgroup since for j =1,

st (13)sIrt = ris(r3s)rTt = ris(sr )t =73

and for j = 0, we have rr3r~?. So we have found two normal subgroups
H ~ D3 and K ~ (5, their intersection is trivial, and since HK =
{r2sky U {r2lskr3} = {r2sF} U {r2lr=3sF} (with the same powers and
relations as above), we see that HK = Dg and the isomorphism is true.

2.6 Group action

Exercise 26. 1. Let G = GL,,(C) and X = C" — {0}. Show that G acts on
XbyGx X — X, (M,v)— Mv.

2. Show that the action is transitive.
Answer.

1. We have to show that
M-(M'-v)y=MM") v, 1g-v=r.

The first point is clear by properties of matrix vector multiplication. The
second is also clear since 1¢ is the identity matrix.
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2. We have to show that there is only one orbit (which is why we have to
remove the whole zero vector from C™). For that, we need to show that
for any two vectors v,’ € X, there is a matrix M € G such that Mv = /.
We thus have a system of n linear equations for n? unknowns, so that we
have enough degrees of freedom to find such a matrix. Alternatively, if
v=_(ay,...,an), vV = (b1,...,b,), where a;,b; are all non-zero, take the

matrix

diag(a;t,...,a;")

and notice that
diag(by, ..., b,)diag(a;t, ... a, v =1/
The case where some a;, b; are zero can be done similarly.
Exercise 27. Let G be group, and H be a subgroup of G. Show that
9-9'H=gg'H
defines an action of G on the set G/H of cosets of H. Find the stabilizer of gH.

Answer. To show that the action is well defined we have to check that it
does not depend on the choice of the representative, and that it satisfies the
definition of group action. First suppose that ¢/ H = ¢” H. We have to show
that g-g"H = gg'H. But ¢'H = ¢"H < (¢")7'¢’ € H < (99")"'(99') €
H <= g¢'H = g¢"’H. The definition of group action can be checked easily:

g1-(92-9H)=91-92H = g1929'H = g192-g'H, 1-¢H = ¢'H.

The stabilizer of gH is formed by ¢’ such that ¢’¢H = gH that is g~ 'g'g € H.
Thus g~'¢’g = h, for some h € H, or equivalently ¢’ = ghg™', thus the stabilizer
is gHg™ L.

Exercise 28. Consider the dihedral group Dg given by
Dg = {1,s,7,7% 13, rs,r?s,135}
(that is s> =1, r* =1 and (rs)? = 1).
1. Divide the elements of the dihedral group Dg into conjugacy classes.
2. Verify the class equation.
Answer.

1. There are 5 conjugacy classes
{1}, {7“2}, {r T3}> {s, STQ}a {sr, STS}'
2. We have that {1} and {r?} are in the center. Thus

|Dy| = 8 = |Z(Dy)| + |Orb(r)| + |Orb(rs)| + |Orb(s)].
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Exercise 29. The quaternion group Qg is defined by
QS = {1a _17 i, _iaja _j7 kv _k}
with product - computed as follows:

l-a=a-1=a, Va€ Qg
(-D)-(-1)=1, (-1)-a=a-(-1)=—a, VaeQs
ii=jj=k k=—1
i j=k, j-i=—k
jok=1i, k-j=—i
koi=j, i k=—j.
1. Show that if z ¢ Z(Qs), then |Cq,(z)| = 4.

2. Show that as a consequence, the class of conjugacy of z ¢ Z(Dg) has only
two elements.

Answer.

1. The center Z(Qsg) is Z(Qg) = {1, —1}. We have by definition that

Cos(z) = {g € Qs, gz = zg}.

Thus
CQ8<i) = {17 7132‘7 72}7 CQs(]) = {]-a 71,‘7‘3 7‘7‘}3 CQs(k) = {17 717]{:7 7k}

2. When the action is defined by conjugation, we have that Stab(z) =
Cgg(x). Thus by the Orbit-Stabilizer, the size of an orbit, which is a
conjugacy class, is

[B(x)] = 1Qs]/|Cqq ()] = 8/4 =2.

Exercise 30. Let G be a group and let H and K be two subgroups of G.

1. Show that the subgroup H acts on the set of left cosets of K by multipli-
cation.

2. Consider the coset 1K = K. Compute its orbit B(K) and its stabilizer
Stab(K).

3. Compute the union of the cosets in B(K) and deduce how many cosets
are in the orbit.

4. Use the Orbit-Stabilizer Theorem to get another way of counting the num-
ber of cosets in B(K). By comparing the two expressions to count the
cardinality of B(K), find a formula for the cardinality of HK.
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Answer.

1. Let X = {gK, g € G} be the set of left cosets of K. We have to check
that b’ - (h- gK) = (h'h) - gK which clearly holds, as does 1y - gK = gK.

2. We have that B(K) ={h-K, h € H} and Stab(K) ={h € H, h- K =
K}=HNK.

3. The union of the cosets in B(K) is HK, the cosets in B(K) are disjoint
and each has cardinality K, so that we have |HK|/|K]| cosets in B(K).

4. By the Orbit-Stabilizer Theorem, we have
|B(K)| = [H|/|Stab(K)| = |HK|/|K| = [H|/|[H N K|

and thus
|H| K|

HK|=————.
K = 1A g

Exercise 31. Let G be a finite group, and let p be the smallest prime divisor
of the order of G.

1. Let H be a normal subgroup of G. Show that G acts on H by conjugation.
2. Let H be a normal subgroup of G of order p.

e Show that the orbits of H under the action of G are all of size 1.

e Conclude that a normal subgroup H of order p is contained in the
center of G.

Answer.

1. We check the definition, that is, the group G acts on H if for the map
(9,7) = g-x = grg~!, € H, defined from G x H — H (note that we
need here H normal to guarantee that grg—! € H!), we have

e h-(g-x)=h-(gzg™") = h(grg~")h=' = (hg) -z
e l-xg=xgforallz e H

2. e By the orbit stabilizer theorem, the size of an orbit B(x),x € H
divides the size of G, the group that acts on H, thus if |B(z)| is
not 1, it must be at least p, since p is the smallest divisor of the
order of G. Now the orbits partition H, that is H = UB(z) and
thus |H| = > |B(x)|, that is the sum of the cardinals of the orbits is
|H| = p. Among all the B(z), we can take z = 1 € H since H is a
subgroup. The orbit B(1) = {g-1,9 € G} = {glg~! = 1} has only
1 element, there is at least one orbit of size 1, and thus no orbit can
have size greater or equal to p, since then p + 1 > p. Thus all orbits
of H are of size 1.
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e We have that B(z) = {g-z,9 € G} = {gzg~',g € G} is always
of size 1, and since for ¢ = 1 € G we have x € B(z), we deduce
that B(z) = {z}, that is grg~! = z, or gr = xg showing that for
all z € H, z actually commutes with every g € G, that is, H is
contained in the center.

Exercise 32. Let G be a group acting on a finite set X.

1. We assume that every orbit contains at least 2 elements, that |G| = 15,
and that | X| = 17. Find the number of orbits and the cardinality of each
of them.

2. We assume that |G| = 33 and |X| = 19. Show that there exists at least
one orbit containing only 1 element.

Answer.

1. The cardinal of every orbit divides the order of G. Furthermore, the sum
of the orbit cardinalities is equal to the cardinality of X. If |G| = 15,
|X| = 17, and there is no orbit of size 1, there is only one possibility: 4
orbits of length 3 and 1 of length 5. Indeed, we are looking for integers
such that their sum is 17, but each integer must divide 15, that is we need
to realize 17 as a sum of integers belonging to {3,5,15} (1 is excluded by
assumption). Then 15 is not possible, and we can use only 3 and 5: 1542
is not possible, 1047 is not possible, so only 5+12 works.

2. Now |G| = 33 and |X| = 19. The divisors of 33 are 1,3,11 and 33. We
need to obtain as above 19 as a sum of these divisors. 33 is too big, and
we cannot possibly use only 11 and 3. Thus there must be at least one
orbit of size 1.

Exercise 33. (**) Let G be a finite group of order n > 1 and let p be a prime.
Consider the set

X:{x: (917927"‘7917) €GP | g1-92--gp = ]-G}
1. Compute the cardinality | X| of the set X.

2. Show that if (g1,...,9p) € X, then (g2,...,0p,91) € X. Denote by o the
corresponding permutation. Show that < o > acts on X as follows:

Uk ’ (glv s 7gp) = (gak(l),' .- agak(p))a keZ

3. What is the cardinal of one orbit of X7

4. What are the orbits with one element? Show that there is at least one
such orbit.

5. Deduce that if p does not divide n, then

n?P"'=1 mod p.
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6.

Deduce Cauchy Theorem from the above, namely, if p | n then G has at
least one element of order p.

Answer.

1.

Since g1, ..., gp—1 can take any value in G (only g, is constrained so as to
have g1 - g2+ g, = 1), we have | X| = |G[P~! = nP~L.

. Since (g1,...,9p) € X, then g1 - g2---9p, = lg and g2---gp - 1 :g1_1~

1¢ - g1 showing that (ga2,...,9p,91) € X. To show that < ¢ > acts on X,
check the definition, namely o' - (6% (g1,...,9,)) = o'o* - (g1,...,9p) and

o’ (g1, 9p) = (91, 9p)-

The answer is either 1 or p. There are two ways to do it: one can notice
that < o > has order p, and thus by the Orbit-Stabilizer Theorem the
size of the orbit divides p, so it can be either 1 or p. Also one can just
write down the definition of one orbit: the orbit of (g1,...,gp) is formed
by all the shifts of the components, and thus since p is prime, there will
be p distinct shifts, apart if all the components are all the same, in which
case there is only one element in the orbit.

Since an element always belongs to its orbit, we have that orbits with one
element are of the form B(x) = {z}, and if there is only one element,
that means that the shifts are doing nothing on = = (¢1,...,g,) thus
x = (g,...,9) and since € X, that further means that g = 1. To
show one such orbit exists, take the orbit of (1,...,1).

Since the orbits partition X, we have

X1 =Y |B@)| + Y [B)

where the first sum is over orbits of size 1, and the second over orbits of
size greater or equal to 2. By the above, if the size is at least 2, it is p, and
thus |B(z')] = 0 mod p. Then if there were more than (1,...,1) with
orbit of size 1, that means an element g such that g = 1, which would
mean p|n, a contradiction. Thus only there is only one orbit of size 1, and

|IX|=n""'=1 mod p.

Again, we have that

Pl = |X| = Z |B(x)| + Z |B(z")|

and if p|n then 0 = Y |B(z)| and there must be at least another element
with orbit size 1, that is an element g of order p.
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2.7 Classification of Abelian groups

Exercise 34. Let ¢ : G — H be a group homomorphism, for G, H two groups.
1. Prove that the order of ¢(g) divides the order of g.
2. Prove that if ¢ is injective, then the order of ¢(g) is equal to that of g.
3. For N a normal subgroup of G, show that [gN|||g|.

Answer.

1. Suppose g has order n. Then g™ = 1, thus ¢(g") = ¢(g)" = ¢(1) = 1.
This shows that ¢(g)™ = 1 so either ¢(g) has order n, or its order is some
m smaller than n. Suppose there is such m, then ¢(g)™ = 1 and m is
then the smallest positive integer with this property. Divide n by m to
find n = mq + r with » < m, then

L=g"=gm"" = (g™)g" =g"
thus » = 0 and m divides n as needed.

2. Say ¢(g) has order m. Then ¢(1) = 1 = ¢(g9)™ = ¢(¢™) and since ¢ is

injective, we must have ¢™ = 1, which shows that m = n.

3. Choose for ¢ the canonical map ¢ : G — G/N. Then ¢(g) = gN and
apply 1.

Exercise 35. List all the abelian groups of order 36.

Answer. Write 36 = 2% - 3%, Then 22 can give rise to either Z/27Z x Z/27Z
or Z/4Z. Similarly, 3% can give rise to either Z/3Z x Z/3Z or Z/9Z. This thus
gives 4 cases:

1. ZJAZ x Z]9Z ~ 7./ 367,
2. ZJAZ X Z/3Z x Z./37 ~ ZJ12Z x 7./ 3Z,
3. Z)27 X 7/27 x )97 ~ 7] 27 x 7./]18Z,
4. Z)27 x 7.)27 x Z./]37 X Z/3Z ~ 7./ 67 x Z]6Z.
Exercise 36. Decide whether the following groups are isomorphic:
o 7/47 and Z/27 x 7./2Z,
o 7/6Z and Z/27 x Z./3Z,
o 7./487 x 7Z./9Z and Z/8Z x Z./547.

Answer.
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e 7/4AZ is not isomorphic to Z/2Z x 7./27Z, this is because Z/47 is a cyclic
group (under addition), while Z/27 x Z/27 is not, it is isomorphic to the
Klein group. It can be easily checked there is no element of order 4, and
all elements but the identity (0,0) have order 2.

e 7./67Z is isomorphic to Z/27Z x 7Z/3Z, both of them are cyclic of order 6.
To see this, it is enough to see that Z/27Z x Z/3Z contains an element of
order 6, namely (1,1).

o Z/487 x Z/9Z and Z/87Z x Z/547Z. We apply the classification of abelian
groups to decompose Z /487 ~ Z/3ZxZ/16Z and Z /547 ~ Z/2Z x L/ 27Z,
therefore

7./37. x /167 x 797 # T./8Z x 7.)27. x Z,/277.

Note for example that Z/8Z x Z/2Z is not isomorphic to Z/16Z. The
reason is illustrated in the first two parts of the exercise. When m,n are
coprime then Z/mZ x Z/nZ ~ Z/mnZ, this is because (1,1) will have
order mn, which is not the case when m,n are not coprime.
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Chapter

Ring Theory

3.1 Rings, ideals and homomorphisms
Definition 3.1. A ring R is an abelian group with a multiplication operation
(a,b) — ab
which is associative, and satisfies the distributive laws
a(b+c¢) =ab+ ac, (a+b)c=ac+ b
with identity element 1.

There is a group structure with the addition operation, but not necessarily
with the multiplication operation. Thus an element of a ring may or may not be
invertible with respect to the multiplication operation. Here is the terminology
used.

Definition 3.2. Let a,b be in a ring R. If a # 0 and b # 0 but ab = 0, then
we say that a and b are zero divisors. If ab = ba = 1, we say that a is a unit or
that a is invertible.

While the addition operation is commutative, it may or not be the case with
the multiplication operation.

Definition 3.3. Let R be ring. If ab = ba for any a,b in R, then R is said to
be commutative.

A ring was defined above as an abstract structure with a commutative addi-
tion, and a multiplication which may or may not be commutative. This distinc-
tion yields two quite different theories: the theory of respectively commutative
or non-commutative rings. These notes are mainly concerned about commu-
tative rings. Non-commutative rings have been an object of systematic study

65
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only quite recently, during the 20th century. Commutative rings on the contrary
have appeared though in a hidden way much before, and as many theories, it
all goes back to Fermat’s Last Theorem.

Non-commutative ring theory developed from an idea of Hamilton, who at-
tempted to generalize the complex numbers as a two dimensional algebra over
the reals to a three dimensional algebra. Hamilton, who introduced the idea
of a vector space, found inspiration in 1843, when he understood that the gen-
eralization was not to three dimensions but to four dimensions and that the
price to pay was to give up the commutativity of multiplication. The quater-
nion algebra, as Hamilton called it (we will define Hamilton quaternions below),
launched non-commutative ring theory.

Other natural non-commutative objects that arise are matrices. They were
introduced by Cayley in 1850, together with their laws of addition and mul-
tiplication and, in 1870, Pierce noted that the now familiar ring axioms held
for square matrices. It is only around the 1930’s that the theories of commu-
tative and non-commutative rings came together and that their ideas began to
influence each other.

Here are the definitions of two particular kinds of rings where the multipli-
cation operation behaves well.

Definition 3.4. An integral domain is a commutative ring with no zero divisor.
A division ring or skew field is a ring in which every non-zero element a has an
inverse a~!'. A field is a commutative ring in which every non-zero element is
invertible.

Let us give two more definitions and then we will discuss several examples.

Definition 3.5. The characteristic of a ring R, denoted by charR, is the small-
est positive integer such that

n-1=14+14...+1=0.
—_——

ntimes
If there is no such positive integer, we say that the ring has characteristic 0.
We can also extract smaller rings from a given ring.

Definition 3.6. A subring of a ring R is a subset S of R that forms a ring
under the operations of addition and multiplication defined in R.

Examples 3.1. 1. Z is an integral domain but not a field.

2. The integers modulo n form a commutative ring, which is an integral
domain if and only if n is prime.

3. For n > 2, the n x n matrices M,,(R) with coefficients in R are a non-
commutative ring, but not an integral domain.

4. The set
Z[i] = {a + bi, a,b € Z}, i* = —1,

is a commutative ring. It is also an integral domain, but not a field.
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commutative non-commutative
has zero divisor integers mod n, n not a prime matrices over a field
has no zero divisor / {a+bi+cj+dk, a,be,d € Z}
non-zero element invertible R H

5. Let us construct the smallest and also most famous example of division
ring. Take 1,%,j, k to be basis vectors for a 4-dimensional vector space
over R, and define multiplication by

P=2=k>=-1,ij=k, jk=1i, ki=j, ji = —ij, kj = —jk, ik = —ki.

Then
H = {a+bi+cj+dk, a,b,c,d € R}

forms a division ring, called the Hamilton’s quaternions. So far, we have
only seen the ring structure. Let us now discuss the fact that every non-
zero element is invertible. Define the conjugate of an element h = a + bi +
cj+dk € H to be h = a—bi — cj — dk (yes, exactly the same way you did
it for complex numbers). It is an easy computation (and a good exercise
if you are not used to the non-commutative world) to check that

qG = a®> +b> + 2+ d%

Now take ¢~! to be

Clearly gq¢~! = ¢ !¢ = 1 and the denominator cannot possibly be 0, but

fa=b=c=d=0.

6. If R is a ring, then the set R[X] of polynomials with coefficients in R is a
ring.

As an another example, let us do the classification of rings containing 4
elements.

Example 3.2. Let R be a ring with 4 elements, thus it must contain the two
elements 0 # 1, and be an abelian group of order 4. In a group of order 4,
elements have order 2 or 4, thus either 1 has order 4, in which case we obtain
the integers modulo 4, or 1 has order 2. If 1 has order 2, then char(R) = 2.
Now 1+ 1 = 0, and we must have another element u # 0,1 in R. By the closure
property under addition, u+1 must be in R. Note that 2u = 0 and thus u = —u.
Then by the closure property under multiplication, u?, u(u + 1) = u? + u and
(u+1)? = u? +2u+1 = u?+ 1 must belong to R. Also this ring is commutative
since u(u+1) = (u+1)u. Since we are parameterizing the ring by u, we only need
to compute u? to determine the whole ring multiplication table. The possible
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values taken by u? are 0,1, u,u + 1. This gives us the following possibilities:

2 wHu | ur+1

U

0 u 1
1 u+1 0
U 0 u+1
u—+1 1 u

This gives us 4 possible multiplication tables:

1.
‘ 1 u u+1
1 1 u u+1
U u 0 U
u+1|u+1l u 1
2.
1 U u+1
1 1 U u—+1
U U 1 u—+1
u+1|u+1l u+1 0
3.
1 u u+1
1 1 u u+1
u U U 0
u+1|u+1 0 wu+1
4.
1 U u+1
1 1 U u—+1
U U u+1 1
u+1|u+1 1 U

First, we observe that the first and the second table give the same multiplication.
Indeed, take the second table, permute columns 2 and 3, and rows 2 and 3, then
switch the labels of w and u + 1, to get the same multiplication as in the first
table.

The Klein group Cy x Cs is an instance of the third table, which is seen by
setting u = (0,1). The 4rth table, it is the multiplication table of a group. One
can check the closure, the existence of an identity, and that of an inverse for
every element. Since we see every element of R but zero, R is a field.

An instance of the first table would be a matrix ring obtained by setting



3.1. RINGS, IDEALS AND HOMOMORPHISMS 69

In 1882, an important paper by Dedekind and Weber developed the theory
of rings of polynomials. At this stage, both rings of polynomials and rings
of numbers (rings appearing in the context of Fermat’s Last Theorem, such
as what we call now the Gaussian integers) were being studied. But it was
separately, and no one made connection between these two topics. Dedekind
also introduced the term “field” (Kérper) for a commutative ring in which every
non-zero element has a multiplicative inverse but the word “ring” is due to
Hilbert.

It will take another 30 years and the work of Emmy Noether and Krull to see
the development of axioms for rings. Emmy Noether, about 1921, is the one who
made the important step of bringing the two theories of rings of polynomials
and rings of numbers under a single theory of abstract commutative rings.

Similarly to what we did with groups, we now define a map from a ring to
another which has the property of carrying one ring structure to the other.

Definition 3.7. Let R, S be two rings. A map f: R — S satisfying
1. f(a+b) = f(a) + f(b) (this is thus a group homomorphism)
2. f(ab) = f(a)f(b)
3. f(1r) =1s

for a,b € R is called ring homomorphism.

We do need to mention that f(1g) = 1lg, otherwise, since a ring is not
a group under multiplication, strange things can happen. For example, if Zg
denotes the integers mod 6, the map f : Zg — Zg, n — 3n satisfies that
fm+n)=3(m+n) =3m+3n= f(m)+ f(n), and f(n)f(m) = 3m3n =
3mn = f(mn) but f(1) # 1 and f is not a ring homomorphism. Notice the
difference with group homomorphism: from f(a + b) = f(a) + f(b), we deduce
that f(a+0) = f(a) + f(0), that is f(a) = f(a) + f(0). Now because f(a) is
invertible, it must be that f(0) = 0! Once we reach f(a) = f(a)f(1), because
f(a) does not have to be invertible, we cannot conclude!

In 1847, the mathematician Lamé announced a solution of Fermat’s Last
Theorem, but Liouville noticed that the proof depended on a unique decompo-
sition into primes, which he thought was unlikely to be true. Though Cauchy
supported Lamé, Kummer was the one who finally published an example in
1844 (in an obscure journal, rediscovered in 1847) to show that the uniqueness
of prime decompositions failed. Two years later, he restored the uniqueness by
introducing what he called “ideal complex numbers” (today, simply “ideals”)
and used it to prove Fermat’s Last Theorem for all n < 100 except n = 37, 59,
67 and 74.

It is Dedekind who extracted the important properties of “ideal numbers”,
defined an “ideal” by its modern properties: namely that of being a subgroup
which is closed under multiplication by any ring element. Here is what it gives
in modern terminology:
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Definition 3.8. Let Z be a subset of a ring R. Then an additive subgroup of
R having the property that

ra€eZforaeZ, reR
is called a left ideal of R. If instead we have
are T fora€eZ, reR

we say that we have a right ideal of R. If an ideal happens to be both a right
and a left ideal, then we call it a two-sided ideal of R, or simply an ideal of R.

Example 3.3. The even integers 2Z = {2n, n € Z} form an ideal of Z. The
set of polynomials in R[X] with constant coefficient zero form an ideal of R[X].

Of course, for any ring R, both R and {0} are ideals. We thus introduce
some terminology to precise whether we consider these two trivial ideals.

Definition 3.9. We say that an ideal Z of R is proper if Z # R. We say that
is it non-trivial if Z # R and Z # 0.

If f: R— S is a ring homomorphism, we define the kernel of f in the most

natural way:
Kerf={reR, f(r)=0}

Since a ring homomorphism is in particular a group homomorphism, we already
know that f is injective if and only if Kerf = {0}. It is easy to check that Ker f
is a proper two-sided ideal:

e Kerf is an additive subgroup of R.
e Take a € Kerf and r € R. Then

f(ra) = f(r)f(a) = 0 and f(ar) = f(a)f(r) =0
showing that ra and ar are in Kerf.

e Then Kerf has to be proper (that is, Kerf # R), since f(1) = 1 by
definition.

We can thus deduce the following (extremely useful) result.

Lemma 3.1. Suppose f : R — S is a ring homomorphism and the only two-
sided ideals of R are {0} and R. Then f is injective.

Proof. Since Ker f is a two-sided ideal of R, then either Kerf = {0} or Kerf = R.
But Kerf # Rsince f(1) = 1 by definition (in words, Ker f is a proper ideal). O

At this point, it may be worth already noticing the analogy between on the
one hand rings and their two-sided ideals, and on the other hand groups and
their normal subgroups.
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e Two-sided ideals are stable when the ring acts on them by multiplication,
either on the right or on the left, and thus

rar~ eI, ael, reR,

while normal subgroups are stable when the groups on them by conjuga-
tion
ghg ' € H, he H, ge G (H<Q).

e Groups with only trivial normal subgroups are called simple. We will not
see it formally here, but rings with only trivial two-sided ideals as in the
above lemma are called simple rings.

e The kernel of a group homomorphism is a normal subgroup, while the
kernel of a ring homomorphism is an ideal.

e Normal subgroups allowed us to define quotient groups. We will see now
that two-sided ideals will allow to define quotient rings.

3.2 Quotient rings

Let Z be a proper two-sided ideal of R. Since Z is an additive subgroup of R
by definition, it makes sense to speak of cosets r +Z of Z, r € R. Furthermore,
a ring has a structure of abelian group for addition, so Z satisfies the definition
of a normal subgroup. From group theory, we thus know that it makes sense to
speak of the quotient group

R/I ={r+1I, r € R},

group which is actually abelian (inherited from R being an abelian group for
the addition).
We now endow R/Z with a multiplication operation as follows. Define

(r+I)(s+I)=rs+1I.

Let us make sure that this is well-defined, namely that it does not depend on
the choice of the representative in each coset. Suppose that

r+I=r+7I, s+IT=5+1I,
sothata=1"—reZandb=s —se€Z. Now
r's'=(a+r)(b+s)=ab+as+rb+rsers+1

since ab, as and rb belongs to Z using that a,b € Z and the definition of ideal.
This tells us 7’s’ is also in the coset rs + Z and thus multiplication does not
depend on the choice of representatives. Note though that this is true only
because we assumed a two-sided ideal Z, otherwise we could not have concluded,
since we had to deduce that both as and rb are in Z.
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Definition 3.10. The set of cosets of the two-sided ideal Z given by
R/I={r+Z, re R}
is a ring with identity 1 4+ Z and zero element O + Z called a quotient ring.

Note that we need the assumption that Z is a proper ideal of R to claim that
R/T contains both an identity and a zero element (if R = Z, then R/Z has only
one element).

Example 3.4. We have that mZ is an ideal of Z, and we can consider the
quotient ring Z/mZ which is the ring of integers modulo m.

We are now ready to state a factor theorem and a 1st isomorphism theorem
for rings, the same way we did for groups. It may help to keep in mind the
analogy between two-sided ideals and normal subgroups mentioned above.

Assume that we have a ring R which contains a proper two-sided ideal Z,
another ring S, and f : R — S a ring homomorphism. Let 7 be the canonical
projection from R to the quotient group R/Z:

rR—1+3s

|

R/T

We would like to find a ring homomorphism f : R/Z — S that makes the
diagram commute, namely

f(a) = f(n(a))
for all a € R.
Theorem 3.2. (Factor Theorem for Rings). Any ring homomorphism f

whose kernel K contains T can be factored through R/I; In other words, there
is a unique ring homomorphism f : R/ZT — S such that fom = f. Furthermore

1. f is an epimorphism if and only if f is.
2. f is a monomorphism if and only if K = T.
3. f is an isomorphism if and only if f is an epimorphism and K = T.

Proof. Since we have already done the proof for groups with many details, here
we will just mention a few important points in the proof.

Let a +Z € R/T such that m(a) = a+ Z for a € R. We define

Jla+1) = f(a).

This is the most natural way to do it, however, we need to make sure that this
is indeed well-defined, in the sense that it should not depend on the choice of
the representative taken in the coset. Let us thus take another representative,
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say b € a+ Z. Since a and b are in the same coset, they satisfy a —b € Z C K,
where K = Ker(f) by assumption. Since a — b € K, we have f(a —b) = 0 and
thus f(a) = f(b).

Now that f is well defined, it is an easy computation to check that f inherits
the property of ring homomorphism from f.

The rest of the proof works exactly the same as for groups. O

The first isomorphism theorem for rings is similar to the one for groups.

Theorem 3.3. (1st Isomorphism Theorem for Rings). If f: R — S isa
ring homomorphism with kernel K, then the image of f is isomorphic to R/ K :

Im(f) ~ R/Ker(f).
Proof. We know from the Factor Theorem that
f: R/Ker(f)— S

is an isomorphism if and only if f is an epimorphism, and clearly f is an epi-
morphism on its image, which concludes the proof. O

Example 3.5. This example uses a polynomial ring, we will study polynomial
rings in more details later. Consider the map f : R[X] — C, f(p(X)) = p(4),
that is, f takes a polynomial p(X) with real coefficients, and evaluate this
polynomial in i (i> = —1). This map is surjective (for 2 = a + ib € C, take
the polynomial p(X) = a + bX) and its kernel is formed by polynomials which,
when evaluated in i, are giving 0, meaning that ¢ is a root of the polynomial, or
equivalently that (X2 + 1) is a factor of the polynomial. Thus Ker(f) = (X2 +
DRIX] = {p(X) = (X2 +1)q(X), ¢(X) € R[X]}. Using the first isomorphism
for rings, we have
R[X]/(X? 4+ 1)R[X] ~ C.

We note that we have a second and a third isomorphism theorem for rings.
The second one says that the quotient rings (S + I)/I and S/(S N I) are iso-
morphic. The third says that if J is an ideal of R, and [ is an ideal of R such
that J C I C R, then (R/J)/(I/J) is isomorphic to R/I (note that I/J is an
ideal of R/J).

3.3 Maximal and prime ideals
Here are a few special ideals.

Definition 3.11. The ideal generated by the non-empty set X of R is the
smallest ideal of R that contains X. It is denoted by (X). It is the collection
of all finite sums of the form , r;x;s;.

Definition 3.12. An ideal generated by a single element a is called a principal
ideal, denoted by (a).
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Definition 3.13. A maximal ideal in the ring R is a proper ideal that is not
contained in any strictly larger proper ideal.

One can prove that every proper ideal is contained in a maximal ideal, and
that consequently every ring has at least one maximal ideal. We skip the proof
here, since it heavily relies on set theory, requires many new definitions and the
use of Zorn’s lemma.

Instead, let us mention that a correspondence Theorem exists for rings, (a
version also exists for groups, sometimes it is also called a 4rth isomorphism
theorem) since we will need it for characterizing maximal ideals.

Theorem 3.4. (Correspondence Theorem for rings). If 7 is a two-sided
ideal of a ring R, then the canonical map

m:R— R/T

sets up a one-to-one correspondence between the set of all (right/left/two-sided)
ideals of R containing I and the set of all (right/left/two-sided) ideals of R/T.

Proof. Let us thus define two sets, 57 is the set of ideals of R containing 7, and
Sy is the set of ideals of R/Z. We define two maps:

Fi8 > S, J> f(J)={a+T, a€ J}CR/I,

and
g:S—81, T—g(J)={a, a+Z €T} CR.

We have that f(J) and g(J) are ideals of R/Z and R respectively. Indeed:

e Consider first f(J). It is a set of cosets, where each coset is such that
its representative is chosen in J. It is thus a subset of R/Z. To prove
that it is an additive subgroup, we take a +Z and o’ + Z both in f(J),
and we check whether (a +7Z) — (¢’ +Z) is in f(J). We know that the
difference of two cosets is again a coset in a quotient ring, and that in
particular (a +Z) — (¢’ +Z) = (a — a’) + Z. Now both a,da’ € J, and
J itself is an ideal, so @ — a’ € J. Then we need to check the property
of closure under multiplication. Let (r + Z) be an element of R/Z, then
(r+Z)(a+ZI)=ra+7Z, this is how we multiply two cosets. Then for J a
left ideal, ra € J and f(J) is a left ideal.

e Consider next g(J). Take a,b € g(J), we need to check that a — b is such
thata—b+Z € J. Buta—-b+Z=(a+Z)— (b+7Z)€ J since J is an
ideal. Then take a in g(J) and r € R, we need to check that ra + Z is in
J. But again, ra +Z = (r + Z)(a + Z) which is in J if J is a left ideal,
showing that g(J) is a left ideal.

We will prove that f and g are inverse of each other, and therefore we have
a bijection between the two sets.

If 7 € Sy, then f(g(J)) ={a+Z, acg(T)}={a+Z, a+ZTeT}=J.
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If J €Sy, then g(f(J)) ={a, a+Z € f(J)} ={a, a+ZT=b0+7Z, be J} =
{a, a€b+7ZI, be J}.
The last set contains J, but we need to show that it is actually J. We have

ac€b+I=(a—-b)eICcJ=a=b+J=acl
This concludes the proof. O
Here is a characterization of maximal ideals in commutative rings.

Theorem 3.5. Let M be an ideal in the commutative ring R. We have
M mazimal <= R/M is a field.

Proof. Let us start by assuming that M is maximal. Since R/M is a ring, we
need to find the multiplicative inverse of a+M € R/M assuming that a+M # 0
in R/M, that is a ¢ M. Since M is maximal, the ideal Ra + M has to be R
itself, since M C Ra+ M. Thus 1 € Ra+ M = R, that is

l=ra+m, re R, me M.

Then
r+M)(a+M)=ra+M=(1-m)+ M=1+M

proving that r + M is (a + M)~

Conversely, let us assume that R/M is a field. First we notice that M must
be a proper ideal of R, since if M = R, then R/M contains only one element
and 1 =0.

Let N be an ideal of R such that M € N C R and N # R. We have to
prove that M = N to conclude that M is maximal.

By the correspondence Theorem for rings, we have a one-to-one correspon-
dence between the set of ideals of R containing M, and the set of ideals of R/M.
Since N is such an ideal, its image 7(N) € R/M must be an ideal of R/M, and
thus must be either {0} or R/M (since R/M is a field). The latter yields that
N = R, which is a contradiction, letting as only possibility that 7(N) = {0},
and thus N = M, which completes the proof. O

To define a prime ideal, we get some inspiration from prime numbers. If p
is a prime number, then we have that p|ab implies p|a or p|b.

Definition 3.14. A prime ideal in a commutative ring R is a proper ideal P
of R such that for any a,b € R, we have that

abe P=a€PorbeP.

Example 3.6. For the ring R = Z, the ideal Z = 5Z is principal and prime.
To see that Z is prime, suppose ab € 5Z. Then ab is a multiple of 5, that is
ab = 5c for some ¢ € Z. But since 5 is prime, and it divides ab, it must be that
5 divides a or 5 divides b, meaning that either a € 5Z or b € 5Z.
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Here is again a characterization of a prime ideal P of R in terms of its

quotient ring R/P.

Theorem 3.6. If P is an ideal in the commutative ring R

P is a prime ideal <= R/P is an integral domain.

Proof. Let us start by assuming that P is prime. It is thus proper by definition,
and R/P is a ring. We must show that the definition of integral domain holds,
namely that

(a+P)b+P)=0+P=a+P=Porb+P=P

Since
(a+P)b+P)=ab+P=0+P,

we must have ab € P, and thus since P is prime, either a € P or b € P, implying
respectively that either a + P =P or b+ P = P.

Conversely, if R/P is an integral domain, then P must be proper (otherwise
1 = 0). We now need to check the definition of a prime ideal. Let us thus
consider ab € P, implying that

(a+P)(b+P)=ab+P=0+P.
Since R/P is an integral domain, either a + P = P or b+ P = P, that is
a€ PorbeP,
which concludes the proof. O

Example 3.7. For the ring R = Z, we get another proof that the ideal Z = 5Z
is prime. We have that Z/57Z is the ring of integers modulo 5, which is an
integral domain.

Corollary 3.7. In a commutative ming, a maximal ideal is prime.

Proof. If M is maximal, then R/M is a field, and thus an integral domain, so
that M is prime. O

Corollary 3.8. Let f: R — S be an epimorphism of commutative rings.
1. If S is a field, then Kerf is a maximal ideal of R.
2. If S is an integral domain, then Kerf is a prime ideal of R.

Proof. By the first isomorphism theorem for rings, we have that

S ~ R/Kerf.
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Example 3.8. Consider the ring Z[X] of polynomials with coefficients in Z, and
the ideal generated by the indeterminate X, that is (X) is the set of polynomials
with constant coefficient 0. Clearly (X) is a proper ideal. To show that it is
prime, consider the following ring homomorphism:

¢ : ZIX] = Z, f(X) = o(f(X)) = f(0).
We have that (X) = Kerp which is prime by the above corollary.

3.4 Polynomial rings

For this section, we assume that R is a commutative ring. Set R[X] to be the
set of polynomials in the indeterminate X with coefficients in R. It is easy to
see that R[X] inherits the properties of ring from R.

We define the evaluation map E,, which evaluates a polynomial f(X) €
R X]inz € R, as
We can check that F, is a ring homomorphism.

The degree of a polynomial is defined as usual, that is, if p(X) = ag+a1 X +
..+ a, X" with a,, # 0, then deg(p(X)) = degp = n. By convention, we set
deg(0) = —o0.

Euclidean division will play an important role in what will follow. Let us
start by noticing that there exists a polynomial division algorithm over R[X],

namely: if f,g € R[X], with g monic, then there exist unique polynomials ¢
and r in R[X] such that

f=qg+r, degr <degg.

The requirement that g is monic comes from R being a ring and not necessarily
a field. If R is a field, g does not have to be monic, since one can always multiply
g by the inverse of the leading coefficient, which is not possible if R is not a
field.

Example 3.9. Take f(X) = X2 —2 and g(X) = 2X — 1. It is not possible to
divide f(X) by g(X) in Z[X]. If it were, then
f(X)=X?=2=(q+aX)2X —1) + 10

and the coefficient of X2 is 1 on the left hand side, and 2¢; on the right hand
side. Now in Z, there is no solution to the equation 2g; = 1. Of course, this is
possible in Q, by taking ¢; = 1/2!

This gives the following:

Theorem 3.9. (Remainder Theorem). If f € R[X]|, a € R, then there
exists a unique polynomial ¢(X) € R[X] such that

fF(X) = a(X)(X —a) + f(a).
Hence f(a) =0 <= X —a | f(X).
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Proof. Since (X — a) is monic, we can do the division
f(X) = q(X)(X = a) +r(X).

But now since degr < deg(X — a), (X ) must be a constant polynomial, which
implies that

and thus
f(X) = q(X)(X —a) + f(a)
as claimed. Furthermore, we clearly have that
fla)=0 <= X —a| f(X).
O

The following result sounds well known, care should be taken not to gener-
alize it to rings which are not integral domain!

Theorem 3.10. If R is an integral domain, then a non-zero polynomial f in
R[X] of degree n has at most n roots in R, counting multiplicity.

Proof. If f has no root in R[X], then we are done. Let us thus assume that f
has a root a; in R, that is f(a;) = 0. Then

X —ar | f(X)
by the remainder Theorem above, meaning that
fX) = qX)(X —a)™

where ¢1(a1) # 0 and degqy = n — ny since R is an integral domain. Now if
ay is the only root of f in R, then n; < n and we are done. If not, consider
similarly ag # a1 another root of f, so that

0= f(az) = qi(az)(az — a1)™.

Since R is an integral domain, we must have that ¢1(a2) = 0, and thus as is a
root of ¢1(X). We can repeat the process with ¢;(X) instead of f(X): since ag
is a root of g1 (X), we have

@ (X) = 2(X)(X —ag)"™

with g2(az) # 0 and degga = n —ny — ny. By going on iterating the process,
we obtain

fX) = X)X —a)™
= @X)(X —a2)"™(X —a))™

(X —a)" (X —a2)™ - (X = ag)"™ - ¢(X)
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where ¢(X) is a polynomial with no root in R, possibly constant, and
n>mny+ng+ -+ ng.

Since R is an integral domain, the only possible roots of f are aq,...,ax, k < n,
and the number of roots counting multiplicity is less than n. O

Example 3.10. Take R = Zg the ring of integers modulo 8. Consider the
polynomial
J(x) = X,

It is easy to check that is has 4 roots: 0,2,4,6. This comes from the fact that
Zsg is not an integral domain.

3.5 Unique factorization and Euclidean division

In this section, all rings are assumed to be integral domains.
Let us start by defining formally the notions of irreducible and prime. The
elements a, b, ¢, u in the definitions below all belong to an integral domain R.

Definition 3.15. The elements a, b are called associate if a = ub for some unit
U.

Definition 3.16. Let a be a non-zero element which is not a unit. Then a is
said to be irreducible if ¢ = bec implies that either b or ¢ must be a unit.

Definition 3.17. If R is an integral domain, then an irreducible element of
R[X] is called an irreducible polynomial.

Remark. In the case of a field F, then units of F[X] are non-zero elements of F'.
Then we get the more familiar definition that an irreducible element of F[X] is
a polynomial of degree at least 1, that cannot be factored into two polynomials
of lower degree.

Definition 3.18. Let a be a non-zero element which is not a unit. Then a is
called prime if whenever a | be, then a | bor a | c.

Between prime and irreducible, which notion is the stronger? The answer is
in the proposition below.

Proposition 3.11. If a is prime, then a is irreducible.

Proof. Suppose that a is prime, and that a = bc. We want to prove that either
b or ¢ is a unit. By definition of prime, we must have that a divides either b or
c. Let us say that a divides b. Thus

b=ad=b=bcd=b(l—cd)=0=cd=1

using that R is an integral domain, and thus c is a unit. The same argument
works if we assume that a divides ¢, and we conclude that a is irreducible. [
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Example 3.11. Consider the ring
R =17Z[V=3] = {a+ibV3, a,b € Z}.
We want to see that 2 is irreducible but not prime.

e Let us first check that 2 is indeed irreducible. Suppose that
2 = (a+1ibV3)(c+1idV3).
Since 2 is real, it is equal to its conjugate, and thus
22 = (a + ibV/3)(c + idV3)(a — ibV3)(c — idV/3)

implies that
4 = (a% 4 3b%)(c? + 3d?).

We deduce that a? + 3b% must divide 4, and it cannot possibly be 2, since
we have a sum of squares in Z. If a + 3b% = 4, then ¢® + 3d> = 1 and
d =0, c = +1. Vice versa if ¢? + 3d?> = 4 then a? + 3b%> = 1, and b = 0,
a = £1. In both cases we get that one of the factors of 2 is unit, namely
+1.

e We now have to see that 2 is not a prime. Clearly
2] (1+4V3)(1—iV3) =4.
But 2 divides neither 1+ iv/3 nor 1 — iv/3.

We can see from the above example that the problem which arises is the lack
of unique factorization.

Definition 3.19. A unique factorization domain (UFD) is an integral domain
R satisfying that

1. every element 0 # a € R can be written as a product of irreducible factors
P1,-..Pn Up to a unit u, namely:

a=upi...pn.
2. The above factorization is unique, that is, if

a=UpP1...Pp =0q1 --.qm

are two factorizations into irreducible factors p; and ¢; with units u,v,
then n = m and p; and ¢; are associate for all 7.

We now prove that the distinction between irreducible and prime disappear
in a unique factorization domain.

Proposition 3.12. In a unique factorization domain R, we have that a is
irreducible if and only if a is prime.
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Proof. We already know that prime implies irreducible. Let us show that now,
we also have irreducible implies prime.

Take a to be irreducible and assume that a | bc. This means that be = ad
for some d € R. Using the property of unique factorization, we decompose d, b
and ¢ into products of irreducible terms (resp. d;, b;, ¢; up to units u, v, w):

a-udy---d. =vby---bs-wey ... .

Since the factorization is unique, a must be associate to some either b; or ¢;,
implying that a divides b or ¢, which concludes the proof. O

We now introduce a notion which is actually stronger than being a unique
factorization domain (though we will skip the proof that a PID is actually a
UFD).

Definition 3.20. A principal ideal domain (PID) is an integral domain in which
every ideal is principal.

Determining whether a ring is a principal ideal domain is in general quite
a tough question. It is still an open conjecture (called Gauss’s conjecture) to
decide whether there are infinitely many real quadratic fields which are principal
(we use the terminology “principal” for quadratic fields by abuse of notation, it
actually refers to their ring of integers, that is rings of the form either Z[v/d] if
d=2or3 mod4or Z[H—z‘/g] else).

One way mathematicians have found to approach this question is to actually
prove a stronger property, namely whether a ring R is Euclidean.

Definition 3.21. Let R be an integral domain. We say that R is a Euclidean
domain if there is a function ¥ from R\{0} to the non-negative integers such
that

a=bg+r abeR b#0, qr€R

where either r = 0 or U(r) < U(b).

When the division is performed with natural numbers, it is clear what it
means that » < b. When we work with polynomials instead, we can say that
degr < degb. The function ¥ generalizes these notions.

Theorem 3.13. If R is a Fuclidean domain, then R is a principal ideal domain.

Proof. Let T be an ideal of R. If Z = {0}, it is principal and we are done. Let
us thus take Z # {0}. Consider the set

{U(b), be T, b#0}.

It is included in the non-negative integers by definition of ¥, thus it contains a
smallest element, say n. Let 0 # b € Z such that ¥(b) = n.
We will now prove that Z = (b). Indeed, take a € Z, and compute

a=bg+r
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where 7 =0 or ¥(r) < ¥(b). This yields
r=a—bgel

and U(r) < ¥(b) cannot possibly happen by minimality of n, forcing r to be
zero. This concludes the proof. O

Example 3.12. Consider the ring
ZIVd) = {a +bVd, a,b € Z}

with
U(a+bVd) = |a® — b2d|.

We will show that we have a Euclidean domain for d = —2,—1, 2.
Note that Z[v/d] is an integral domain. Take a, 3 # 0 in Z[V/d]. Now we
would like to perform the division of a by 8 to get something of the form

a=P3q+r, q,rEZ[\/g].

Since Z[v/d] is not a field, there is no reason for this division to give a result in
Z[\/d) (that is, ¢, € Z[\/d]), however, we can compute the division in Q(v/d):

a/B=¢,

with ¢’ = & + V/dy with z,y rational. Let us now approximate z,y by integers
Zo, Yo, namely take xq, 3o such that

|z — ol <1/2, |y — ol <1/2.

Take
q =m0 +yoVd, 7= B((x — x0) + (y — yo)Vd),

where clearly g € Z[\/d], then

Ba+r = Blzo+yoVd) + B((z — o) + (y — yo)Vd)
= Bla+yVd) =8¢ =a,

which at the same time shows that r € Z[v/d]. We are left to show that ¥(r) <
U(3). We have

¥ (r) V(B)¥((x = w0) + (y — yo) V)
U (B)|(z = w0)* = d(y — yo)*|
< W(B)[|lx — zol* + |dlly — yol?]
< w(p) (3 +la)

showing that Z[v/d] is indeed a Euclidean domain for d = —2, —1, 2.
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ring ED | PID | UFD | ID
Z yes | yes yes | yes
F[X], F afield | yes | yes yes | yes
Z[i] yes | yes | yes | yes
ZIVE2] yes | yes | yes | yes
Z[/3] yes | yes | yes | yes
Z[(1+iv19)/2] | no | yes | yes | yes
Z[X] no | no yes | yes
Z[/—3] no | no no | yes

Table 3.1: Examples of rings and their properties.
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Below is a summary of the ring hierarchy (recall that PID and UFD stand

respectively for principal ideal domain and unique factorization domain):

integral domains D UFD D PID D Euclidean domains

Note that though the Euclidean division may sound like an elementary con-
cept, as soon as the ring we consider is fancier than Z, it becomes quickly a
difficult problem. We can see that from the fact that being Euclidean is stronger

than being a principal ideal domain.

Remark. All the inclusions are strict, since it can be checked that Z[/—3] is an
integral domain but is not a UFD (we saw that 2 is irreducible but not prime),
Z[X] is a UFD which is not PID (it is enough to show that the ideal (2, X) is
not principal), while Z[(1+4iv/19)/2] is a PID which is not a Euclidean domain.
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The main definitions and results of this chapter are

e (2.1-2.2). Definitions of: ring, zero divisor, unit,
integral domain, division ring, subring, characteristic,
ring homomorphism, ideal, quotient ring. Factor and
1st Isomorphism Theorem for rings.

e (2.3-2.4). Correspondence Theorem for rings. Defi-
nitions of: principal ideal, maximal ideal, prime ideal,
the characterization of the two latter in the commu-
tative case.

e (2.5). Polynomial Euclidean division, number of
roots of a polynomial.

e (2.6). Definitions of: associate, prime, irreducible,
unique factorization domain, principal ideal domain,
Euclidean domain. Connections between prime and
irreducible. Hierarchy among UFD, PID and Eu-
clidean domains.




Chapter

Exercises on Ring Theory

Exercises marked by (*) are considered difficult.

4.1 Rings, ideals and homomorphisms

Exercise 37. Let R be a ring and x € R. Suppose there exists a positive
integer n such that 2™ = 0. Show that 1 + x is a unit, and so is 1 — «.
Answer. The element 1 — x is a unit since
I-z)(l+z+...+2" 1) =1
The element 1+ x is a unit since
A+2)1l—24+2? -2 . 2" ) =1
Exercise 38. Let R be a commutative ring, and I be an ideal of R. Show that
VT :={z € R| there exists m € N* such that ™ € I}
is an ideal of R. Answer.

e Clearly, 0 € VI. If a € VI, then a™ € I for some m > 1. Then
(—a)™ = (=1)™a™ € I, so —a € VI. Now let a,b € VI, so a™ € I
for some n > 1 and b™ € I for some m > 1. Now let us show that

n—+m '
n: jin+m—j
(U, + b)n+m € I. We have (CL + b)n+m' = Z ma]b + J
j=0

(because R is commutative). Now if 0 < j < n, we have n + m — j > m,
so b"t™m=J € [ in this case (since b™ € I = b' € I for i > m). If
n+1<j<n+m, wehave j > n+ 1, so @/ € I in this case (since
a"el=a €] fori> n). Therefore all the terms in the previous sum
are in I and thus (a4 b)"*™ € I. Hence a +b € v/I. We just proved that
VT is an additive subgroup of R.

85
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e Now we have to check the second property. Let a € v/I, and r € R. We
have a™ € T for some n > 1. Now (ar)™ = a™r™ because R is commutative,
so (ar)™ € I and therefore ar € v/I. Therefore v/T is an ideal of R.

Exercise 39. (*) Determine all rings of cardinality p and characteristic p.

Answer. Let R be a ring of characteristic p. Consider the ring homomorphism:
@ : Z — R, the characteristic of R is the natural number p such that pZ is the
kernel of ¢. We can now factorize ¢ in an injective map Z/pZ — R. If now we
further assume that R has cardinality p, we have that Z/pZ and R have same
cardinality, and thus we have an isomorphism. This means that the only ring
of cardinality and characteristic p is Z/pZ.

Exercise 40. Let R be a commutative ring. Let
Nil(R) ={r € R|3n > 1,7" = 0}.
1. Prove that Nil(R) is an ideal of R.
2. Show that if r € Nil(R), then 1 — r is invertible in R.

3. Show, with a counter-example, that Nil(R) is not necessarily an ideal
anymore if R is not commutative.

1. e Clearly, 0 € Nil(R). If a € Nil(R), then a™ = 0 for some m > 1.
Then (—a)™ = (=1)™a™ = 0, so —a € Nil(R). Now let a,b €
Nil(R), so a™ = 0 for some n > 1 and b™ = 0 for some m > 1.
Now let us show that (a + b)"*™ = 0. We have (a + b)"T™ =

n+m

n! , .
Z - a?b""77 (because R is commutative). Now if
= Jjl(n+m—j)!

0<j<n,wehave n4+m—j > m, so p*t™m=J = () in this case (since
b =0=b=0fori>m). fn+1<j<n+m, wehavej >n+1,
so a/ = 0 in this case (since a” = 0 = a’ = 0 for i > n). Therefore
all the terms in the previous sum are 0 and thus (a + b)"*™ = 0.
Hence a + b € Nil(R). We just proved that Nil(R) is an additive
subgroup of R.

e Now we have to check the second property. Let a € Nil(R), and
r € R. We have a" = 0 for some n > 1. Now (ar)™ = a™r™ because
R is commutative, so (ar)™ = 0 and therefore ar € Nil(R). Therefore
Nil(R) is an ideal of R.

2. If r € Nil(R), then r™ = 0 for some m > 1. Then 147+ 724 ... +7m"1
is the inverse of 1 — r since

(=) (1+rdr2 4 ™) = 12 e ™ 2 ™ = 1™ = 1,
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3. If R = My(C), let a = (

0 0

0 1
0 0
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)andb:(o O). Then a2 = b2 =

10

( 00 ), so a,b € Nil(R), but a + b does not lie in Nil(R), since (a +

b)2 = I, and I} = I, for all n > 1.

Exercise 41. Determine whether the following maps are ring homomorphisms:

1. f1:Z — Z with fi(z) =2z + 1.

2. fo:Z — 7 with fo(x) = 22

3. f3:Z/15Z — Z/15Z with f3(z) = 4a.

4. fy: ZJ15Z — Z/15Z with fy(z) = 6z.

Answer.

1. Since f1(0) =1, f1, f cannot be a ring homomorphism.

2. Since fo(z +y) = 2% +y? + 22y # 22 + y? = fo(x) + f2(y), fo cannot be

a ring homomorphism.

3. Since f3(xy) = 4oy # xy = f3(x)f3(y), f3 cannot be a ring homomor-

phism.

4. Since f4(1) # 1, f4 cannot be a ring homomorphism!

Exercise 42. Consider the ring M, (R) of real n x n matrices. Are the trace
and the determinant ring homomorphisms?

Answer. The trace is not multiplicative, since

(3 9) o

The determinant is not additive:

R

(s )
e 9)-

—_

=)

Thus none of them are ring homomorphisms.

4.2 Quotient rings

Exercise 43. Compute the characteristic of the following rings R:

1. R =17, = Z/nZ,
2. R=17/2Z x 7.JAZ x 7/10Z,
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3. R=12Z[j]/(2 — 5j), where j denotes a primitive 3rd root of unity (53 =1
but j2 # 1).

Answer. In this exercise, we use the notation T to denote an element in the
quotient group involved.

1. For 1 <m < n—1, we have m-1 = m # 0, since m is not a multiple of
n. But n-1=mn = 0. So char(R) = n by definition of the characteristic.

2. If m € Z, we will denote by respectively by m, [m], 7 its class modulo 2,4
and 10. Assume that m(1,[1],1) = (0,[0],0). Then we have

(mv [m]’ m) = (07 [0]7 6)7

which implies that m is a multiple of 2,4 and 10. Hence m is a multiple
of the lowest common multiple of 2,4 and 10, which is 20. Conversely,
20(1, [1],1) = (20, [20],20) = (0,[0],0). Therefore char(R) = 20.

3. Here we have (2 —55)(2 —552) = 4—10(j + j2) + 2553 = 4+ 10 + 25 = 39.
Hence 39 -1 =39 = (2—5j) - (2—552) = 0. Then the characteristic of
R is finite and divides 39. Therefore the characteristic of R is 1,3,13 or
39. Now let ¢ = char(R) > 0. Since ¢ - 1g lies in the ideal (2 — 55), then
c¢=(2-5j7)(a+bj) for some a,b, € Z. Hence |c|* = |2 — 55||a + bj|?, so

c? =39(a* + b — ab)

and therefore 39|c2. The only value (among 1,3,13 and 39) for which it
is possible is ¢ = 39. Thus char(R) = 39.

Exercise 44. Prove the following isomorphisms:
1. Z[i)/(1 +1i) ~ Z/2Z.
2. ZIX]|/(n,X) ~Z/nZ, n > 2.
3. ZIX]/(n) = (Z/nZ)[X], n > 2.

Answer.

1. Consider ¢ : m € Z — m-1g = m € Z[i]/(1 + ¢). This is a ring
homomorphism. It is surjective. Indeed, let a +bi € Z[i]/(1 + i). We
have a+bi = (b—a)+a(l+i) = b—a, so a+b = ¢(b —a). Now
ker(p) = ¢ - Z, where ¢ = char(R) by definition of the characteristic. By
direct computation, we get char(R) = 2 (since R is not the trivial ring and
(1414)(1—1i) = 2). Therefore ker(¢) = 2Z. Now use the first isomorphism
theorem.

2. Let us consider ¢ : P € Z[X] — P(0) € Z /nZ. This is the composition
of the ring homomorphisms P € Z[X] — P(0) € Zand m € Z — m €
Z /nZ, so it is a ring homomorphism. It is surjective: for m € Z /nZ, we
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have p(m) = T, where m € Z C Z[X] is considered as a constant poly-
nomial. Now we have ker(yp) = {P € Z[X]|P(0) is divisible by n}, which
equals (n, X). Hence ker(p) = (n, X); now applying the first isomorphism
theorem, we get the result.

3. Consider the reduction modulo n, ¢ : P € Z[X] — P € (Z /nZ)[X]. We
have that ¢ is a ring homomorphism. It is surjective: let f € (Z /nZ)[X],
f=ao+ -+anX",a; € Z. Thenlet P=ao+ -+ a,X™ € Z[X]. By
definition of P, we have ¢(P) = f. Now let us compute the kernel of ¢.
Let P=ao+ - +anX™. Wehave o(P) =0 <= Go+---+a,X™ =0.
This is equivalent to say that @; = 0 for all 4, which means that n|a; for
all 4. This is equivalent to say that P =n - @, for some Q € Z[X]. Hence
ker(¢) = (n). Now apply the first isomorphism theorem.

4.3 Maximal and prime ideals

Exercise 45. Show that a non-zero principal ideal is prime if and only if it is
generated by a prime element.

Answer. If p is prime then consider the principal ideal pR = {pr, r € R}. To
show that pR is prime, we have to show that if ab € pR then either a or b is in
pR. If ab € pR, then ab = pr for some r € R. Since p is prime, it has to divide
either a or b, that is either a = pa’ or b = pb’. Conversely, take a principal ideal
cR which is prime, thus if ab € cR, either a € cR, that is a = ca/, or b € cR,
that is b = cb’. We have thus shown that if c|ab, then c|a or c|b.

Exercise 46. Are the ideals (X, X + 1), (5,X2 +4) and (X% + 1,X + 2)
prime/maximal in Z[X]?

Answer.

o [ =(X,X+1)=Zsince 1 = (X + 1) — X, thus I is not a proper ideal
and cannot be prime.

e Consider Z[X]/(5, X2+4) ~ Z5[X]/(X?+4), and (X2+4) = (X —-1)(X+1)
is reducible modulo 5, thus this quotient is not an integral domain and
thus the ideal is not prime.

o I =(X?+1,X+2)=(X+2,5) since (X +2)2 —4(X+2)+5=X?+1,
then Z[X]/I ~ Z5[X]/(X + 2) where X + 2 is irreducible in Z5[X] thus
the quotient is a field and I is maximal.

Exercise 47. 1. Consider the ring R = Z[i] and the ideal I = (1 +4) in R.
Is I prime? Is I maximal?

2. Consider the ring R = Z[j] and the ideal I = (2 — rj) in R. Is I prime?
Is I maximal? (j is a primitive 3rd root of unity.)
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3. Consider the ring R = Z[X] and the ideal I = (n) in R. Is I prime? Is I
maximal?
Answer.

1. We have Z[i]/(1+14) ~ Z /2Z, which is a field, so (1+14) is maximal (hence
prime).

2. The characteristic of Z[j]/(2 — 55) is 39 which is not a prime number (see
Exercise 43), so Z[j]/(2 — 57) is not an integral domain. Hence (2 — 5j) is
not prime and therefore not maximal.

3. We have Z[X]/(n) ~ Z /nZ[X]. We have that Z /nZ[X] is an integral
domain if and only if Z /nZ is an integral domain. Hence (n) is a prime
ideal if and only if n is a prime number. It is never maximal since Z /n Z[X]|
is not a field for any n (X has no inverse).

Exercise 48. Consider the ring R = K[X] and the ideal of R given by I =
(X —a), where K is a field, and @ € K. Is I maximal? Is I prime?

Answer. Let ¢ : P € K[X] — P(a) € K. This is a ring homomorphism,
which is surjective: indeed, if A € K, then p(A) = A, where A € K C K[X]
is viewed as a constant polynomial. We now determine the kernel of . Let
P € K[X]. We can write P = Q(X).(X — a) + ¢, for some @ € K[X] and
¢ € K. (Indeed, it suffices to proceed to the division of P by X — a. The
remainder is either zero or has degree < 1, that is degree 0, which means that the
remainder is a constant.) Then we have P(a) = Q(a).(a —a)+ ¢ = ¢. Therefore,
p(P)=0 <= ¢=0 <= P is a multiple of X — a. Hence ker(y) = (X —a)
(the principal ideal generated by X — a). Using the first isomorphism theorem,
we get that K[X]/(X —a) ~ K. Since K[X]/(X —a) ~ K, and K is a field,
then K[X]/(X —a) is a field as well and (X — a) is maximal (hence prime).

Exercise 49. (*) Let R be a commutative ring. Let
Nil(R) ={r € R|3n > 1,7" = 0}.
1. Show that Nil(R) is contained in the intersection of all prime ideals of R.
2. Show that Nil(R/Nil(R)) = 0.
Answer.

1. Let a € Nil(R), so a™ = 0 for some n > 1. Assume that there is a prime
ideal p for which a ¢ p. We have a™ = 0 € p. Since a™ = a"*.a and p is a
prime ideal, then a”~! € p or a € p. By assumption on a, we have a ¢ p,
so necessarily a” ! € p. But "' = a""2.a € p, so a" 2 € p for the same
reasons, and by induction we get a € p, a contradiction. Therefore a lies
in all the prime ideals of R.
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2. Let @ € Nil((R/Nil(R))), so @* = 0 for some n > 1. Then a™ = 0, which
means that a” € Nil(R) by definition of the quotient ring. Therefore,
there exists m > 1 such that (a™)™ = 0, so ™™ = 0, which means that
a € Nil(R). Hence a = 0.

Exercise 50. Let R = Z[X], and let n > 1.
e Show that the ideal (n, X) is given by

(n, X) = {p(X) € Z[X], p(0) is a multiple of n}.

e Show that (n, X) is a prime ideal if and only if n is a prime number.
Answer.

e Let P € (n,X), so P =nQ + X.Qa for some Q1,Q2 € Z[X]. Then
P(0) = n.Q1(0) € nZ (we have Q1(0) € Z since Q1 € Z[X]), that is
) is a multiple of n. Conversely, assume that P € Z[X] is such that
) is a multiple of n, and write P = a, X" + -+- + a1 X + ap. Then
) = ao, so by assumption ay = n.m for some m € Z. Now we get
P=nm+ X.(a, X" 1+ +aX +a),s0 Pe(nX).

P(0
P(0
P(0

e If n is not a prime number, then we can write n = ny.ng, 1 < ny,ny < n.
Now consider P; = ny, P» = ng € Z[X] (constant polynomials). We have
Pi.P; = ny.ng =n € (n,X), but P, and P, are not elements of (n, X).
Indeed, P1(0) = n; and P»(0) = ng, but ny,ns are not multiples of n
by definition. Hence (n, X) is not a prime ideal. Now assume that n is
equal to a prime number p. First of all, (p, X) # Z[X], because 1 ¢ (p, X)
for example. Now let P, P, € Z[X] such that P1.P, € (p,X). Then
(Py.P,)(0) is a multiple of p by the previous point, that is p|P;(0).P5(0).
Since p is a prime number, it means that p|P;(0) or p|P(0), that is Py €
(p,X) or Py € (p,X). Hence (p, X) is a prime ideal.

4.4 Polynomial rings
Exercise 51. Set

E={p(X) € Z[X]|p(0)iseven }, F={¢(X) € Z[X] | q(0) = 0(mod 3)}.

Check that E and F are ideals of Z[X] and compute the ideal E + F. Further-
more, check that E - F C {p(X) € Z[X]|p(0) = 0 (mod 6) }.

Answer. If p(X) = >"p_  pp X", then

E={p(X) € Z[X] | po € 2Z} and F ={q(X) € Z[X] | qo € 3Z}.

Thus E and F are ideals of Z[X] since 27 and 3Z are ideals of Z. If 3, ¢, X* =
(Zk kak) . (Zk quk), then ¢y = pogo and thus

E-FC{p(X) € ZIX] | po € 2Z - 3Z} = {p(X) € Z[X] | po € 6Z}.
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Similarly,

E+F ={p(X) € ZIX] | po € 2Z+ 3L} =, {p(X) € Z[X]|po € Z} = Z[X].

Bezout

Exercise 52. Show that if F is a field, the units in F[X] are exactly the nonzero
elements of F.

Answer. Let f(X) € F[X] of degree n, f(X) is a unit if and only if there exists
another polynomial g(X) € F[X] of degree m such that f(X)g(X) = 1. Because
F is a field (thus in particular an integral domain), f(X)g(X) is a polynomial
of degree n 4+ m, thus for the equality to hold, since 1 is a polynomial of degree
0, we need n +m = 0, thus both f and g are constant, satisfying fg = 1, that
is they are units of F', that is nonzero elements since F' is a field.

Exercise 53. There exists a polynomial of degree 2 over Z/47Z which has 4
roots. True or false? Justify your answer.

Answer. Take the polynomial 2X (X — 1).
Exercise 54. Let R be a ring, and let a # 0 € R such that there exists an

integer n with @™ = 0. Show that R* C (R[X])* and R* # R[X]*, where R*
and R[X]* denote respectively the group of units of R and R[X].

Answer. Clearly R* C R[X]*. We need to show that the inclusion is
strict, that this, there exists an element in R[X]* which is not in R*. Take
f(X)=1-aX. We have

(1—aX)(1+aX + (aX)*+...+ (aX)" 1) =1,

and f does not belong to R*.

4.5 Unique factorization and Euclidean division

Exercise 55.

Show that the ideal generated by 2 and X in the ring of polynomials Z[X] is
not principal.

Answer. We have that
(2, X) ={2r(X) + Xs(X), r(X),s(X) € Z[X]},
and assume there exists f(X) € Z[X] such that (2, X) = (f(X)). Since 2 €

(f(X)), then f(X) = £2. Since X € (f(X)), we should have X = +2¢(X), a
contradiction.
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Exercise 56. Show that Z[v/3] is a Euclidean domain. (Hint: use the same
technique as the one seen for Z[v/2].)
Answer. Consider the ring

ZIV3] = {a+bV3, a,b € Z}

with
U(a+bV3) = |a® — 3b?|.

Take o, B # 0 in Z[v/3], and compute the division in Q(v/3):
Oé/ﬁ = qla

with ¢ = x 4+ /3y with z,y rational. Let us now approximate z,y by integers
To, Yo, namely take xq, 3o such that

[z — 20 <1/2, |y —yol < 1/2.

Take
q =0+ yoV3, r=B((z — x0) + (y — y0)V3),

where clearly ¢ € Z[v/3], then

Ba+r = Blxo+yoV3)+ B((z — x0) + (y — y0)V3)
= Blx+yV3) =8¢ =a,

which at the same time shows that r € Z[v/3]. So far this is exactly what we
did in the lecture. We are also left to show that ¥(r) < ¥(5). We have

W) = WU~ o)+ (v~ )V
U(B)|(x — x0)® = d(y — yo)?|
< WAl — a0l +ldlly - ol
< w0 (3 +15)

though here we notice that we get  +[3|% = 1. So this is not good enough! But
let us see what this means to get 1: this happens only if |2 — 2¢|? = |y — yo|? =
1/4, otherwise we do get something smaller than 1. Now if |z —x¢|? = |y—yo|? =
1/4, we have from the second equation that

1 3

U= U(B)|(z —z0)” —dly —y0)*| = ¥(B)| 7 — 7 <1

and we are done.
Exercise 57. True/False.

Q1. Let R be aring, and let r be an element of R. If r is not a zero divisor of
R, then r is a unit.
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Q2. A principal ideal domain is a euclidean domain.

Q3. Hamilton’s quaternions form a skew field.

Q4. The quotient ring Z[i]/(1 + ¢)Z[i] is a field.

Q5. A field is a unique factorization domain.

Q6. The ideal (5,4) in Z[d] is principal.

Q7. Let R be a ring, and M be a maximal ideal, then R/M is an integral
domain.

Answer.

Q1. This cannot be true in general! Take Z for example. It has no zero divisor,
but apart 1 and -1, no other element is a unit! Actually, in an integral
domain, there is no zero divisor, which does not mean it is an field.

Q2. A euclidean domain is a principal ideal domain. The converse is not true.
Take for example Z[(1 +i4/19)/2]. It is a principal ideal domain, but it is
not a euclidean domain.

Q3. A skew field is non-commutative field. Hamilton’s quaternions are non-
commutative, and we have seen that every non-zero quaternion is invert-
ible (the inverse of ¢ is its conjugate divided by its norm).

Q4. It is actually a field. You can actually compute the quotient ring explicitly,
this shows that Z[]/(1 + )Z[i] is isomorphic to the field of 2 elements
{0,1}.This can be done using the first isomorphism for rings.

Q5. It is true since every non-zero element is a unit by definition.

Q6. It is true! With no computation, we know it from the theory: We know
that Z[i] is a euclidean domain, and thus it is a principal domain, so all
ideals including this one are principal.

Q7. Who said the ring R is commutative? The statement seen in the class is

about commutative rings. It is not true for non-commutative rings. Here
is an example: take R = Z + Zi + Zj + Zk (ring of quaternions with
integer coefficients), pR is a maximal ideal of R (p odd prime) but R/pR
is actually isomorphic to M(Z/pZ) and thus is not an integral domain.
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