
Chapter 1
Algebraic Numbers and Algebraic
Integers

1.1 Rings of integers

We start by introducing two essential notions: number field and algebraic inte-
ger.

Definition 1.1. A number field is a finite field extension K of Q, i.e., a field
which is a Q-vector space of finite dimension. We note this dimension [K : Q]
and call it the degree of K.

Examples 1.1. 1. The field

Q(
√

2) = {x + y
√

2 | x, y ∈ Q}

is a number field. It is of degree 2 over Q. Number fields of degree 2 over
Q are called quadratic fields. More generally, Q[X]/f(X) is a number field
if f is irreducible. It is of degree the degree of the polynomial f .

2. Let ζn be a primitive nth root of unity. The field Q(ζn) is a number field
called cyclotomic field.

3. The fields C and R are not number fields.

Let K be a number field of degree n. If α ∈ K, there must be a Q-linear
dependency among {1, α, . . . , αn}, since K is a Q-vector space of dimension n.
In other words, there exists a polynomial f(X) ∈ Q[X] such that f(X) = 0.
We call α an algebraic number.

Definition 1.2. An algebraic integer in a number field K is an element α ∈ K
which is a root of a monic polynomial with coefficients in Z.
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Example 1.2. Since X2−2 = 0,
√

2 ∈ Q(
√

2) is an algebraic integer. Similarly,
i ∈ Q(i) is an algebraic integer, since X2 +1 = 0. However, an element a/b ∈ Q
is not an algebraic integer, unless b divides a.

Now that we have the concept of an algebraic integer in a number field, it is
natural to wonder whether one can compute the set of all algebraic integers of
a given number field. Let us start by determining the set of algebraic integers
in Q.

Definition 1.3. The minimal polynomial f of an algebraic number α is the
monic polynomial in Q[X] of smallest degree such that f(α) = 0.

Proposition 1.1. The minimal polynomial of α has integer coefficients if and
only if α is an algebraic integer.

Proof. If the minimal polynomial of α has integer coefficients, then by definition
(Definition 1.2) α is algebraic.

Now let us assume that α is an algebraic integer. This means by definition
that there exists a monic polynomial f ∈ Z[X] such that f(α) = 0. Let g ∈ Q[X]
be the minimal polyonial of α. Then g(X) divides f(X), that is, there exists a
monic polynomial h ∈ Q[X] such that

g(X)h(X) = f(X).

(Note that h is monic because f and g are). We want to prove that g(X)
actually belongs to Z[X]. Assume by contradiction that this is not true, that
is, there exists at least one prime p which divides one of the denominators of
the coefficients of g. Let u > 0 be the smallest integer such that pug does
not have anymore denominators divisible by p. Since h may or may not have
denominators divisible by p, let v ≥ 0 be the smallest integer such that pvh has
no denominator divisible by p. We then have

pug(X)pvh(X) = pu+vf(X).

The left hand side of this equation does not have denominators divisible by p
anymore, thus we can look at this equation modulo p. This gives

pug(X)pvh(X) ≡ 0 ∈ Fp[X],

where Fp denotes the finite field with p elements. This give a contradiction,
since the left hand side is a product of two non-zero polynomials (by minimality
of u and v), and Fp[X] does not have zero divisor.

Corollary 1.2. The set of algebraic integers of Q is Z.

Proof. Let a
b ∈ Q. Its minimal polynomial is X − a

b . By the above proposition,
a
b is an algebraic integer if and only b = ±1.

Definition 1.4. The set of algebraic integers of a number field K is denoted
by OK . It is usually called the ring of integers of K.
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The fact that OK is a ring is not obvious. In general, if one takes a, b two
algebraic integers, it is not straightforward to find a monic polynomial in Z[X]
which has a + b as a root. We now proceed to prove that OK is indeed a ring.

Theorem 1.3. Let K be a number field, and take α ∈ K. The two statements
are equivalent:

1. α is an algebraic integer.

2. The Abelian group Z[α] is finitely generated (a group G is finitely generated
if there exist finitely many elements x1, ..., xs ∈ G such that every x ∈ G
can be written in the form x = n1x1 + n2x2 + ... + nsxs with integers
n1, ..., ns).

Proof. Let α be an algebraic integer, and let m be the degree of its minimal
polynomial, which is monic and with coefficients in Z by Proposition 1.1. Since
all αu with u ≥ m can be written as Z-linear combination of 1, α, . . . , αm−1, we
have that

Z[α] = Z⊕ Zα⊕ . . .⊕ Zαm−1

and {1, α, . . . , αm−1} generate Z[α] as an Abelian group. Note that for this
proof to work, we really need the minimal polynomial to have coefficients in Z,
and to be monic!

Conversely, let us assume that Z[α] is finitely generated, with generators
a1, . . . , am, where ai = fi(α) for some fi ∈ Z[X]. In order to prove that α is
an algebraic integer, we need to find a monic polynomial f ∈ Z[X] such that
f(α) = 0. Let N be an integer such that N > deg fi for i = 1, . . . , m. We have
that

αN =
m∑

j=1

bjaj , bj ∈ Z

that is

αN −
m∑

j=1

bjfj(α) = 0.

Let us thus choose

f(X) = XN −
m∑

j=1

bjfj(X).

Clearly f ∈ Z[X], it is monic by the choice of N > deg fi for i = 1, . . . , m, and
finally f(α) = 0. So α is an algebraic integer.

Example 1.3. We have that

Z[1/2] =
{a

b
| b is a power of 2

}

is not finitely generated, since 1
2 is not an algebraic integer. Its minimal poly-

nomial is X − 1
2 .
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Corollary 1.4. Let K be a number field. Then OK is a ring.

Proof. Let α, β ∈ OK . The above theorem tells us that Z[α] and Z[β] are finitely
generated, thus so is Z[α, β]. Now, Z[α, β] is a ring, thus in particular α±β and
αβ ∈ Z[α, β]. Since Z[α±β] and Z[αβ] are subgroups of Z[α, β], they are finitely
generated. By invoking again the above theorem, α± β and αβ ∈ OK .

Corollary 1.5. Let K be a number field, with ring of integers OK . Then
QOK = K.

Proof. It is clear that if x = bα ∈ QOK , b ∈ Q, α ∈ OK , then x ∈ K.
Now if α ∈ K, we show that there exists d ∈ Z such that αd ∈ OK (that

is αd = β ∈ OK , or equivalently, α = β/d). Let f(X) ∈ Q[X] be the minimal
polynomial of α. Choose d to be the least common multiple of the denominators
of the coefficients of f(X), then (recall that f is monic!)

ddeg(f)f

(
X

d

)
= g(X),

and g(X) ∈ Z[X] is monic, with αd as a root. Thus αd ∈ OK .

1.2 Norms and Traces

Definition 1.5. Let L/K be a finite extension of number fields. Let α ∈ L.
We consider the multiplication map by α, denoted by µα, such that

µα : L → L

x 7→ αx.

This is a K-linear map of the K-vector space L into itself (or in other words, an
endomorphism of the K-vector space L). We call the norm of α the determinant
of µα, that is

NL/K(α) = det(µα) ∈ K,

and the trace of α the trace of µα, that is

TrL/K(α) = Tr(µα) ∈ K.

Note that the norm is multiplicative, since

NL/K(αβ) = det(µαβ) = det(µα ◦ µβ) = det(µα) det(µβ) = NL/K(α)NL/K(β)

while the trace is additive:

TrL/K(α+β) = Tr(µα+β) = Tr(µα+µβ) = Tr(µα)+Tr(µβ) = TrL/K(α)+TrL/K(β).

In particular, if n denotes the degree of L/K, we have that

NL/K(aα) = anNL/K(α), TrL/K(aα) = aTrL/K(α), a ∈ K.
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Indeed, the matrix of µa is given by a diagonal matrix whose coefficients are all
a when a ∈ K.

Recall that the characteristic polynomial of α ∈ L is the characteristic poly-
nomial of µα, that is

χL/K(X) = det(XI − µα) ∈ K[X].

This is a monic polynomial of degree n = [L : K], the coefficient of Xn−1 is
−TrL/K(α) and its constant term is ±NL/K(α).

Example 1.4. Let L be the quadratic field Q(
√

2), K = Q, and take α ∈
Q(
√

2). In order to compute µα, we need to fix a basis of Q(
√

2) as Q-vector
space, say

{1,
√

2}.
Thus, α can be written α = a + b

√
2, a, b ∈ Q. By linearity, it is enough to

compute µα on the basis elements:

µα(1) = a + b
√

2, µα(
√

2) = (a + b
√

2)
√

2 = a
√

2 + 2b.

We now have that

(
1,

√
2

)(
a 2b
b a

)

︸ ︷︷ ︸
M

=
(

a + b
√

2, 2b + a
√

2
)

and M is the matrix of µα in the chosen basis. Of course, M changes with a
change of basis, but the norm and trace of α are independent of the basis. We
have here that

NQ(
√

2)/Q(α) = a2 − 2b2, TrQ(
√

2)/Q(α) = 2a.

Finally, the characteristic polynomial of µα is given by

χL/K(X) = det
(

XI −
(

a b
2b a

))

= det
(

X − a −b
−2b X − a

)

= (X − a)(X − a)− 2b2

= X2 − 2aX + a2 − 2b2.

We recognize that the coefficient of X is indeed the trace of α with a minus
sign, while the constant coefficient is its norm.

We now would like to give another equivalent definition of the trace and
norm of an algebraic integer α in a number field K, based on the different
roots of the minimal polynomial of α. Since these roots may not belong to K,
we first need to introduce a bigger field which will contain all the roots of the
polynomials we will consider.
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Definition 1.6. The field F̄ is called an algebraic closure of a field F if all the
elements of F̄ are algebraic over F and if every polynomial f(X) ∈ F [X] splits
completely over F̄ .

We can think that F̄ contains all the elements that are algebraic over F , in
that sense, it is the largest algebraic extension of F . For example, the field of
complex numbers C is the algebraic closure of the field of reals R (this is the
fundamental theorem of algebra). The algebraic closure of Q is denoted by Q̄,
and Q̄ ⊂ C.

Lemma 1.6. Let K be number field, and let K̄ be its algebraic closure. Then
an irreducibe polynomial in K[X] cannot have a multiple root in K̄.

Proof. Let f(X) be an irreducible polynomial in K[X]. By contradiction, let
us assume that f(X) has a multiple root α in K̄, that is f(X) = (X−α)mg(X)
with m ≥ 2 and g(α) 6= 0. We have that the formal derivative of f ′(X) is given
by

f ′(X) = m(X − α)m−1g(X) + (X − α)mg′(X)
= (X − α)m−1(mg(X) + (X − α)g′(X)),

and therefore f(X) and f ′(X) have (X − α)m−1, m ≥ 2, as a common factor
in K̄[X]. In other words, α is root of both f(X) and f ′(X), implying that the
minimal polynomial of α over K is a common factor of f(X) and f ′(X). Now
since f(X) is irreducible over K[X], this common factor has to be f(X) itself,
implying that f(X) divides f ′(X). Since deg(f ′(X)) < deg(f(X)), this forces
f ′(X) to be zero, which is not possible with K of characteristic 0.

Thanks to the above lemma, we are now able to prove that an extension of
number field of degree n can be embedded in exactly n different ways into its
algebraic closure. These n embeddings are what we need to redefine the notions
of norm and trace. Let us first recall the notion of field monomorphism.

Definition 1.7. Let L1, L2 be two field extensions of a field K. A field
monomorphism σ from L1 to L2 is a field homomorphism, that is a map from
L1 to L2 such that, for all a, b ∈ L1,

σ(ab) = σ(a)σ(b)
σ(a + b) = σ(a) + σ(b)

σ(1) = 1
σ(0) = 0.

A field homomorphism is automatically an injective map, and thus a field
monomorphism. It is a field K-monomorphism if it fixes K, that is, if σ(c) = c
for all c ∈ K.
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Example 1.5. We consider the number field K = Q(i). Let x = a + ib ∈ Q(i).
If σ is field Q-homomorphism, then σ(x) = a + σ(i)b since it has to fix Q.
Furthermore, we need that

σ(i)2 = σ(i2) = −1,

so that σ(i) = ±i. This gives us exactly two Q-monomorphisms of K into
K̄ ⊂ C, given by:

σ1 : a + ib 7→ a + ib, σ2 : a + ib 7→ a− ib,

that is the identity and the complex conjugation.

Proposition 1.7. Let K be a number field, L be a finite extension of K of degree
n, and K̄ be an algebraic closure of K. There are n distinct K-monomorphisms
of L into K̄.

Proof. This proof is done in two steps. In the first step, the claim is proved in
the case when L = K(α), α ∈ L. The second step is a proof by induction on
the degree of the extension L/K in the general case, which of course uses the
first step. The main idea is that if L 6= K(α) for some α ∈ L, then one can find
such intermediate extension, that is, we can consider the tower of extensions
K ⊂ K(α) ⊂ L, where we can use the first step for K(α)/K and the induction
hypothesis for L/K(α).
Step 1. Let us consider L = K(α), α ∈ L with minimal polynomial f(X) ∈
K[X]. It is of degree n and thus admits n roots α1, . . . , αn in K̄, which are
all distinct by Lemma 1.6. For i = 1, . . . , n, we thus have a K-monomorphism
σi : L → K̄ such that σi(α) = αi.
Step 2. We now proceed by induction on the degree n of L/K. Let α ∈ L and
consider the tower of extensions K ⊂ K(α) ⊂ L, where we denote by q, q > 1,
the degree of K(α)/K. We know by the first step that there are q distinct K-
monomomorphisms from K(α) to K̄, given by σi(α) = αi, i = 1, . . . , q, where
αi are the q roots of the minimal polynomial of α.

Now the fields K(α) and K(σi(α)) are isomorphic (the isomorphism is given
by σi) and one can build an extension Li of K(σi(α)) and an isomorphism
τi : L → Li which extends σi (that is, τi restricted to K(α) is nothing else than
σi):

L Li

K(α) K(σi(α))

K

n
q

-τi

n
q

-
σi

q

´
´

´
´́

q

Now, since
[Li : K(σi(α))] = [L : K(α)] =

n

q
< n,
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we have by induction hypothesis that there are n
q distinct K(σi(α))-monomorphisms

θij of Li into K̄. Therefore, θij ◦ τi, i = 1, . . . , q, j = 1, . . . , n
q provide n distinct

K-monomorphisms of L into K̄.

Corollary 1.8. A number field K of degree n over Q has n embeddings into C.

Proof. The proof is immediate from the proposition. It is very common to find
in the literature expressions such as “let K be a number field of degree n, and
σ1, . . . , σn be its n embeddings”, without further explanation.

Definition 1.8. Let L/K be an extension of number fields, and let α ∈ L. Let
σ1, . . . , σn be the n field K-monomorphisms of L into K̄ ⊂ C given by the above
proposition. We call σ1(α), . . . , σn(α) the conjugates of α.

Proposition 1.9. Let L/K be an extension of number fields. Let σ1, . . . , σn be
the n distinct embeddings of L into C which fix K. For all α ∈ L, we have

NL/K(α) =
n∏

i=1

σi(α), TrL/K(α) =
n∑

i=1

σi(α).

Proof. Let α ∈ L, with minimal polynomial f(X) ∈ K[X] of degree m, and let
χK(α)/K(X) be its characteristic polynomial.

Let us first prove that f(X) = χK(α)/K(X). Note that both polynomials are
monic by definition. Now the K-vector space K(α) has dimension m, thus m
is also the degree of χK(α)/K(X). By Cayley-Hamilton theorem (which states
that every square matrix over the complex field satisfies its own characteristic
equation), we have that

χK(α)/K(µα) = 0.

Now since
χK(α)/K(µα) = µχK(α)/K(α),

(see Example 1.7), we have that α is a root of χK(α)/K(X). By minimality
of the minimal polynomial f(X), f(X) | χK(α)/K(X), but knowing that both
polynomials are monic of same degree, it follows that

f(X) = χK(α)/K(X). (1.1)

We now compute the matrix of µα in a K-basis of L. We have that

{1, α, . . . , αm−1}
is a K-basis of K(α). Let k be the degree [L : K(α)] and let {β1, . . . , βk} be a
K(α)−basis of L. The set {αiβj}, 0 ≤ i < m, 1 ≤ j ≤ k is a K-basis of L. The
multiplication µα by α can now be written in this basis as

µα =




B 0 . . . 0
0 B 0
...

. . .
0 0 . . . B




︸ ︷︷ ︸
k times

, B =




0 1 . . . 0
0 0 0
...

. . .
0 0 1
a0 a1 . . . am−1



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where ai, i = 0, . . . , m− 1 are the coefficients of the minimal polynomial f(X)
(in other words, B is the companion matrix of f). We conclude that

NL/K(α) = NK(α)/K(α)k,

TrL/K(α) = kTrK(α)/K(α),

χL/K(X) = (χK(α)/K)k = f(X)k,

where last equality holds by (1.1). Now we have that

f(X) = (X − α1)(X − α2) · · · (X − αm) ∈ Q̄[X]

= Xm −
m∑

i=1

αiX
m−1 + . . .±

m∏

i=1

αi ∈ Q[X]

= Xm − TrK(α)/K(α)Xm−1 + . . .±NK(α)/K(α) ∈ Q[X]

where last equality holds by (1.1), so that

NL/K(α) =

(
m∏

i=1

αi

)k

,

TrL/K(α) = k

m∑

i=1

αi.

To conclude, we know that the embeddings of K(α) into Q̄ which fix K are
determined by the roots of α, and we know that there are exactly m distinct
such roots (Lemma 1.6). We further know (see Proposition 1.7) that each of
these embeddings can be extended into an embedding of L into Q̄ in exactly k
ways. Thus

NL/K(α) =
n∏

i=1

σi(α),

TrL/K(α) =
n∑

i=1

σi(α),

which concludes the proof.

Example 1.6. Consider the field extension Q(
√

2)/Q. It has two embeddings

σ1 : a + b
√

2 7→ a + b
√

2, σ2 : a + b
√

2 7→ a− b
√

2.

Take the element α = a + b
√

2 ∈ Q(
√

2). Its two conjugates are σ1(α) = α =
a + b

√
2, σ2(α) = a− b

√
2, thus its norm is given by

NQ(
√

2)/Q(α) = σ1(α)σ2(α) = a2 − 2b2,

while its trace is
TrQ(

√
2)/Q(α) = σ1(α) + σ2(α).

It of course gives the same answer as what we computed in Example 1.4.
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Example 1.7. Consider again the field extension Q(
√

2)/Q. Take the element
α = a+ b

√
2 ∈ Q(

√
2), whose characteristic polynomial is given by, say, χ(X) =

p0 + p1X + p2X
2. Thus χ(α) = p0 + p1(a + b

√
2) + p2(a2 + 2ab

√
2 + 2b2) =

(p0 + p1a + p2a
2 + p22b2) + (p1b + p22ab)

√
2, and

µχ(α) =
(

p0 + p1a + p2a
2 + p22b2 2bp1 + 4p2ab

p1b + p22ab p0 + p1a + p2a
2 + p22b2

)

(see Example 1.4). On the other hand, we have that

χ(µα) = p0I + p1

(
a 2b
b a

)
+ p2

(
a 2b
b a

)2

.

Thus we have that µχ(α) = χ(µα).

Example 1.8. Consider the number field extensions Q ⊂ Q(i) ⊂ Q(i,
√

2).
There are four embeddings of Q(i,

√
2), given by

σ1 : i 7→ i,
√

2 7→
√

2
σ2 : i 7→ −i,

√
2 7→

√
2

σ3 : i 7→ i,
√

2 7→ −
√

2
σ4 : i 7→ −i,

√
2 7→ −

√
2

We have that

NQ(i)/Q(a + ib) = σ1(a + ib)σ2(a + ib) = a2 + b2, a, b ∈ Q

but

NQ(i,
√

2)/Q(a + ib) = σ1(a + ib)σ2(a + ib)σ3(a + ib)σ4(a + ib)

= σ1(a + ib)σ2(a + ib)σ1(a + ib)σ2(a + ib)
= σ1(a + ib)2σ2(a + ib)2

= (a2 + b2)2

since a, b ∈ Q.

Corollary 1.10. Let K be a number field, and let α ∈ K be an algebraic integer.
The norm and the trace of α belong to Z.

Proof. The characteristic polynomial χK/Q(X) is a power of the minimal poly-
nomial (see inside the proof of the above theorem), thus it belongs to Z[X].

Corollary 1.11. The norm NK/Q(α) of an element α of OK is equal to ±1 if
and only if α is a unit of OK .
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Proof. Let α be a unit of OK . We want to prove that its norm is ±1. Since α
is a unit, we have that by definition 1/α ∈ OK . Thus

1 = NK/Q(1) = NK/Q(α)NK/Q(1/α)

by multiplicativity of the norm. By the above corollary, both NK/Q(α) and its
inverse belong to Z, meaning that the only possible values are ±1.

Conversely, let us assume that α ∈ OK has norm ±1, which means that the
constant term of its minimal polynomial f(X) is ±1:

f(X) = Xn + an−1X
n−1 + · · · ± 1.

Let us now consider 1/α ∈ K. We see that 1/α is a root of the monic polynomial

g(X) = 1 + an−1X + · · · ±Xn,

with g(X) ∈ Z[X]. Thus 1/α is an algebraic integer.

Let us prove a last result on the structure of the ring of integers. Recall that a
group G is finitely generated if there exist finitely many elements x1, . . . , xs ∈ G
such that every x ∈ G can be written in the form x = n1x1 + . . . + nsxs,
with n1, . . . , ns integers. Such a group is called free if it is isomorphic to Zr,
r ≥ 0, called the rank of G. We now prove that OK is not only a ring, but
it is furthermore a free Abelian group of rank the degree of the corresponding
number field.

Proposition 1.12. Let K be a number field. Then OK is a free Abelian group
of rank n = [K : Q].

Proof. We know by Corollary 1.5 that there exists a Q-basis {α1, . . . , αn} of
K with αi ∈ OK for i = 1, . . . , n (take a basis of K with elements in K,
and multiply the elements by the proper factors to obtain elements in OK as
explained in Corollary 1.5). Thus, an element x ∈ OK can be written as

x =
n∑

i=1

ciαi, ci ∈ Q.

Our goal is now to show that the denominators of ci are bounded for all ci and
all x ∈ OK . To prove this, let us assume by contradiction that this is not the
case, that is, that there exists a sequence

xj =
n∑

i=1

cijαi, cij ∈ Q

such that the greatest denominator of cij , i = 1, . . . , n goes to infinity when
j →∞. Let us look at the norm of such an xj . We know that NK/Q(xj) is the
determinant of an n × n matrix with coefficients in Q[cij ] (that is coefficients
are Q-linear combinations of cij). Thus the norm is a homogeneous polynomial
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in cij , whose coefficients are determined by the field extension considered. Fur-
thermore, it belongs to Z (Corollary 1.10). Since the coefficients are fixed and
the norm is in Z, the denominators of cij cannot grow indefinitely. They have
to be bounded by a given constant B. Thus we have shown that

OK ⊂ 1
B

n⊕

i=1

Zαi.

Since the right hand side is a free Abelian group, OK is free. Furthermore, OK

contains n elements which are linearly independent over Q, thus the rank of OK

is n.

Example 1.9. Let ζp be a primitive pth root of unity. One can show that the
ring of integers of Q(ζp) is

Z[ζp] = Z⊕ Zζp · · · ⊕ Zζp−2
p .

Proposition 1.13. Let K be a number field. Let α ∈ K. If α is the zero of a
monic polynomial f with coefficients in OK , then α ∈ OK . We say that OK is
integrally closed.

Proof. Let us write f(X) = Xm + am−1X
m−1 + . . . + a0, with ai ∈ OK . We

know by the above proposition that OK is a free abelian group which is finitely
generated. Since

αm = −am−1α
m−1 − · · · − a0,

we have that OK [α] is finitely generated as Abelian group. Thus Z[α] ⊂ OK [α]
is also finitely generated, and α is an algebraic integer by Theorem 1.3.

The main definitions and results of this chapter are

• Definition of a number field K of degree n and its ring
of integers OK .

• Properties of OK : it is a ring with a Z-basis of n
elements, and it is integrally closed.

• The fact that K has n embeddings into C.

• Definition of norm and trace, with their characteri-
zation as respectively product and sum of the conju-
gates.


