
Chapter 2
Ideals

For the whole chapter, K is a number field of degree n and O = OK is its ring
of integers.

2.1 Introduction

Historically, experience with unique prime factorization of integers led mathe-
maticians in the early days of algebraic number theory to a general intuition
that factorization of algebraic integers into primes should also be unique. A
likely reason for this misconception is the actual definition of what is a prime
number. The familiar definition is that a prime number is a number which is
divisible only by 1 and itself. Since units in Z are ±1, this definition can be
rephrased as: if p = ab, then one of a or b must be a unit. Equivalently over
Z, a prime number p satisfies that if p|ab, then p|a or p|b. However, these two
definitions are not equivalent anymore over general rings of integers. In fact,
the second property is actually stronger, and if one can get a factorization with
“primes” satisfying this property, then factorization will be unique, which is
not the case for “primes” satisfying the first property. To distinguish these two
definitions, we say in modern terminology that a number satisfying the first
property is irreducible, while one satisfying the second property is prime.

Consider for example Z[
√−6]. We have that

6 = 2 · 3 = −√−6
√−6.

We get two factorizations into irreducibles (we have a factorization but it is not
unique). However this is not a factorization into primes, since

√−6 divides 2 · 3
but

√−6 does not divide 2 and does not divide 3 either. So in the case where
primes and irreducibles are different, we now have to think what we are looking
for when we say factorization. When we attempt to factorize an element x in a
domain D, we naturally mean proper factors a, b such that x = ab, and if either
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16 CHAPTER 2. IDEALS

of these factors can be further decomposed, we go on. That means, we look for
writing

x = a1a2 . . . an

into factors that cannot be reduced any further. The definition of irreducible
captures what it means for the factorization to terminate: one of the term has
to be a unit.

Thus what we are interested in is to understand the factorization into irre-
ducibles inside rings of integers. Before starting, let us make a few more remarks.
Note first that this factorization into irreducibles may not always be possible
in general rings, since the procedure may continue indefinitely. However the
procedure does stop for rings of integers. This comes from the fact that rings of
integers are, again in modern terminology, what we call noetherian rings. The
big picture can finally be summarized as follows:

• In general rings, factorization even into irreducibles may not be possible.

• In rings of integers, factorization into irreducibles is always possible, but
may not be unique.

• For rings of integers which furthermore have a generalized Euclidean di-
vision, then the notions of prime and irreducible are equivalent, thus fac-
torization is unique.

Let us now get back to the problem we are interested in, namely, factorization
into product of irreducibles in rings of integers.

Example 2.1. Let K = Q(
√−5) be a quadratic number field, with ring of

integers OK = Z[
√−5], since d ≡ 3 (mod 4). Let us prove that we do not have

a unique factorization into product of irreducibles in Z[
√−5]. We have that

21 = 7 · 3 = (1 + 2
√−5)(1− 2

√−5)

with 3, 7, 1 ± 2
√−5 irreducible. Let us show for example that 3 is irreducible.

Let us write
3 = αβ, α, β ∈ OK .

We need to see that either α or β is a unit (that is an invertible element of OK).
The norm of 3 is given by

9 = NK/Q(3) = NK/Q(α)NK/Q(β),

by multiplicativity of the norm. By Corollary 1.10, we know that NK/Q(α), NK/Q(β) ∈
Z. Thus we get a factorization of 9 in Z. There are only two possible factoriza-
tions over the integers:

• NK/Q(α) = ±1, NK/Q(β) = ±9 (or vice versa): by Corollary 1.11, we
know that the element of OK of norm ±1 is a unit, and we are done.
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Figure 2.1: Ernst Kummer (1810-1893) and Richard Dedekind (1831-1916)

• NK/Q(α) = ±3, NK/Q(β) = ±3 (or vice versa): however, we will now show
that there is no element of OK with norm ±3. Let us indeed assume that
there exists a + b

√−5 ∈ OK , a, b ∈ Z such that

N(a + b
√−5) = a2 + 5b2 = ±3.

We can check that this equation has no solution modulo 5, yielding a
contradiction.

On the other hand, we will see that the ideal 21OK can be factorized into 4
prime ideals p1, p2, p3, p4 such that

7OK = p1p2, 3OK = p3p4, (1 + 2
√

5)OK = p1p3, (1− 2
√

5)OK = p2p4,

namely
21OK = p1p2p3p4.

After the realization that uniqueness of factorization into irreducibles is
unique in some rings of integers but not in others, the mathematician Kum-
mer had the idea that one way to remedy to the situation could be to work with
what he called ideal numbers, new structures which would enable us to regain
the uniqueness of factorization. Ideals numbers then got called ideals by an-
other mathematician, Dedekind, and this is the terminology that has remained.
Ideals of O will the focus of this chapter.

Our goal will be to study ideals of O, and in particular to show that we get
a unique factorization into a product of prime ideals. To prove uniqueness, we
need to study the arithmetic of non-zero ideals of O, especially their behaviour
under multiplication. We will recall how ideal multiplication is defined, which



18 CHAPTER 2. IDEALS

will appear to be commutative and associative, with O itself as an identity.
However, inverses need not exist, so we do not have a group structure. It turns
out that we can get a group if we extend a bit the definition of ideals, which we
will do by introducing fractional ideals, and showing that they are invertible.

2.2 Factorization and fractional ideals

Let us start by introducing the notion of norm of an ideal. We will see that in
the case of principal ideals, we can relate the norm of the ideal with the norm
of its generator.

Definition 2.1. Let I be a non-zero ideal of O, we define the norm of I by

N(I) = |O/I|.

Lemma 2.1. Let I be a non-zero ideal of O.

1. We have that
N(αO) = |NK/Q(α)|, α ∈ O.

2. The norm of I is finite.

Proof. 1. First let us notice that the formula we want to prove makes sense,
since N(α) ∈ Z when α ∈ OK , thus |N(α)| is a positive integer. By
Proposition 1.12, O is a free Abelian group of rank n = [K : Q], thus
there exists a Z-basis α1, . . . , αn of O, that is O = Zα1 ⊕ · · ·Zαn. It is
now a general result on free Abelian groups that if H is as subgroup of
G, both of same rank, with Z-bases x1, . . . , xr and y1, . . . , yr respectively,
with yi =

∑
j aijxj , then |G/H| = | det(aij)|. We thus apply this theorem

in our case, where G = O and H = αO. Since one basis is obtained from
the other by multiplication by α, we have that

|O/αO| = | det(µα)| = |NK/Q(α)|.

2. Let 0 6= α ∈ I. Since I is an ideal of O and αO ⊂ I, we have a surjective
map

O/αO → O/I,

so that the result follows from part 1.

Example 2.2. Let K = Q(
√−17) be a quadratic number field, with ring of

integers OK = Z[
√−17]. Then

N(〈18〉) = 182.
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Starting from now, we need to build up several intermediate results which
we will use to prove the two most important results of this section. Let us begin
with the fact that prime is a notion stronger than maximal. You may want to
recall what is the general result for an arbitrary commutative ring and compare
with respect to the case of a ring of integers (in general, maximal is stronger
than prime).

Proposition 2.2. Every non-zero prime ideal of O is maximal.

Proof. Let p be a non-zero prime ideal of O. Since we have that

p is a maximal ideal of O ⇐⇒ O/p is a field,

it is enough to show that O/p is a field. In order to do so, let us consider
0 6= x ∈ O/p, and show that x is invertible in O/p. Since p is prime, O/p is
an integral domain, thus the multiplication map µx : O/p 7→ O/p, z 7→ xz, is
injective (that is, its kernel is 0). By the above lemma, the cardinality of O/p
is finite, thus µx being injective, it has to be also bijective. In other words µx

is invertible, and there exists y = µ−1
x (1) ∈ O/p. By definition, y is the inverse

of x.

To prove the next result, we need to first recall how to define the multipli-
cation of two ideals.

Definition 2.2. If I and J are ideals of O, we define the multiplication of ideals
as follows:

IJ =





∑

finite

xy, x ∈ I, y ∈ J



 .

Example 2.3. Let I = (α1, α2) = α1O + α2O and J = (β1, β2) = β1O + β2O,
then

IJ = (α1β1, α1β2, α2β1, α2β2).

Lemma 2.3. Let I be a non-zero ideal of O. Then there exist prime ideals
p1, . . . , pr of O such that

p1p2 · · · pr ⊂ I.

Proof. The idea of the proof goes as follows: we want to prove that every non-
zero ideal I of O contains a product of r prime ideals. To prove it, we define
a set S of all the ideals which do not contain a product of prime ideals, and
we prove that this set is empty. To prove that this set is empty, we assume by
contradiction that S does contain at least one non-zero ideal I. From this ideal,
we will show that we can build another ideal I1 such that I is strictly included
in I1, and by iteration we can build a sequence of ideals strictly included in each
other, which will give a contradiction.

Let us now proceed. Let S be the set of all ideals which do not contain a
product of prime ideals, and let I be in S. First, note that I cannot be prime
(otherwise I would contain a product of prime ideals with only one ideal, itself).
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By definition of prime ideal, that means we can find α, β ∈ O with αβ ∈ I, but
α 6∈ I, β 6∈ I. Using these two elements α and β, we can build two new ideals

J1 = αO + I ) I, J2 = βO + I ) I,

with strict inclusion since α, β 6∈ I.
To prove that J1 or J2 belongs to S, we assume by contradiction that none

are. Thus by definition of S, there exist prime ideals p1, . . . , pr and q1, . . . , qs

such that p1 · · · pr ⊂ J1 and q1 . . . qs ⊂ J2. Thus

p1, . . . , prq1, . . . , qs ⊂ J1J2 ⊂ I

where the second inclusion holds since αβ ∈ I and

J1J2 = (αO + I)(βO + I) = αβO + αI + βI + I2 ∈ I

But p1 · · · prq1 · · · qs ⊂ I contradicts the fact that I ∈ S. Thus J1 or J2 is in S.
Starting from assuming that I is in S, we have just shown that we can find

another ideal, say I1 (which is either J1 or J2), such that I ( I1. Since I1 is in
S we can iterate the whole procedure, and find another ideal I2 which strictly
contains I1, and so on and so forth. We thus get a strictly increasing sequence
of ideals in S:

I ( I1 ( I2 ( . . .

Now by taking the norm of each ideal, we get a strictly decreasing sequence of
integers

N(I) > N(I1) > N(I2) > . . . ,

which yields a contradiction and concludes the proof.

Note that an ideal I of O is an O-submodule of O with scalar multiplication
given by O × I → I, (a, i) 7→ ai. Ideals of O are not invertible (with respect to
ideal multiplication as defined above), so in order to get a group structure, we
extend the definition and look at O-submodules of K.

Definition 2.3. A fractional ideal I is a finitely generated O-module contained
in K.

Let α1, . . . , αr ∈ K be a set of generators for the fractional ideal I as O-
module. By Corollary 1.5, we can write αi = γi/δi, γi, δi ∈ O for i = 1, . . . , r.
Set

δ =
r∏

i=1

δi.

Since O is a ring, δ ∈ O. By construction, J := δI is an ideal of O. Thus for
any fractional ideal I ⊂ O, there exists an ideal J ⊂ O and δ ∈ O such that

I =
1
δ
J.

This yields an equivalent definition of fractional ideal.
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Definition 2.4. An O-submodule I of K is called a fractional ideal of O if
there exists some non-zero δ ∈ O such that δI ⊂ O, that is J = δI is an ideal
of O and I = δ−1J .

It is easier to understand the terminology “fractional ideal” with the second
definition.

Examples 2.4. 1. Ideals of O are particular cases of fractional ideals. They
may be called integral ideals if there is an ambiguity.

2. The set
3
2
Z =

{
3x

2
∈ Q | x ∈ Z

}

is a fractional ideal.

It is now time to introduce the inverse of an ideal. We first do it in the
particular case where the ideal is prime.

Lemma 2.4. Let p be a non-zero prime ideal of O. Define

p−1 = {x ∈ K | xp ⊂ O}.
1. p−1 is a fractional ideal of O.

2. O ( p−1.

3. p−1p = O.

Proof. 1. Let us start by showing that p−1 is a fractional ideal of O. Let
0 6= a ∈ p. By definition of p−1, we have that ap−1 ⊂ O. Thus ap−1 is an
integral ideal of O, and p−1 is a fractional ideal of O.

2. We show that O ( p−1. Clearly O ⊂ p−1. It is thus enough to find
an element which is not an algebraic integer in p−1. We start with any
0 6= a ∈ p. By Lemma 2.3, we choose the smallest r such that

p1 · · · pr ⊂ (a)O
for p1, . . . , pr prime ideals of O. Since (a)O ⊂ p and p is prime, we have
pi ⊆ p for some i by definition of prime. Without loss of generality, we can
assume that p1 ⊆ p. Hence p1 = p since prime ideals in O are maximal
(by Proposition 2.2). Furthermore, we have that

p2 · · · pr 6⊂ (a)O
by minimality of r. Hence we can find b ∈ p2 · · · pr but not in (a)O.

We are now ready to show that we have an element in p−1 which is not in
O. This element is given by ba−1.

• Using that p = p1, we thus get bp ⊂ (a)O, so ba−1p ⊂ O and
ba−1 ∈ p−1.



22 CHAPTER 2. IDEALS

• We also have b 6∈ (a)O and so ba−1 6∈ O.

This concludes the proof that p−1 6= O.

3. We now want to prove that p−1p = O. It is clear from the definition
of p−1 that p = pO ⊂ pp−1 = p−1p ⊂ O. Since p is maximal (again
by Proposition 2.2), pp−1 is equal to p or O. It is now enough to prove
that pp−1 = p is not possible. Let us thus suppose by contradiction that
pp−1 = p. Let {β1, . . . , βr} be a set of generators of p as O-module, and
consider again d := ab−1 which is in p−1 but not in O (by the proof of 2.).
Then we have that

dβi ∈ p−1p = p and dp ⊂ p−1p = p.

Since dp ⊂ p, we have that

dβi =
r∑

j=1

cijβj ∈ p, cij ∈ O, i = 1, . . . , r,

or equivalently

0 =
r∑

j=1,j 6=i

cijβj + βi(cii − d), i = 1, . . . , r.

The above r equations can be rewritten in a matrix equation as follows:



c11 − d c1r

c21 c2r

...
...

cr1 crr − d




︸ ︷︷ ︸
C




β1

β2

...
βr


 = 0.

Thus the determinant of C is zero, while det(C) is an equation of degree
r in d with coefficients in O of leading term ±1. By Proposition 1.13, we
have that d must be in O, which is a contradiction.

Example 2.5. Consider the ideal p = 3Z of Z. We have that

p−1 = {x ∈ Q | x · 3Z ⊂ Z} = {x ∈ Q | 3x ∈ Z} =
1
3
Z.

We have
p ⊂ Z ⊂ p−1 ⊂ Q.

We can now prove that the fractional ideals of K form a group.

Theorem 2.5. The non-zero fractional ideals of a number field K form a mul-
tiplicative group, denoted by IK .
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Proof. The neutral element is O. It is enough to show that every non-zero
fractional ideal of O is invertible in IK . By Lemma 2.4, we already know this
is true for every prime (integral) ideals of O.

Let us now show that this is true for every integral ideal of O. Suppose
by contradiction that there exists a non-invertible ideal I with its norm N(I)
minimal. Now I is included in a maximal integral p, which is also a prime ideal.
Thus

I ⊂ p−1I ⊂ p−1p = O,

where last equality holds by the above lemma. Let us show that I 6= p−1I, so
that the first inclusion is actually a strict inclusion. Suppose by contradiction
that I = p−1I. Let d ∈ p−1 but not in O and let β1, . . . , βr be the set of
generators of I as O-module. We can thus write:

dβi ∈ p−1I = I, dI ⊂ p−1I = I.

By the same argument as in the previous lemma, we get that d is in O, a
contradiction. We have thus found an ideal with I ( p−1I, which implies that
N(I) > N(p−1I). By minimality of N(I), the ideal p−1I is invertible. Let
J ∈ IK be its inverse, that is Jp−1I = O. This shows that I is invertible, with
inverse Jp−1.

If I is a fractional ideal, it can be written as 1
dJ with J an integral ideal of

O and d ∈ O. Thus dJ−1 is the inverse of I.

We can now prove unique factorization of integral ideals in O = OK .

Theorem 2.6. Every non-zero integral ideal I of O can be written in a unique
way (up to permutation of the factors) as a product of prime ideals.

Proof. We thus have to prove the existence of the factorization, and then the
unicity up to permutation of the factors.
Existence. Let I be an integral ideal which does not admit such a factorization.
We can assume that it is maximal among those ideals. Then I is not prime, but
we will have I ⊂ p for some maximal (hence prime) ideal. Thus Ip−1 ⊂ O is an
integral ideal and I ( Ip−1 ⊂ O, which strict inclusion, since if I = Ip−1, then
it would imply that O = p−1. By maximality of I, the ideal Ip−1 must admit
a factorization

Ip−1 = p2 · · · pr

that is
I = pp2 · · · pr,

a contradiction.
Unicity. Let us assume that there exist two distinct factorizations of I, that is

I = p1p2 · · · pr = q1 · · · qs

where pi, qj are prime ideals, i = 1, . . . , r, j = 1, . . . , s. Let us assume by
contradiction that p1 is different from qj for all j. Thus we can choose αj ∈ qj

but not in p1, and we have that
∏

αj ∈
∏

qj = I ⊂ p1,
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which contradicts the fact that p1 is prime. Thus p1 must be one of the qj , say
q1. This gives that

p2 · · · pr = q2 · · · qs.

We conclude by induction.

Example 2.6. In Q(i), we have

(2)Z[i] = (1+)2Z[i].

Corollary 2.7. Let I be a non-zero fractional ideal. Then

I = p1 · · · prq
−1
1 · · · q−1

s ,

where p1, . . . , pr, q1, . . . , qs are prime integral ideals. This factorization is unique
up to permutation of the factors.

Proof. A fractional ideal can be written as d−1I, d ∈ O, I an integral ideal. We
write I = p1 · · · pt and dO = q1 · · · qn. Thus

(dO)−1I = p1 · · · ptq
−1
q · · · q−1

n .

It may be that some of the terms will cancel out, so that we end up with a
factorization with p1, . . . , pr and q1, . . . , qs. Unicity is proved as in the above
theorem.

2.3 The Chinese Theorem

We have defined in the previous section the group IK of fractional ideals of a
number field K, and we have proved that they have a unique factorization into
a product of prime ideals. We are now interested in studying further properties
of fractional ideals. The two main properties that we will prove are the fact
that two elements are enough to generate these ideals, and that norms of ideals
are multiplicative. Both properties can be proved as corollary of the Chinese
theorem, that we first recall.

Theorem 2.8. Let I =
∏m

i=1 pki
i be the factorization of an integral ideal I into

a product of prime ideals pi with pi 6= pj of i 6= j. Then there exists a canonical
isomorphism

O/I →
m∏

i=1

O/pki
i .

Corollary 2.9. Let I1, . . . , Im be ideals which are pairwise coprime (that is
Ii + Ij = O for i 6= j). Let α1, . . . , αm be elements of O. Then there exists
α ∈ O with

α ≡ αi mod Ii, i = 1, . . . , m.
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Proof. We can write Ii =
∏

p
nij

ij . By hypothesis, no prime ideal occurs more
than once as a pij , and each congruence is equivalent to the finite set of con-
gruences

α ≡ αi mod p
nij

ij , i, j.

Now write I =
∏

Ii. Consider the vector (α1, . . . , αm) in
∏m

i=1O/Ii. The map

O/I = O/
∏

Ii →
m∏

i=1

O/Ii

is surjective, thus there exists a preimage α ∈ O of (α1, . . . , αm).

Corollary 2.10. Let I be a fractional ideal of O, α ∈ I. Then there exists
β ∈ I such that

(α, β) =< α, β >= αO + βO = I.

Proof. Let us first assume that I is an integral ideal. Let p1, . . . , pm be the
prime factors of αO ⊂ I, so that I can be written as

I =
m∏

i=1

pki
i , ki ≥ 0.

Let us choose βi in pki
i but not in pki+1

i . By Corollary 2.9, there exists β ∈ O
such that β ≡ βi mod pki+1

i for all i = 1, . . . ,m. Thus

β ∈ I =
m∏

i=1

pki
i

and pki
i is the exact power of pi which divides βO. In other words, βOI−1 is

prime to αO, thus βOI−1 + αO = O, that is

βO + αI = I.

To conclude, we have that

I = βO + αI ⊂ βO + αO ⊂ I.

If I is a fractional ideal, there exists by definition d ∈ O such that I = 1
dJ

with J an integral ideal. Thus dα ∈ J . By the first part, there exists β ∈ J
such that J = (dα, β). Thus

I = αO +
β

d
O.

We are now left to prove properties of the norm of an ideal, for which we
need the following result.
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Proposition 2.11. Let p be a prime ideal of O and n > 0. Then the O-modules
O/p and pn/pn+1 are (non-canonically) isomorphic.

Proof. We consider the map

φ : O → pn/pn+1, α 7→ αβ

for any β in pn but not in pn+1. The proof consists of computing the kernel and
the image of φ, and then of using one of the ring isomorphism theorems. This
will conclude the proof since we will prove that ker(φ) = p and φ is surjective.

• Let us first compute the kernel of φ. If φ(α) = 0, then αβ = 0, which
means that αβ ∈ pn+1 that is α ∈ p.

• Given any γ ∈ pn, by Corollary 2.9, we can find γ1 ∈ O such that

γ1 ≡ γ mod pn+1, γ1 ≡ 0 mod βOp−n,

since βOp−n is an ideal coprime to pn+1. Since γ ∈ pn, we have that γ1

belongs to βOp−n ∩ pn = βO since I ∩ J = IJ when I and J are coprime
ideals. In other words, γ1/β ∈ O. Its image by φ is

φ(γ1/β) = (γ1/β)β mod pn+1 = γ.

Thus φ is surjective.

Corollary 2.12. Let I and J be two integral ideals. Then

N(IJ) = N(I)N(J).

Proof. Let us first assume that I and J are coprime. The chinese theorem tells
us that

O/IJ ' O/I ×O/J,

thus |O/IJ | = |O/I||O/J |. We are left to prove that N(pk) = N(p)k for k ≥ 1,
p a prime ideal. Now one of the isomorphism theorems for rings allows us to
write that

N(pk−1) = |O/pk−1| =
∣∣∣∣
O/pk

pk−1/pk

∣∣∣∣ =
|O/pk|
|pk−1/pk| .

By the above proposition, this can be rewritten as

|O/pk|
|O/p| =

N(pk)
N(p)

.

Thus N(pk) = N(pk−1)N(p), and by induction on k, we conclude the proof.
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Example 2.7. In Q(i), we have that (2)Z[i] = (1 + i)2Z[i] and thus

4 = N(2) = N(1 + i)2

and
N(1 + i) = 2.

Definition 2.5. If I = J1J
−1
2 is a non-zero fractional ideal with J1, J2 integral

ideals, we set

N(I) =
N(J1)
N(J2)

.

This extends the norm N into a group homomorphism N : IK → Q×. For
example, we have that N

(
2
3Z

)
= 2

3 .

The main definitions and results of this chapter are

• Definition of fractional ideals, the fact that they form
a group IK .

• Definition of norm of both integral and fractional ide-
als, and that the norm of ideals is multiplicative.

• The fact that ideals can be uniquely factorized into
products of prime ideals.

• The fact that ideals can be generated with two ele-
ments: I = (α, β).
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