

Ramification Theory

This chapter introduces ramification theory, which roughly speaking asks the following question: if one takes a prime (ideal) \mathfrak{p} in the ring of integers \mathcal{O}_K of a number field K, what happens when \mathfrak{p} is lifted to \mathcal{O}_L , that is $\mathfrak{p}\mathcal{O}_L$, where L is an extension of K. We know by the work done in the previous chapter that $\mathfrak{p}\mathcal{O}_L$ has a factorization as a product of primes, so the question is: will $\mathfrak{p}\mathcal{O}_L$ still be a prime? or will it factor somehow?

In order to study the behavior of primes in L/K, we first consider absolute extensions, that is when $K = \mathbb{Q}$, and define the notions of discriminant, inertial degree and ramification index. We show how the discriminant tells us about ramification. When we are lucky enough to get a "nice" ring of integers \mathcal{O}_L , that is $\mathcal{O}_L = \mathbb{Z}[\theta]$ for $\theta \in L$, we give a method to compute the factorization of primes in \mathcal{O}_L . We then generalize the concepts introduced to relative extensions, and study the particular case of Galois extensions.

3.1 Discriminant

Let K be a number field of degree n. Recall from Corollary 1.8 that there are n embeddings of K into \mathbb{C} .

Definition 3.1. Let K be a number field of degree n, and set

 r_1 = number of real embeddings

 r_2 = number of pairs of complex embeddings

The couple (r_1, r_2) is called the signature of K. We have that

$$n = r_1 + 2r_2.$$

Examples 3.1. 1. The signature of \mathbb{Q} is (1,0).

2. The signature of $\mathbb{Q}(\sqrt{d})$, d > 0, is (2,0).

- 3. The signature of $\mathbb{Q}(\sqrt{d})$, d < 0, is (0, 1).
- 4. The signature of $\mathbb{Q}(\sqrt[3]{2})$ is (1,1).

Let K be a number field of degree n, and let \mathcal{O}_K be its ring of integers. Let $\sigma_1, \ldots, \sigma_n$ be its n embeddings into \mathbb{C} . We define the map

$$\sigma: K \to \mathbb{C}^n$$
 $x \mapsto (\sigma_1(x), \dots, \sigma_n(x)).$

Since \mathcal{O}_K is a free abelian group of rank n, we have a \mathbb{Z} -basis $\{\alpha_1, \ldots, \alpha_n\}$ of \mathcal{O}_K . Let us consider the $n \times n$ matrix M given by

$$M = (\sigma_i(\alpha_j))_{1 \le i, j \le n}.$$

The determinant of M is a measure of the density of \mathcal{O}_K in K (actually of K/\mathcal{O}_K). It tells us how sparse the integers of K are. However, $\det(M)$ is only defined up to sign, and is not necessarily in either \mathbb{R} or K. So instead we consider

$$\det(M^2) = \det(M^t M)
= \det\left(\sum_{k=1}^n \sigma_k(\alpha_i)\sigma_k(\alpha_j)\right)_{i,j}
= \det(\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_j))_{i,j} \in \mathbb{Z},$$

and this does not depend on the choice of a basis.

Definition 3.2. Let $\alpha_1, \ldots, \alpha_n \in K$. We define

$$disc(\alpha_1, \ldots, \alpha_n) = \det(\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_j))_{i,j}.$$

In particular, if $\alpha_1, \ldots, \alpha_n$ is any \mathbb{Z} -basis of \mathcal{O}_K , we write Δ_K , and we call discriminant the integer

$$\Delta_K = \det(\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_j))_{1 \le i,j \le n}.$$

We have that $\Delta_K \neq 0$. This is a consequence of the following lemma.

Lemma 3.1. The symmetric bilinear form

$$\begin{array}{ccc} K \times K & \to & \mathbb{Q} \\ (x,y) & \mapsto & \mathrm{Tr}_{K/\mathbb{Q}}(xy) \end{array}$$

is non-degenerate.

Proof. Let us assume by contradiction that there exists $0 \neq \alpha \in K$ such that $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha\beta) = 0$ for all $\beta \in K$. By taking $\beta = \alpha^{-1}$, we get

$$\operatorname{Tr}_{K/\mathbb{O}}(\alpha\beta) = \operatorname{Tr}_{K/\mathbb{O}}(1) = n \neq 0.$$

Now if we had that $\Delta_K = 0$, there would be a non-zero column vector $(x_1, \ldots, x_n)^t$, $x_i \in \mathbb{Q}$, killed by the matrix $(\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_j))_{1 \leq i,j \leq n}$. Set $\gamma = \sum_{i=1}^n \alpha_i x_i$, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_j \gamma) = 0$ for each j, which is a contradiction by the above lemma.

Example 3.2. Consider the quadratic field $K = \mathbb{Q}(\sqrt{5})$. Its two embeddings into \mathbb{C} are given by

$$\sigma_1: a+b\sqrt{5} \mapsto a+b\sqrt{5}, \ \sigma_2: a+b\sqrt{5} \mapsto a-b\sqrt{5}.$$

Its ring of integers is $\mathbb{Z}[(1+\sqrt{5})/2]$, so that the matrix M of embeddings is

$$M = \begin{pmatrix} \sigma_1(1) & \sigma_2(1) \\ \sigma_1\left(\frac{1+\sqrt{5}}{2}\right) & \sigma_2\left(\frac{1+\sqrt{5}}{2}\right) \end{pmatrix}$$

and its discriminant Δ_K can be computed by

$$\Delta_K = \det(M^2) = 5.$$

3.2 Prime decomposition

Let \mathfrak{p} be a prime ideal of \mathcal{O} . Then $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z} . Indeed, one easily verifies that this is an ideal of \mathbb{Z} . Now if a,b are integers with $ab \in \mathfrak{p} \cap \mathbb{Z}$, then we can use the fact that \mathfrak{p} is prime to deduce that either a or b belongs to \mathfrak{p} and thus to $\mathfrak{p} \cap \mathbb{Z}$ (note that $\mathfrak{p} \cap \mathbb{Z}$ is a proper ideal since $\mathfrak{p} \cap \mathbb{Z}$ does not contain 1, and $\mathfrak{p} \cap \mathbb{Z} \neq \emptyset$, as $N(\mathfrak{p})$ belongs to \mathfrak{p} and \mathbb{Z} since $N(\mathfrak{p}) = |\mathcal{O}/\mathfrak{p}| < \infty$).

Since $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z} , there must exist a prime number p such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. We say that \mathfrak{p} is above p.

$$\mathfrak{p} \subset \mathcal{O}_K \subset K$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$p\mathbb{Z} \subset \mathbb{Z} \subset \mathbb{Q}$$

We call residue field the quotient of a commutative ring by a maximal ideal. Thus the residue field of $p\mathbb{Z}$ is $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$. We are now interested in the residue field $\mathcal{O}_K/\mathfrak{p}$. We show that $\mathcal{O}_K/\mathfrak{p}$ is a \mathbb{F}_p -vector space of finite dimension. Set

$$\phi: \mathbb{Z} \to \mathcal{O}_K \to \mathcal{O}_K/\mathfrak{p},$$

where the first arrow is the canonical inclusion ι of \mathbb{Z} into \mathcal{O}_K , and the second arrow is the projection π , so that $\phi = \pi \circ \iota$. Now the kernel of ϕ is given by

$$ker(\phi) = \{a \in \mathbb{Z} \mid a \in \mathfrak{p}\} = \mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z},$$

so that ϕ induces an injection of $\mathbb{Z}/p\mathbb{Z}$ into $\mathcal{O}_K/\mathfrak{p}$, since $\mathbb{Z}/p\mathbb{Z} \simeq Im(\phi) \subset \mathcal{O}_K/\mathfrak{p}$. By Lemma 2.1, $\mathcal{O}_K/\mathfrak{p}$ is a finite set, thus a finite field which contains $\mathbb{Z}/p\mathbb{Z}$ and we have indeed a finite extension of \mathbb{F}_p .

Definition 3.3. We call inertial degree, and we denote by $f_{\mathfrak{p}}$, the dimension of the $\mathbb{F}_{\mathfrak{p}}$ -vector space \mathcal{O}/\mathfrak{p} , that is

$$f_{\mathfrak{p}} = \dim_{\mathbb{F}_n}(\mathcal{O}/\mathfrak{p}).$$

Note that we have

$$N(\mathfrak{p}) = |\mathcal{O}/\mathfrak{p}| = |\mathbb{F}_p^{\dim_{\mathbb{F}_p}(\mathcal{O}/\mathfrak{p})}| = |\mathbb{F}_p|^{f_{\mathfrak{p}}} = p^{f_{\mathfrak{p}}}.$$

Example 3.3. Consider the quadratic field $K = \mathbb{Q}(i)$, with ring of integers $\mathbb{Z}[i]$, and let us look at the ideal $2\mathbb{Z}[i]$:

$$2\mathbb{Z}[i] = (1+i)(1-i)\mathbb{Z}[i] = \mathfrak{p}^2, \ \mathfrak{p} = (1+i)\mathbb{Z}[i]$$

since (-i)(1+i)=1-i. Furthermore, $\mathfrak{p}\cap\mathbb{Z}=2\mathbb{Z}$, so that $\mathfrak{p}=(1+i)$ is said to be above 2. We have that

$$N(\mathfrak{p}) = N_{K/\mathbb{Q}}(1+i) = (1+i)(1-i) = 2$$

and thus $f_{\mathfrak{p}}=1.$ Indeed, the corresponding residue field is

$$\mathcal{O}_K/\mathfrak{p}\simeq \mathbb{F}_2.$$

Let us consider again a prime ideal \mathfrak{p} of \mathcal{O} . We have seen that \mathfrak{p} is above the ideal $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$. We can now look the other way round: we start with the prime $p \in \mathbb{Z}$, and look at the ideal $p\mathcal{O}$ of \mathcal{O} . We know that $p\mathcal{O}$ has a unique factorization into a product of prime ideals (by all the work done in Chapter 2). Furthermore, we have that $p \subset \mathfrak{p}$, thus \mathfrak{p} has to be one of the factors of $p\mathcal{O}$.

Definition 3.4. Let $p \in \mathbb{Z}$ be a prime. Let \mathfrak{p} be a prime ideal of \mathcal{O} above p. We call ramification index of \mathfrak{p} , and we write $e_{\mathfrak{p}}$, the exact power of \mathfrak{p} which divides $p\mathcal{O}$.

We start from $p \in \mathbb{Z}$, whose factorization in \mathcal{O} is given by

$$p\mathcal{O} = \mathfrak{p}_1^{e_{\mathfrak{p}_1}} \cdots \mathfrak{p}_g^{e_{\mathfrak{p}_g}}.$$

We say that p is ramified if $e_{\mathfrak{p}_i} > 1$ for some i. On the contrary, p is non-ramified if

$$p\mathcal{O} = \mathfrak{p}_1 \cdots \mathfrak{p}_q, \ \mathfrak{p}_i \neq \mathfrak{p}_i, \ i \neq j.$$

Both the inertial degree and the ramification index are connected via the degree of the number field as follows.

Proposition 3.2. Let K be a number field and \mathcal{O}_K its ring of integers. Let $p \in \mathbb{Z}$ and let

$$p\mathcal{O} = \mathfrak{p}_1^{e_{\mathfrak{p}_1}} \cdots \mathfrak{p}_g^{e_{\mathfrak{p}_g}}$$

be its factorization in \mathcal{O} . We have that

$$n = [K : \mathbb{Q}] = \sum_{i=1}^{g} e_{\mathfrak{p}_i} f_{\mathfrak{p}_i}.$$

Proof. By Lemma 2.1, we have

$$N(p\mathcal{O}) = |N_{K/\mathbb{O}}(p)| = p^n,$$

where $n = [K : \mathbb{Q}]$. Since the norm N is multiplicative (see Corollary 2.12), we deduce that

$$N(\mathfrak{p}_1^{e_{\mathfrak{p}_1}}\cdots\mathfrak{p}_g^{e_{\mathfrak{p}_g}})=\prod_{i=1}^g N(\mathfrak{p}_i)^{e_{\mathfrak{p}_i}}=\prod_{i=1}^g p^{f_{\mathfrak{p}_i}e_{\mathfrak{p}_i}}.$$

There is, in general, no straightforward method to compute the factorization of $p\mathcal{O}$. However, in the case where the ring of integers \mathcal{O} is of the form $\mathcal{O} = \mathbb{Z}[\theta]$, we can use the following result.

Proposition 3.3. Let K be a number field, with ring of integers \mathcal{O}_K , and let p be a prime. Let us assume that there exists θ such that $\mathcal{O} = \mathbb{Z}[\theta]$, and let f be the minimal polynomial of θ , whose reduction modulo p is denoted by \bar{f} . Let

$$\bar{f}(X) = \prod_{i=1}^{g} \phi_i(X)^{e_i}$$

be the factorization of f(X) in $\mathbb{F}_p[X]$, with $\phi_i(X)$ coprime and irreducible. We set

$$\mathfrak{p}_i = (p, f_i(\theta)) = p\mathcal{O} + f_i(\theta)\mathcal{O}$$

where f_i is any lift of ϕ_i to $\mathbb{Z}[X]$, that is $\bar{f_i} = \phi_i \mod p$. Then

$$p\mathcal{O} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_g^{e_g}$$

is the factorization of $p\mathcal{O}$ in \mathcal{O} .

Proof. Let us first notice that we have the following isomorphism

$$\mathcal{O}/p\mathcal{O} = \mathbb{Z}[\theta]/p\mathbb{Z}[\theta] \simeq \frac{\mathbb{Z}[X]/f(X)}{p(\mathbb{Z}[X]/f(X))} \simeq \mathbb{Z}[X]/(p, f(X)) \simeq \mathbb{F}_p[X]/\bar{f}(X),$$

where \bar{f} denotes $f \mod p$. Let us call A the ring

$$A = \mathbb{F}_p[X]/\bar{f}(X).$$

The inverse of the above isomorphism is given by the evaluation in θ , namely, if $\psi(X) \in \mathbb{F}_p[X]$, with $\psi(X) \mod \bar{f}(X) \in A$, and $g \in \mathbb{Z}[X]$ such that $\bar{g} = \psi$, then its preimage is given by $g(\theta)$. By the Chinese Theorem, recall that we have

$$A = \mathbb{F}_p[X]/\bar{f}(X) \simeq \prod_{i=1}^g \mathbb{F}_p[X]/\phi_i(X)^{e_i},$$

since by assumption, the ideal $(\bar{f}(X))$ has a prime factorization given by $(\bar{f}(X)) = \prod_{i=1}^{g} (\phi_i(X))^{e_i}$.

We are now ready to understand the structure of prime ideals of both $\mathcal{O}/p\mathcal{O}$ and A, thanks to which we will prove that \mathfrak{p}_i as defined in the assumption is prime, that any prime divisor of $p\mathcal{O}$ is actually one of the \mathfrak{p}_i , and that the power e_i appearing in the factorization of \bar{f} are bigger or equal to the ramification index $e_{\mathfrak{p}_i}$ of \mathfrak{p}_i . We will then invoke the proposition that we have just proved to show that $e_i = e_{\mathfrak{p}_i}$, which will conclude the proof.

By the factorization of A given above by the Chinese theorem, the maximal ideals of A are given by $(\phi_i(X))A$, and the degree of the extension $A/(\phi_i(X))A$ over \mathbb{F}_p is the degree of ϕ_i . By the isomorphism $A \simeq \mathcal{O}/p\mathcal{O}$, we get similarly that the maximal ideals of $\mathcal{O}/p\mathcal{O}$ are the ideals generated by $f_i(\theta) \mod p\mathcal{O}$.

We consider the projection $\pi: \mathcal{O} \to \mathcal{O}/p\mathcal{O}$. We have that

$$\pi(\mathfrak{p}_i) = \pi(p\mathcal{O} + f_i(\theta)\mathcal{O}) = f_i(\theta)\mathcal{O} \mod p\mathcal{O}.$$

Consequently, \mathfrak{p}_i is a prime ideal of \mathcal{O} , since $f_i(\theta)\mathcal{O}$ is. Furthermore, since $\mathfrak{p}_i \supset p\mathcal{O}$, we have $\mathfrak{p}_i \mid p\mathcal{O}$, and the inertial degree $f_{\mathfrak{p}_i} = [\mathcal{O}/\mathfrak{p}_i : \mathbb{F}_p]$ is the degree of ϕ_i , while $e_{\mathfrak{p}_i}$ denotes the ramification index of \mathfrak{p}_i .

Now, every prime ideal \mathfrak{p} in the factorization of $p\mathcal{O}$ is one of the \mathfrak{p}_i , since the image of \mathfrak{p} by π is a maximal ideal of $\mathcal{O}/p\mathcal{O}$, that is

$$p\mathcal{O} = \mathfrak{p}_1^{e_{\mathfrak{p}_1}} \cdots \mathfrak{p}_g^{e_{\mathfrak{p}_g}}$$

and we are thus left to look at the ramification index.

The ideal $\phi_i^{e_i}A$ of A belongs to $\mathcal{O}/p\mathcal{O}$ via the isomorphism between $\mathcal{O}/p\mathcal{O} \simeq A$, and its preimage in \mathcal{O} by π^{-1} contains $\mathfrak{p}_i^{e_i}$ (since if $\alpha \in \mathfrak{p}_i^{e_i}$, then α is a sum of products $\alpha_1 \cdots \alpha_{e_i}$, whose image by π will be a sum of product $\pi(\alpha_1) \cdots \pi(\alpha_{e_i})$ with $\pi(\alpha_i) \in \phi_i A$). In $\mathcal{O}/p\mathcal{O}$, we have $0 = \bigcap_{i=1}^g \phi_i(\theta)^{e_i}$, that is

$$p\mathcal{O} = \pi^{-1}(0) = \bigcap_{i=1}^g \pi^{-1}(\phi_i^{e_i} A) \supset \bigcap_{i=1}^g \mathfrak{p}_i^{e_i} = \prod_{i=1}^g \mathfrak{p}_i^{e_i}.$$

We then have that this last product is divided by $p\mathcal{O} = \prod \mathfrak{p}_i^{e_{\mathfrak{p}_i}}$, that is $e_i \geq e_{\mathfrak{p}_i}$. Let $n = [K : \mathbb{Q}]$. To show that we have equality, that is $e_i = e_{\mathfrak{p}_i}$, we use the previous proposition:

$$n = [K : \mathbb{Q}] = \sum_{i=1}^g e_{\mathfrak{p}_i} f_{\mathfrak{p}_i} \le \sum_{i=1}^g e_i \deg(\phi_i) = \dim_{\mathbb{F}_p} (A) = \dim_{\mathbb{F}_p} \mathbb{Z}^n / p \mathbb{Z}^n = n.$$

The above proposition gives a concrete method to compute the factorization of a prime $p\mathcal{O}_K$:

- 1. Choose a prime $p \in \mathbb{Z}$ whose factorization in $p\mathcal{O}_K$ is to be computed.
- 2. Let f be the minimal polynomial of θ such that $\mathcal{O}_K = \mathbb{Z}[\theta]$.

3. Compute the factorization of $\bar{f} = f \mod p$:

$$\bar{f} = \prod_{i=1}^{g} \phi_i(X)^{e_i}.$$

- 4. Lift each ϕ_i in a polynomial $f_i \in \mathbb{Z}[X]$.
- 5. Compute $\mathfrak{p}_i = (p, f_i(\theta))$ by evaluating f_i in θ .
- 6. The factorization of $p\mathcal{O}$ is given by

$$p\mathcal{O} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_q^{e_g}$$
.

Examples 3.4. 1. Let us consider $K = \mathbb{Q}(\sqrt[3]{2})$, with ring of integers $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{2}]$. We want to factorize $5\mathcal{O}_K$. By the above proposition, we compute

$$X^3 - 2 \equiv (X - 3)(X^2 + 3X + 4)$$

 $\equiv (X + 2)(X^2 - 2X - 1) \mod 5.$

We thus get that

$$5\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2, \ \mathfrak{p}_1 = (5, 2 + \sqrt[3]{2}), \ \mathfrak{p}_2 = (5, \sqrt[3]{4} - 2\sqrt[3]{2} - 1).$$

2. Let us consider $\mathbb{Q}(i)$, with $\mathcal{O}_K = \mathbb{Z}[i]$, and choose p = 2. We have $\theta = i$ and $f(X) = X^2 + 1$. We compute the factorization of $\bar{f}(X) = f(X)$ mod 2:

$$X^{2} + 1 \equiv X^{2} - 1 \equiv (X - 1)(X + 1) \equiv (X - 1)^{2} \mod 2.$$

We can take any lift of the factors to $\mathbb{Z}[X]$, so we can write

$$2\mathcal{O}_K = (2, i-1)(2, i+1) \text{ or } 2 = (2, i-1)^2$$

which is the same, since (2, i - 1) = (2, 1 + i). Furthermore, since 2 = (1 - i)(1 + i), we see that (2, i - 1) = (1 + i), and we recover the result of Example 3.3.

Definition 3.5. We say that p is inert if $p\mathcal{O}$ is prime, in which case we have $g=1,\ e=1$ and f=n. We say that p is totally ramified if $e=n,\ g=1,$ and f=1.

The discriminant of K gives us information on the ramification in K.

Theorem 3.4. Let K be a number field. If p is ramified, then p divides the discriminant Δ_K .

Proof. Let $\mathfrak{p} \mid p\mathcal{O}$ be an ideal such that $\mathfrak{p}^2 \mid p\mathcal{O}$ (we are just rephrasing the fact that p is ramified). We can write $p\mathcal{O} = \mathfrak{p}I$ with I divisible by all the primes above p (\mathfrak{p} is voluntarily left as a factor of I). Let $\alpha_1, \ldots, \alpha_n \in \mathcal{O}$ be a \mathbb{Z} -basis of \mathcal{O} and let $\alpha \in I$ but $\alpha \notin p\mathcal{O}$. We write

$$\alpha = b_1 \alpha_1 + \ldots + b_n \alpha_n, \ b_i \in \mathbb{Z}.$$

Since $\alpha \notin p\mathcal{O}$, there exists a b_i which is not divisible by p, say b_1 . Recall that

$$\Delta_K = \det \begin{pmatrix} \sigma_1(\alpha_1) & \dots & \sigma_1(\alpha_n) \\ \vdots & & \vdots \\ \sigma_n(\alpha_1) & \dots & \sigma_n(\alpha_n) \end{pmatrix}^2$$

where σ_i , i = 1, ..., n are the n embeddings of K into \mathbb{C} . Let us replace α_1 by α , and set

$$D = \det \begin{pmatrix} \sigma_1(\alpha) & \dots & \sigma_1(\alpha_n) \\ \vdots & & \vdots \\ \sigma_n(\alpha) & \dots & \sigma_n(\alpha_n) \end{pmatrix}^2.$$

Now D and Δ_K are related by

$$D = \Delta_K b_1^2$$

since D can be rewritten as

$$D = \det \left(\begin{pmatrix} \sigma_1(\alpha_1) & \dots & \sigma_1(\alpha_n) \\ \vdots & & \vdots \\ \sigma_n(\alpha_1) & \dots & \sigma_n(\alpha_n) \end{pmatrix} \begin{pmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 1 & & 0 \\ & & \ddots & \\ b_n & & \dots & 1 \end{pmatrix} \right)^2.$$

We are thus left to prove that $p \mid D$, since by construction, we have that p does not divide b_1^2 .

Intuitively, the trick of this proof is to replace proving that $p|\Delta_K$ where we have no clue how the factor p appears, with proving that p|D, where D has been built on purpose as a function of a suitable α which we will prove below is such that all its conjugates are above p.

Let L be the Galois closure of K, that is, L is a field which contains K, and which is a normal extension of \mathbb{Q} . The conjugates of α all belong to L. We know that α belongs to all the primes of \mathcal{O}_K above p. Similarly, $\alpha \in K \subset L$ belongs to all primes \mathfrak{P} of \mathcal{O}_L above p. Indeed, $\mathfrak{P} \cap \mathcal{O}_K$ is a prime ideal of \mathcal{O}_K above p, which contains α .

We now fix a prime \mathfrak{P} above p in \mathcal{O}_L . Then $\sigma_i(\mathfrak{P})$ is also a prime ideal of \mathcal{O}_L above p ($\sigma_i(\mathfrak{P})$ is in L since L/\mathbb{Q} is Galois, $\sigma_i(\mathfrak{P})$ is prime since \mathfrak{P} is, and $p = \sigma_i(p) \in \sigma_i(\mathfrak{P})$). We have that $\sigma_i(\alpha) \in \mathfrak{P}$ for all σ_i , thus the first column of the matrix involves in the computation of D is in \mathfrak{P} , so that $D \in \mathfrak{P}$ and $D \in \mathbb{Z}$, to get

$$D \in \mathfrak{P} \cap \mathbb{Z} = p\mathbb{Z}.$$

We have just proved that if p is ramified, then $p|\Delta_K$. The converse is also true.

Examples 3.5. 1. We have seen in Example 3.2 that the discriminant of $K = \mathbb{Q}(\sqrt{5})$ is $\Delta_K = 5$. This tells us that only 5 is ramified in $\mathbb{Q}(\sqrt{5})$.

2. In Example 3.3, we have seen that 2 ramifies in $K = \mathbb{Q}(i)$. So 2 should appear in Δ_K . One can actually check that $\Delta_K = -4$.

Corollary 3.5. There is only a finite number of ramified primes.

Proof. The discriminant only has a finite number of divisors.

3.3 Relative Extensions

Most of the theory seen so far assumed that the base field is \mathbb{Q} . In most cases, this can be generalized to an arbitrary number field K, in which case we consider a number field extension L/K. This is called a relative extension. By contrast, we may call absolute an extension whose base field is \mathbb{Q} . Below, we will generalize several definitions previously given for absolute extensions to relative extensions.

Let K be a number field, and let L/K be a finite extension. We have correspondingly a ring extension $\mathcal{O}_K \to \mathcal{O}_L$. If \mathfrak{P} is a prime ideal of \mathcal{O}_L , then $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$ is a prime ideal of \mathcal{O}_K . We say that \mathfrak{P} is above \mathfrak{p} . We have a factorization

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^g \mathfrak{P}_i^{e_{\mathfrak{P}_i \mid \mathfrak{p}}},$$

where $e_{\mathfrak{P}_i/\mathfrak{p}}$ is the relative ramification index. The relative inertial degree is given by

$$f_{\mathfrak{P}_i|\mathfrak{p}} = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}].$$

We still have that

$$[L:K] = \sum e_{\mathfrak{P}|\mathfrak{p}} f_{\mathfrak{P}|\mathfrak{p}}$$

where the summation is over all \mathfrak{P} above \mathfrak{p} .

Let M/L/K be a tower of finite extensions, and let $\mathcal{P}, \mathfrak{P}, \mathfrak{p}$ be prime ideals of respectively M, L, and K. Then we have that

$$f_{\mathcal{P}|\mathfrak{p}} = f_{\mathcal{P}|\mathfrak{P}} f_{\mathfrak{P}|\mathfrak{p}}$$
$$e_{\mathcal{P}|\mathfrak{p}} = e_{\mathcal{P}|\mathfrak{P}} e_{\mathfrak{P}|\mathfrak{p}}.$$

Let I_K , I_L be the groups of fractional ideals of K and L respectively. We can also generalize the application norm as follows:

$$\begin{array}{ccc}
\mathbf{N} : & I_L \to & I_K \\
\mathfrak{P} \mapsto & \mathfrak{p}^{f_{\mathfrak{P}|\mathfrak{p}}},
\end{array}$$

which is a group homomorphism. This defines a relative norm for ideals, which is itself an ideal!

In order to generalize the discriminant, we would like to have an \mathcal{O}_K -basis of \mathcal{O}_L (similarly to having a \mathbb{Z} -basis of \mathcal{O}_K), however such a basis does not exist in general. Let $\alpha_1, \ldots, \alpha_n$ be a K-basis of L where $\alpha_i \in \mathcal{O}_L$, $i = 1, \ldots, n$. We set

$$disc_{L/K}(\alpha_1, \dots, \alpha_n) = \det \begin{pmatrix} \sigma_1(\alpha_1) & \dots & \sigma_n(\alpha_1) \\ \vdots & & \vdots \\ \sigma_1(\alpha_n) & \dots & \sigma_n(\alpha_n) \end{pmatrix}^2$$

where $\sigma_i: L \to \mathbb{C}$ are the embeddings of L into \mathbb{C} which fix K. We define $\Delta_{L/K}$ as the ideal generated by all $disc_{L/K}(\alpha_1, \ldots, \alpha_n)$. It is called relative discriminant.

3.4 Normal Extensions

Let L/K be a Galois extension of number fields, with Galois group $G = \operatorname{Gal}(L/K)$. Let $\mathfrak p$ be a prime of $\mathcal O_K$. If $\mathfrak P$ is a prime above $\mathfrak p$ in $\mathcal O_L$, and $\sigma \in G$, then $\sigma(\mathfrak P)$ is a prime ideal above $\mathfrak p$. Indeed, $\sigma(\mathfrak P) \cap \mathcal O_K \subset K$, thus $\sigma(\mathfrak P) \cap \mathcal O_K = \mathfrak P \cap \mathcal O_K$ since K is fixed by σ .

Theorem 3.6. Let

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^g \mathfrak{P}_i^{e_i}$$

be the factorization of $\mathfrak{p}\mathcal{O}_L$ in \mathcal{O}_L . Then G acts transitively on the set $\{\mathfrak{P}_1,\ldots,\mathfrak{P}_g\}$. Furthermore, we have that

$$e_1 = \ldots = e_g = e \text{ where } e_i = e_{\mathfrak{P}_i|\mathfrak{p}}$$

 $f_1 = \ldots = f_g = f \text{ where } f_i = f_{\mathfrak{P}_i|\mathfrak{p}}$

and

$$[L:K] = efg.$$

Proof. G acts transitively. Let \mathfrak{P} be one of the \mathfrak{P}_i . We need to prove that there exists $\sigma \in G$ such that $\sigma(\mathfrak{P}_j) = \mathfrak{P}$ for \mathfrak{P}_j any other of the \mathfrak{P}_i . In the proof of Corollary 2.10, we have seen that there exists $\beta \in \mathfrak{P}$ such that $\beta \mathcal{O}_L \mathfrak{P}^{-1}$ is an integral ideal coprime to $\mathfrak{P}\mathcal{O}_L$. The ideal

$$I = \prod_{\sigma \in G} \sigma(\beta \mathcal{O}_L \mathfrak{P}^{-1})$$

is an integral ideal of \mathcal{O}_L (since $\beta \mathcal{O}_L \mathfrak{P}^{-1}$ is), which is furthermore coprime to $\mathfrak{p} \mathcal{O}_L$ (since $\sigma(\beta \mathcal{O}_L \mathfrak{P}^{-1})$ and $\sigma(\mathfrak{p} \mathcal{O}_L)$ are coprime and $\sigma(\mathfrak{p} \mathcal{O}_L) = \sigma(\mathfrak{p})\sigma(\mathcal{O}_L) = \mathfrak{p} \mathcal{O}_L$).

Thus I can be rewritten as

$$\begin{split} I &=& \frac{\prod_{\sigma \in G} \sigma(\beta) \mathcal{O}_L}{\prod_{\sigma \in G} \sigma(\mathfrak{P})} \\ &=& \frac{N_{L/K}(\beta) \mathcal{O}_L}{\prod_{\sigma \in G} \sigma(\mathfrak{P})} \end{split}$$

and we have that

$$I\prod_{\sigma\in G}\sigma(\mathfrak{P})=N_{L/K}(\beta)\mathcal{O}_L.$$

Since $N_{L/K}(\beta) = \prod_{\sigma \in G} \sigma(\beta)$, $\beta \in \mathfrak{P}$ and one of the σ is the identity, we have that $N_{L/K}(\beta) \in \mathfrak{P}$. Furthermore, $N_{L/K}(\beta) \in \mathcal{O}_K$ since $\beta \in \mathcal{O}_L$, and we get that $N_{L/K}(\beta) \in \mathfrak{P} \cap \mathcal{O}_K = \mathfrak{p}$, from which we deduce that \mathfrak{p} divides the right hand side of the above equation, and thus the left hand side. Since I is coprime to \mathfrak{p} , we get that \mathfrak{p} divides $\prod_{\sigma \in G} \sigma(\mathfrak{P})$. In other words, using the factorization of \mathfrak{p} , we have that

$$\prod_{\sigma \in G} \sigma(\mathfrak{P}) \text{ is divisible by } \mathfrak{p}\mathcal{O}_L = \prod_{i=1}^g \mathfrak{P}_i^{e_i}$$

and each of the \mathfrak{P}_i has to be among $\{\sigma(\mathfrak{P})\}_{\sigma\in G}$.

All the ramification indices are equal. By the first part, we know that there exists $\sigma \in G$ such that $\sigma(\mathfrak{P}_i) = \mathfrak{P}_k$, $i \neq k$. Now, we have that

$$\sigma(\mathfrak{p}\mathcal{O}_L) = \prod_{i=1}^g \sigma(\mathfrak{P}_i)^{e_i} \\
= \mathfrak{p}\mathcal{O}_L \\
= \prod_{i=1}^g \mathfrak{P}_i^{e_i}$$

where the second equality holds since $\mathfrak{p} \in \mathcal{O}_K$ and L/K is Galois. By comparing the two factorizations of \mathfrak{p} and its conjugates, we get that $e_i = e_k$.

All the inertial degrees are equal. This follows from the fact that σ induces the following field isomorphism

$$\mathcal{O}_L/\mathfrak{P}_i \simeq \mathcal{O}_L/\sigma(\mathfrak{P}_i).$$

Finally we have that

$$|G| = [L:K] = efg.$$

For now on, let us fix \mathfrak{P} above \mathfrak{p} .

Definition 3.6. The stabilizer of \mathfrak{P} in G is called the decomposition group, given by

$$D = D_{\mathfrak{P}/\mathfrak{p}} = \{ \sigma \in G \mid \sigma(\mathfrak{P}) = \mathfrak{P} \} < G.$$

The index [G:D] must be equal to the number of elements in the orbit $G\mathfrak{P}$ of \mathfrak{P} under the action of G, that is $[G:D]=|G\mathfrak{P}|$ (this is the orbit-stabilizer theorem).

By the above theorem, we thus have that [G : D] = g, where g is the number of distinct primes which divide $\mathfrak{p}\mathcal{O}_L$. Thus

$$n = efg$$
$$= ef\frac{|G|}{|D|}$$

and

$$|D| = ef.$$

If \mathfrak{P}' is another prime ideal above \mathfrak{p} , then the decomposition groups $D_{\mathfrak{P}/\mathfrak{p}}$ and $D_{\mathfrak{P}'/\mathfrak{p}}$ are conjugate in G via any Galois automorphism mapping \mathfrak{P} to \mathfrak{P}' (in formula, we have that if $\mathfrak{P}' = \tau(\mathfrak{P})$, then $\tau D_{\mathfrak{P}/\mathfrak{p}} \tau^{-1} = D_{\tau(\mathfrak{P})/\mathfrak{p}}$).

Proposition 3.7. Let $D = D_{\mathfrak{P}/\mathfrak{p}}$ be the decomposition group of \mathfrak{P} . The subfield

$$L^D = \{ \alpha \in L \mid \sigma(\alpha) = \alpha, \ \sigma \in D \}$$

is the smallest subfield M of L such that $(\mathfrak{P} \cap \mathcal{O}_M)\mathcal{O}_L$ does not split. It is called the decomposition field of \mathfrak{P} .

Proof. We first prove that L/L^D has the property that $(\mathfrak{P} \cap \mathcal{O}_{L^D})\mathcal{O}_L$ does not split. We then prove its minimality.

We know by Galois theory that $\operatorname{Gal}(L/L^D)$ is given by D. Furthermore, the extension L/L^D is Galois since L/K is. Let $\mathfrak{Q} = \mathfrak{P} \cap \mathcal{O}_{L^D}$ be a prime below \mathfrak{P} . By Theorem 3.6, we know that D acts transitively on the set of primes above \mathfrak{Q} , among which is \mathfrak{P} . Now by definition of $D = D_{\mathfrak{P}/\mathfrak{p}}$, we know that \mathfrak{P} is fixed by D. Thus there is only \mathfrak{P} above \mathfrak{Q} .

Let us now prove the minimality of L^D . Assume that there exists a field M with L/M/K, such that $\mathfrak{Q} = \mathfrak{P} \cap \mathcal{O}_M$ has only one prime ideal of \mathcal{O}_L above it. Then this unique ideal must be \mathfrak{P} , since by definition \mathfrak{P} is above \mathfrak{Q} . Then $\mathrm{Gal}(L/M)$ is a subgroup of D, since its elements are fixing \mathfrak{P} . Thus $M \supset L^D$.

$$L \supset \mathfrak{P}$$

$$\left.\frac{n}{g}\right|D$$

$$L^{D} \supset \mathfrak{Q}$$

$$\left.g\right|G/D$$

$$K \supset \mathfrak{p}$$

terminology	e	f	g
inert	1	n	1
totally ramified	n	1	1
(totally) split	1	1	n

Table 3.1: Different prime behaviors

The next proposition uses the same notation as the above proof.

Proposition 3.8. Let \mathfrak{Q} be the prime of L^D below \mathfrak{P} . We have that

$$f_{\mathfrak{Q}/\mathfrak{p}} = e_{\mathfrak{Q}/\mathfrak{p}} = 1.$$

If D is a normal subgroup of G, then \mathfrak{p} is completely split in L^D .

Proof. We know that $[G:D] = g(\mathfrak{P}/\mathfrak{p})$ which is equal to $[L^D:K]$ by Galois theory. The previous proposition shows that $g(\mathfrak{P}/\mathfrak{Q}) = 1$ (recall that g counts how many primes are above). Now we compute that

$$\begin{array}{lcl} e(\mathfrak{P}/\mathfrak{Q})f(\mathfrak{P}/\mathfrak{Q}) & = & \dfrac{[L:L^D]}{g(\mathfrak{P}/\mathfrak{Q})} \\ & = & [L:L^D] \\ & = & \dfrac{[L:K]}{[L^D:K]}. \end{array}$$

Since we have that

$$[L:K] = e(\mathfrak{P}/\mathfrak{p})f(\mathfrak{P}/\mathfrak{p})g(\mathfrak{P}/\mathfrak{p})$$

and $[L^D:K]=g(\mathfrak{P}/\mathfrak{p})$, we further get

$$\begin{array}{lcl} e(\mathfrak{P}/\mathfrak{Q})f(\mathfrak{P}/\mathfrak{Q}) & = & \frac{e(\mathfrak{P}/\mathfrak{p})f(\mathfrak{P}/\mathfrak{p})g(\mathfrak{P}/\mathfrak{p})}{g(\mathfrak{P}/\mathfrak{p})} \\ & = & e(\mathfrak{P}/\mathfrak{p})f(\mathfrak{P}/\mathfrak{p}) \\ & = & e(\mathfrak{P}/\mathfrak{Q})f(\mathfrak{P}/\mathfrak{Q})e(\mathfrak{Q}/\mathfrak{p})f(\mathfrak{Q}/\mathfrak{p}) \end{array}$$

where the last equality comes from transitivity. Thus

$$e(\mathfrak{Q}/\mathfrak{p})f(\mathfrak{Q}/\mathfrak{p}) = 1$$

and $e(\mathfrak{Q}/\mathfrak{p}) = f(\mathfrak{Q}/\mathfrak{p}) = 1$ since they are positive integers. If D is normal, we have that L^D/K is Galois. Thus

$$[L^D:K] = e(\mathfrak{Q}/\mathfrak{p})f(\mathfrak{Q}/\mathfrak{p})g(\mathfrak{Q}/\mathfrak{p}) = g(\mathfrak{Q}/\mathfrak{p})$$

and \mathfrak{p} completely splits.

Let σ be in D. Then σ induces an automorphism of $\mathcal{O}_L/\mathfrak{P}$ which fixes $\mathcal{O}_K/\mathfrak{p} = \mathbb{F}_{\mathfrak{p}}$. That is we get an element $\phi(\sigma) \in \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_{\mathfrak{p}})$. We have thus constructed a map

$$\phi: D \to \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_{\mathfrak{p}}).$$

This is a group homomorphism. We know that $\operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_{\mathfrak{p}})$ is cyclic, generated by the Frobenius automorphism defined by

$$\operatorname{Frob}_{\mathfrak{P}}(x) = x^q, \ q = |\mathbb{F}_{\mathfrak{p}}|.$$

Definition 3.7. The inertia group $I = I_{\mathfrak{P}/\mathfrak{p}}$ is defined as being the kernel of ϕ .

Example 3.6. Let $K = \mathbb{Q}(i)$ and $\mathcal{O}_K = \mathbb{Z}[i]$. We have that K/\mathbb{Q} is a Galois extension, with Galois group $G = \{1, \sigma\}$ where $\sigma : a + ib \mapsto a - ib$.

• We have that

$$(2) = (1+i)^2 \mathbb{Z}[i],$$

thus the ramification index is e=2. Since efg=n=2, we have that f=g=1. The residue field is $\mathbb{Z}[i]/(1+i)\mathbb{Z}[i]=\mathbb{F}_2$. The decomposition group D is G since $\sigma((1+i)\mathbb{Z}[i])=(1+i)\mathbb{Z}[i]$. Since f=1, $\operatorname{Gal}(\mathbb{F}_2/\mathbb{F}_2)=\{1\}$ and $\phi(\sigma)=1$. Thus the kernel of ϕ is D=G and the inertia group is I=G.

• We have that

$$(13) = (2+3i)(2-3i),$$

thus the ramification index is e=1. Here D=1 for $(2\pm 3i)$ since $\sigma((2+3i)\mathbb{Z}[i])=(2-3i)\mathbb{Z}[i]\neq (2+3i)\mathbb{Z}[i]$. We further have that g=2, thus efg=2 implies that f=1, which as for 2 implies that the inertia group is I=G. We have that the residue field for $(2\pm 3i)$ is $\mathbb{Z}[i]/(2\pm 3i)\mathbb{Z}[i]=\mathbb{F}_{13}$.

• We have that $(7)\mathbb{Z}[i]$ is inert. Thus D=G (the ideal belongs to the base field, which is fixed by the whole Galois group). Since e=g=1, the inertial degree is f=2, and the residue field is $\mathbb{Z}[i]/(7)\mathbb{Z}[i]=\mathbb{F}_{49}$. The Galois group $\mathrm{Gal}(\mathbb{F}_{49}/\mathbb{F}_7)=\{1,\tau\}$ with $\tau:x\mapsto x^7,\ x\in\mathbb{F}_{49}$. Thus the inertia group is $I=\{1\}$.

We can prove that ϕ is surjective and thus get the following exact sequence:

$$1 \to I \to D \to \operatorname{Gal}(\mathbb{F}_{\mathfrak{P}}/\mathbb{F}_{\mathfrak{p}}) \to 1.$$

The decomposition group is so named because it can be used to decompose the field extension L/K into a series of intermediate extensions each of which has a simple factorization behavior at \mathfrak{p} . If we denote by L^I the fixed field of I, then the above exact sequence corresponds under Galois theory to the following

43

tower of fields:

Intuitively, this decomposition of the extension says that L^D/K contains all of the factorization of $\mathfrak p$ into distinct primes, while the extension L^I/L^D is the source of all the inertial degree in $\mathfrak P$ over $\mathfrak p$. Finally, the extension L/L^I is responsible for all of the ramification that occurs over $\mathfrak p$.

Note that the map ϕ plays a special role for further theories, including reciprocity laws and class field theory.

The main definitions and results of this chapter are

- Definition of discriminant, and that a prime ramifies if and only if it divides the discriminant.
- Definition of signature.
- The terminology relative to ramification: prime above/below, inertial degree, ramification index, residue field, ramified, inert, totally ramified, split.
- The method to compute the factorization if $\mathcal{O}_K = \mathbb{Z}[\theta]$.
- The formula $[L:K] = \sum_{i=1}^{g} e_i f_i$.
- The notion of absolute and relative extensions.
- If L/K is Galois, that the Galois group acts transitively on the primes above a given \mathfrak{p} , that [L:K]=efg, and the concepts of decomposition group and inertia group.