
Chapter 3
Ramification Theory

This chapter introduces ramification theory, which roughly speaking asks the
following question: if one takes a prime (ideal) p in the ring of integers OK of
a number field K, what happens when p is lifted to OL, that is pOL, where L
is an extension of K. We know by the work done in the previous chapter that
pOL has a factorization as a product of primes, so the question is: will pOL still
be a prime? or will it factor somehow?

In order to study the behavior of primes in L/K, we first consider absolute
extensions, that is when K = Q, and define the notions of discriminant, inertial
degree and ramification index. We show how the discriminant tells us about
ramification. When we are lucky enough to get a “nice” ring of integers OL,
that is OL = Z[θ] for θ ∈ L, we give a method to compute the factorization of
primes in OL. We then generalize the concepts introduced to relative extensions,
and study the particular case of Galois extensions.

3.1 Discriminant

Let K be a number field of degree n. Recall from Corollary 1.8 that there are
n embeddings of K into C.

Definition 3.1. Let K be a number field of degree n, and set

r1 = number of real embeddings

r2 = number of pairs of complex embeddings

The couple (r1, r2) is called the signature of K. We have that

n = r1 + 2r2.

Examples 3.1. 1. The signature of Q is (1, 0).

2. The signature of Q(
√
d), d > 0, is (2, 0).
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3. The signature of Q(
√
d), d < 0, is (0, 1).

4. The signature of Q( 3
√

2) is (1, 1).

Let K be a number field of degree n, and let OK be its ring of integers. Let
σ1, . . . , σn be its n embeddings into C. We define the map

σ : K → Cn

x 7→ (σ1(x), . . . , σn(x)).

Since OK is a free abelian group of rank n, we have a Z-basis {α1, . . . , αn} of
OK . Let us consider the n× n matrix M given by

M = (σi(αj))1≤i,j≤n.

The determinant of M is a measure of the density of OK in K (actually of
K/OK). It tells us how sparse the integers of K are. However, det(M) is only
defined up to sign, and is not necessarily in either R or K. So instead we
consider

det(M2) = det(M tM)

= det

(
n∑

k=1

σk(αi)σk(αj)

)

i,j

= det(TrK/Q(αiαj))i,j ∈ Z,

and this does not depend on the choice of a basis.

Definition 3.2. Let α1, . . . , αn ∈ K. We define

disc(α1, . . . , αn) = det(TrK/Q(αiαj))i,j .

In particular, if α1, . . . , αn is any Z-basis of OK , we write ∆K , and we call
discriminant the integer

∆K = det(TrK/Q(αiαj))1≤i,j≤n.

We have that ∆K 6= 0. This is a consequence of the following lemma.

Lemma 3.1. The symmetric bilinear form

K ×K → Q

(x, y) 7→ TrK/Q(xy)

is non-degenerate.

Proof. Let us assume by contradiction that there exists 0 6= α ∈ K such that
TrK/Q(αβ) = 0 for all β ∈ K. By taking β = α−1, we get

TrK/Q(αβ) = TrK/Q(1) = n 6= 0.
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Now if we had that ∆K = 0, there would be a non-zero column vector
(x1, . . . , xn)t, xi ∈ Q, killed by the matrix (TrK/Q(αiαj))1≤i,j≤n. Set γ =
∑n

i=1 αixi, then TrK/Q(αjγ) = 0 for each j, which is a contradiction by the
above lemma.

Example 3.2. Consider the quadratic field K = Q(
√

5). Its two embeddings
into C are given by

σ1 : a+ b
√

5 7→ a+ b
√

5, σ2 : a+ b
√

5 7→ a− b
√

5.

Its ring of integers is Z[(1 +
√

5)/2], so that the matrix M of embeddings is

M =

(
σ1(1) σ2(1)

σ1

(
1+
√

5
2

)

σ2

(
1+
√

5
2

)

)

and its discriminant ∆K can be computed by

∆K = det(M2) = 5.

3.2 Prime decomposition

Let p be a prime ideal of O. Then p∩Z is a prime ideal of Z. Indeed, one easily
verifies that this is an ideal of Z. Now if a, b are integers with ab ∈ p ∩ Z, then
we can use the fact that p is prime to deduce that either a or b belongs to p and
thus to p ∩ Z (note that p ∩ Z is a proper ideal since p ∩ Z does not contain 1,
and p ∩ Z 6= ∅, as N(p) belongs to p and Z since N(p) = |O/p| <∞).

Since p ∩ Z is a prime ideal of Z, there must exist a prime number p such
that p ∩ Z = pZ. We say that p is above p.

p ⊂ OK ⊂ K

pZ ⊂ Z ⊂ Q

We call residue field the quotient of a commutative ring by a maximal ideal.
Thus the residue field of pZ is Z/pZ = Fp. We are now interested in the residue
field OK/p. We show that OK/p is a Fp-vector space of finite dimension. Set

φ : Z → OK → OK/p,

where the first arrow is the canonical inclusion ι of Z into OK , and the second
arrow is the projection π, so that φ = π ◦ ι. Now the kernel of φ is given by

ker(φ) = {a ∈ Z | a ∈ p} = p ∩ Z = pZ,

so that φ induces an injection of Z/pZ into OK/p, since Z/pZ ≃ Im(φ) ⊂ OK/p.
By Lemma 2.1, OK/p is a finite set, thus a finite field which contains Z/pZ and
we have indeed a finite extension of Fp.
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Definition 3.3. We call inertial degree, and we denote by fp, the dimension of
the Fp-vector space O/p, that is

fp = dimFp
(O/p).

Note that we have

N(p) = |O/p| = |FdimFp (O/p)
p | = |Fp|fp = pfp .

Example 3.3. Consider the quadratic field K = Q(i), with ring of integers
Z[i], and let us look at the ideal 2Z[i]:

2Z[i] = (1 + i)(1 − i)Z[i] = p2, p = (1 + i)Z[i]

since (−i)(1 + i) = 1 − i. Furthermore, p ∩ Z = 2Z, so that p = (1 + i) is said
to be above 2. We have that

N(p) = NK/Q(1 + i) = (1 + i)(1 − i) = 2

and thus fp = 1. Indeed, the corresponding residue field is

OK/p ≃ F2.

Let us consider again a prime ideal p of O. We have seen that p is above
the ideal pZ = p ∩ Z. We can now look the other way round: we start with the
prime p ∈ Z, and look at the ideal pO of O. We know that pO has a unique
factorization into a product of prime ideals (by all the work done in Chapter
2). Furthermore, we have that p ⊂ p, thus p has to be one of the factors of pO.

Definition 3.4. Let p ∈ Z be a prime. Let p be a prime ideal of O above p.
We call ramification index of p, and we write ep, the exact power of p which
divides pO.

We start from p ∈ Z, whose factorization in O is given by

pO = p
ep1
1 · · · pepg

g .

We say that p is ramified if epi
> 1 for some i. On the contrary, p is non-ramified

if
pO = p1 · · · pg, pi 6= pj , i 6= j.

Both the inertial degree and the ramification index are connected via the degree
of the number field as follows.

Proposition 3.2. Let K be a number field and OK its ring of integers. Let
p ∈ Z and let

pO = p
ep1
1 · · · pepg

g

be its factorization in O. We have that

n = [K : Q] =

g
∑

i=1

epi
fpi
.
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Proof. By Lemma 2.1, we have

N(pO) = |NK/Q(p)| = pn,

where n = [K : Q]. Since the norm N is multiplicative (see Corollary 2.12), we
deduce that

N(p
ep1
1 · · · pepg

g ) =

g
∏

i=1

N(pi)
epi =

g
∏

i=1

pfpi
epi .

There is, in general, no straightforward method to compute the factorization
of pO. However, in the case where the ring of integers O is of the form O = Z[θ],
we can use the following result.

Proposition 3.3. Let K be a number field, with ring of integers OK , and let
p be a prime. Let us assume that there exists θ such that O = Z[θ], and let f
be the minimal polynomial of θ, whose reduction modulo p is denoted by f̄ . Let

f̄(X) =

g
∏

i=1

φi(X)ei

be the factorization of f(X) in Fp[X], with φi(X) coprime and irreducible. We
set

pi = (p, fi(θ)) = pO + fi(θ)O
where fi is any lift of φi to Z[X], that is f̄i = φi mod p. Then

pO = pe1
1 · · · peg

g

is the factorization of pO in O.

Proof. Let us first notice that we have the following isomorphism

O/pO = Z[θ]/pZ[θ] ≃ Z[X]/f(X)

p(Z[X]/f(X))
≃ Z[X]/(p, f(X)) ≃ Fp[X]/f̄(X),

where f̄ denotes f mod p. Let us call A the ring

A = Fp[X]/f̄(X).

The inverse of the above isomorphism is given by the evaluation in θ, namely, if
ψ(X) ∈ Fp[X], with ψ(X) mod f̄(X) ∈ A, and g ∈ Z[X] such that ḡ = ψ, then
its preimage is given by g(θ). By the Chinese Theorem, recall that we have

A = Fp[X]/f̄(X) ≃
g
∏

i=1

Fp[X]/φi(X)ei ,

since by assumption, the ideal (f̄(X)) has a prime factorization given by (f̄(X)) =
∏g

i=1(φi(X))ei .
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We are now ready to understand the structure of prime ideals of both O/pO
and A, thanks to which we will prove that pi as defined in the assumption is
prime, that any prime divisor of pO is actually one of the pi, and that the power
ei appearing in the factorization of f̄ are bigger or equal to the ramification index
epi

of pi. We will then invoke the proposition that we have just proved to show
that ei = epi

, which will conclude the proof.
By the factorization of A given above by the Chinese theorem, the maximal

ideals of A are given by (φi(X))A, and the degree of the extension A/(φi(X))A
over Fp is the degree of φi. By the isomorphism A ≃ O/pO, we get similarly
that the maximal ideals of O/pO are the ideals generated by fi(θ) mod pO.

We consider the projection π : O → O/pO. We have that

π(pi) = π(pO + fi(θ)O) = fi(θ)O mod pO.

Consequently, pi is a prime ideal of O, since fi(θ)O is. Furthermore, since
pi ⊃ pO, we have pi | pO, and the inertial degree fpi

= [O/pi : Fp] is the degree
of φi, while epi

denotes the ramification index of pi.
Now, every prime ideal p in the factorization of pO is one of the pi, since

the image of p by π is a maximal ideal of O/pO, that is

pO = p
ep1
1 · · · pepg

g

and we are thus left to look at the ramification index.
The ideal φei

i A of A belongs to O/pO via the isomorphism between O/pO ≃
A, and its preimage in O by π−1 contains pei

i (since if α ∈ pei
i , then α is a sum of

products α1 · · ·αei
, whose image by π will be a sum of product π(α1) · · ·π(αei

)
with π(αi) ∈ φiA). In O/pO, we have 0 = ∩g

i=1φi(θ)
ei , that is

pO = π−1(0) = ∩g
i=1π

−1(φei
i A) ⊃ ∩g

i=1p
ei
i =

g
∏

i=1

pei
i .

We then have that this last product is divided by pO =
∏

p
epi
i , that is ei ≥ epi

.
Let n = [K : Q]. To show that we have equality, that is ei = epi

, we use the
previous proposition:

n = [K : Q] =

g
∑

i=1

epi
fpi

≤
g
∑

i=1

ei deg(φi) = dimFp
(A) = dimFp

Zn/pZn = n.

The above proposition gives a concrete method to compute the factorization
of a prime pOK :

1. Choose a prime p ∈ Z whose factorization in pOK is to be computed.

2. Let f be the minimal polynomial of θ such that OK = Z[θ].
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3. Compute the factorization of f̄ = f mod p:

f̄ =

g
∏

i=1

φi(X)ei .

4. Lift each φi in a polynomial fi ∈ Z[X].

5. Compute pi = (p, fi(θ)) by evaluating fi in θ.

6. The factorization of pO is given by

pO = pe1
1 · · · peg

g .

Examples 3.4. 1. Let us consider K = Q( 3
√

2), with ring of integers OK =
Z[ 3

√
2]. We want to factorize 5OK . By the above proposition, we compute

X3 − 2 ≡ (X − 3)(X2 + 3X + 4)

≡ (X + 2)(X2 − 2X − 1) mod 5.

We thus get that

5OK = p1p2, p1 = (5, 2 +
3
√

2), p2 = (5,
3
√

4 − 2
3
√

2 − 1).

2. Let us consider Q(i), with OK = Z[i], and choose p = 2. We have θ = i
and f(X) = X2 + 1. We compute the factorization of f̄(X) = f(X)
mod 2:

X2 + 1 ≡ X2 − 1 ≡ (X − 1)(X + 1) ≡ (X − 1)2 mod 2.

We can take any lift of the factors to Z[X], so we can write

2OK = (2, i− 1)(2, i+ 1) or 2 = (2, i− 1)2

which is the same, since (2, i − 1) = (2, 1 + i). Furthermore, since 2 =
(1− i)(1 + i), we see that (2, i− 1) = (1 + i), and we recover the result of
Example 3.3.

Definition 3.5. We say that p is inert if pO is prime, in which case we have
g = 1, e = 1 and f = n. We say that p is totally ramified if e = n, g = 1, and
f = 1.

The discriminant of K gives us information on the ramification in K.

Theorem 3.4. Let K be a number field. If p is ramified, then p divides the
discriminant ∆K .
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Proof. Let p | pO be an ideal such that p2 | pO (we are just rephrasing the fact
that p is ramified). We can write pO = pI with I divisible by all the primes
above p (p is voluntarily left as a factor of I). Let α1, . . . , αn ∈ O be a Z-basis
of O and let α ∈ I but α 6∈ pO. We write

α = b1α1 + . . .+ bnαn, bi ∈ Z.

Since α 6∈ pO, there exists a bi which is not divisible by p, say b1. Recall that

∆K = det






σ1(α1) . . . σ1(αn)
...

...
σn(α1) . . . σn(αn)






2

where σi, i = 1, . . . , n are the n embeddings of K into C. Let us replace α1 by
α, and set

D = det






σ1(α) . . . σ1(αn)
...

...
σn(α) . . . σn(αn)






2

.

Now D and ∆K are related by

D = ∆Kb
2
1,

since D can be rewritten as

D = det













σ1(α1) . . . σ1(αn)
...

...
σn(α1) . . . σn(αn)













b1 0 . . . 0
b2 1 0

. . .

bn . . . 1















2

.

We are thus left to prove that p | D, since by construction, we have that p does
not divide b21.

Intuitively, the trick of this proof is to replace proving that p|∆K where we
have no clue how the factor p appears, with proving that p|D, where D has been
built on purpose as a function of a suitable α which we will prove below is such
that all its conjugates are above p.

Let L be the Galois closure of K, that is, L is a field which contains K, and
which is a normal extension of Q. The conjugates of α all belong to L. We
know that α belongs to all the primes of OK above p. Similarly, α ∈ K ⊂ L
belongs to all primes P of OL above p. Indeed, P ∩OK is a prime ideal of OK

above p, which contains α.
We now fix a prime P above p in OL. Then σi(P) is also a prime ideal of

OL above p (σi(P) is in L since L/Q is Galois, σi(P) is prime since P is, and
p = σi(p) ∈ σi(P)). We have that σi(α) ∈ P for all σi, thus the first column of
the matrix involves in the computation of D is in P, so that D ∈ P and D ∈ Z,
to get

D ∈ P ∩ Z = pZ.
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We have just proved that if p is ramified, then p|∆K . The converse is also
true.

Examples 3.5. 1. We have seen in Example 3.2 that the discriminant of
K = Q(

√
5) is ∆K = 5. This tells us that only 5 is ramified in Q(

√
5).

2. In Example 3.3, we have seen that 2 ramifies in K = Q(i). So 2 should
appear in ∆K . One can actually check that ∆K = −4.

Corollary 3.5. There is only a finite number of ramified primes.

Proof. The discriminant only has a finite number of divisors.

3.3 Relative Extensions

Most of the theory seen so far assumed that the base field is Q. In most cases,
this can be generalized to an arbitrary number fieldK, in which case we consider
a number field extension L/K. This is called a relative extension. By contrast,
we may call absolute an extension whose base field is Q. Below, we will gen-
eralize several definitions previously given for absolute extensions to relative
extensions.

Let K be a number field, and let L/K be a finite extension. We have
correspondingly a ring extension OK → OL. If P is a prime ideal of OL, then
p = P ∩ OK is a prime ideal of OK . We say that P is above p. We have a
factorization

pOL =

g
∏

i=1

P
ePi|p

i ,

where ePi/p is the relative ramification index. The relative inertial degree is
given by

fPi|p = [OL/Pi : OK/p].

We still have that

[L : K] =
∑

eP|pfP|p

where the summation is over all P above p.
Let M/L/K be a tower of finite extensions, and let P,P, p be prime ideals

of respectively M , L, and K. Then we have that

fP|p = fP|PfP|p

eP|p = eP|PeP|p.

Let IK , IL be the groups of fractional ideals of K and L respectively. We
can also generalize the application norm as follows:

N : IL → IK

P 7→ pfP|p ,
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which is a group homomorphism. This defines a relative norm for ideals, which
is itself an ideal!

In order to generalize the discriminant, we would like to have an OK-basis
of OL (similarly to having a Z-basis of OK), however such a basis does not exist
in general. Let α1, . . . , αn be a K-basis of L where αi ∈ OL, i = 1, . . . , n. We
set

discL/K(α1, . . . , αn) = det






σ1(α1) . . . σn(α1)
...

...
σ1(αn) . . . σn(αn)






2

where σi : L → C are the embeddings of L into C which fix K. We define
∆L/K as the ideal generated by all discL/K(α1, . . . , αn). It is called relative
discriminant.

3.4 Normal Extensions

Let L/K be a Galois extension of number fields, with Galois groupG = Gal(L/K).
Let p be a prime of OK . If P is a prime above p in OL, and σ ∈ G, then σ(P)
is a prime ideal above p. Indeed, σ(P) ∩ OK ⊂ K, thus σ(P) ∩ OK = P ∩ OK

since K is fixed by σ.

Theorem 3.6. Let

pOL =

g
∏

i=1

Pei
i

be the factorization of pOL in OL. Then G acts transitively on the set {P1, . . . ,Pg}.
Furthermore, we have that

e1 = . . . = eg = e where ei = ePi|p
f1 = . . . = fg = f where fi = fPi|p

and

[L : K] = efg.

Proof. G acts transitively. Let P be one of the Pi. We need to prove that
there exists σ ∈ G such that σ(Pj) = P for Pj any other of the Pi. In the proof
of Corollary 2.10, we have seen that there exists β ∈ P such that βOLP−1 is
an integral ideal coprime to pOL. The ideal

I =
∏

σ∈G

σ(βOLP−1)

is an integral ideal of OL (since βOLP−1 is), which is furthermore coprime to
pOL (since σ(βOLP−1) and σ(pOL) are coprime and σ(pOL) = σ(p)σ(OL) =
pOL).
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Thus I can be rewritten as

I =

∏

σ∈G σ(β)OL
∏

σ∈G σ(P)

=
NL/K(β)OL
∏

σ∈G σ(P)

and we have that
I
∏

σ∈G

σ(P) = NL/K(β)OL.

Since NL/K(β) =
∏

σ∈G σ(β), β ∈ P and one of the σ is the identity, we have
that NL/K(β) ∈ P. Furthermore, NL/K(β) ∈ OK since β ∈ OL, and we get
that NL/K(β) ∈ P ∩ OK = p, from which we deduce that p divides the right
hand side of the above equation, and thus the left hand side. Since I is coprime
to p, we get that p divides

∏

σ∈G σ(P). In other words, using the factorization
of p, we have that

∏

σ∈G

σ(P) is divisible by pOL =

g
∏

i=1

Pei
i

and each of the Pi has to be among {σ(P)}σ∈G.
All the ramification indices are equal. By the first part, we know that

there exists σ ∈ G such that σ(Pi) = Pk, i 6= k. Now, we have that

σ(pOL) =

g
∏

i=1

σ(Pi)
ei

= pOL

=

g
∏

i=1

Pei
i

where the second equality holds since p ∈ OK and L/K is Galois. By comparing
the two factorizations of p and its conjugates, we get that ei = ek.

All the inertial degrees are equal. This follows from the fact that σ
induces the following field isomorphism

OL/Pi ≃ OL/σ(Pi).

Finally we have that
|G| = [L : K] = efg.

For now on, let us fix P above p.

Definition 3.6. The stabilizer of P in G is called the decomposition group,
given by

D = DP/p = {σ ∈ G | σ(P) = P} < G.
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The index [G : D] must be equal to the number of elements in the orbit GP

of P under the action of G, that is [G : D] = |GP| (this is the orbit-stabilizer
theorem).

By the above theorem, we thus have that [G : D] = g, where g is the number
of distinct primes which divide pOL. Thus

n = efg

= ef
|G|
|D|

and
|D| = ef.

If P′ is another prime ideal above p, then the decomposition groups DP/p

and DP′/p are conjugate in G via any Galois automorphism mapping P to P′

(in formula, we have that if P′ = τ(P), then τDP/pτ
−1 = Dτ(P)/p).

Proposition 3.7. Let D = DP/p be the decomposition group of P. The subfield

LD = {α ∈ L | σ(α) = α, σ ∈ D}

is the smallest subfield M of L such that (P∩OM )OL does not split. It is called
the decomposition field of P.

Proof. We first prove that L/LD has the property that(P ∩ OLD )OL does not
split. We then prove its minimality.

We know by Galois theory that Gal(L/LD) is given by D. Furthermore, the
extension L/LD is Galois since L/K is. Let Q = P∩OLD be a prime below P.
By Theorem 3.6, we know that D acts transitively on the set of primes above
Q, among which is P. Now by definition of D = DP/p, we know that P is fixed
by D. Thus there is only P above Q.

Let us now prove the minimality of LD. Assume that there exists a field
M with L/M/K, such that Q = P ∩ OM has only one prime ideal of OL

above it. Then this unique ideal must be P, since by definition P is above
Q. Then Gal(L/M) is a subgroup of D, since its elements are fixing P. Thus
M ⊃ LD.

L ⊃ P

LD ⊃ Q

K ⊃ p

n
g D

g G/D
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terminology e f g
inert 1 n 1
totally ramified n 1 1
(totally) split 1 1 n

Table 3.1: Different prime behaviors

The next proposition uses the same notation as the above proof.

Proposition 3.8. Let Q be the prime of LD below P. We have that

fQ/p = eQ/p = 1.

If D is a normal subgroup of G, then p is completely split in LD.

Proof. We know that [G : D] = g(P/p) which is equal to [LD : K] by Galois
theory. The previous proposition shows that g(P/Q) = 1 (recall that g counts
how many primes are above). Now we compute that

e(P/Q)f(P/Q) =
[L : LD]

g(P/Q)

= [L : LD]

=
[L : K]

[LD : K]
.

Since we have that

[L : K] = e(P/p)f(P/p)g(P/p)

and [LD : K] = g(P/p), we further get

e(P/Q)f(P/Q) =
e(P/p)f(P/p)g(P/p)

g(P/p)

= e(P/p)f(P/p)

= e(P/Q)f(P/Q)e(Q/p)f(Q/p)

where the last equality comes from transitivity. Thus

e(Q/p)f(Q/p) = 1

and e(Q/p) = f(Q/p) = 1 since they are positive integers.

If D is normal, we have that LD/K is Galois. Thus

[LD : K] = e(Q/p)f(Q/p)g(Q/p) = g(Q/p)

and p completely splits.
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Let σ be in D. Then σ induces an automorphism of OL/P which fixes
OK/p = Fp. That is we get an element φ(σ) ∈ Gal(FP/Fp). We have thus
constructed a map

φ : D → Gal(FP/Fp).

This is a group homomorphism. We know that Gal(FP/Fp) is cyclic, generated
by the Frobenius automorphism defined by

FrobP(x) = xq, q = |Fp|.

Definition 3.7. The inertia group I = IP/p is defined as being the kernel of φ.

Example 3.6. Let K = Q(i) and OK = Z[i]. We have that K/Q is a Galois
extension, with Galois group G = {1, σ} where σ : a+ ib 7→ a− ib.

• We have that

(2) = (1 + i)2Z[i],

thus the ramification index is e = 2. Since efg = n = 2, we have that
f = g = 1. The residue field is Z[i]/(1 + i)Z[i] = F2. The decomposition
group D is G since σ((1+ i)Z[i]) = (1+ i)Z[i]. Since f = 1, Gal(F2/F2) =
{1} and φ(σ) = 1. Thus the kernel of φ is D = G and the inertia group is
I = G.

• We have that

(13) = (2 + 3i)(2 − 3i),

thus the ramification index is e = 1. Here D = 1 for (2 ± 3i) since
σ((2+3i)Z[i]) = (2−3i)Z[i] 6= (2+3i)Z[i]. We further have that g = 2, thus
efg = 2 implies that f = 1, which as for 2 implies that the inertia group is
I = G. We have that the residue field for (2±3i) is Z[i]/(2±3i)Z[i] = F13.

• We have that (7)Z[i] is inert. Thus D = G (the ideal belongs to the base
field, which is fixed by the whole Galois group). Since e = g = 1, the
inertial degree is f = 2, and the residue field is Z[i]/(7)Z[i] = F49. The
Galois group Gal(F49/F7) = {1, τ} with τ : x 7→ x7, x ∈ F49. Thus the
inertia group is I = {1}.

We can prove that φ is surjective and thus get the following exact sequence:

1 → I → D → Gal(FP/Fp) → 1.

The decomposition group is so named because it can be used to decompose
the field extension L/K into a series of intermediate extensions each of which
has a simple factorization behavior at p. If we denote by LI the fixed field of I,
then the above exact sequence corresponds under Galois theory to the following
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tower of fields:
L ⊃ P

LI

LD

K ⊃ p

e

f

g

Intuitively, this decomposition of the extension says that LD/K contains all
of the factorization of p into distinct primes, while the extension LI/LD is the
source of all the inertial degree in P over p. Finally, the extension L/LI is
responsible for all of the ramification that occurs over p.

Note that the map φ plays a special role for further theories, including
reciprocity laws and class field theory.

The main definitions and results of this chapter are

• Definition of discriminant, and that a prime ramifies if and
only if it divides the discriminant.

• Definition of signature.

• The terminology relative to ramification: prime
above/below, inertial degree, ramification index, residue
field, ramified, inert, totally ramified, split.

• The method to compute the factorization if OK = Z[θ].

• The formula [L : K] =
∑g

i=1 eifi.

• The notion of absolute and relative extensions.

• If L/K is Galois, that the Galois group acts transitively on
the primes above a given p, that [L : K] = efg, and the
concepts of decomposition group and inertia group.
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