
Chapter 5
p-adic numbers

The p-adic numbers were first introduced by the German mathematician K.
Hensel (though they are foreshadowed in the work of his predecessor E. Kum-
mer). It seems that Hensel’s main motivation was the analogy between the ring
of integers Z, together with its field of fractions Q, and the ring C[X] of polyno-
mials with complex coefficients, together with its field of fractions C(X). Both
Z and C[X] are rings where there is unique factorization: any integer can be
expressed as a product of primes, and any polynomial can be expressed uniquely
as

P (X) = a(X − α1)(X − α2) . . . (X − αn),

where a and α1, . . . , αn are complex numbers. This is the main analogy Hensel
explored: the primes p ∈ Z are analogous to the linear polynomials X − α ∈
C[X]. Suppose we are given a polynomial P (X) and α ∈ C, then it is possible
(for example using a Taylor expansion) to write the polynomial in the form

P (X) =

n∑

i=0

ai(X − α)i, ai ∈ C.

This also works naturally for the integers: given a positive integer m and a
prime p, we can write it “in base p”, that is

m =

n∑

i=0

aip
i, ai ∈ Z

and 0 ≤ ai ≤ p− 1.

The reason such expansions are interesting is that they give ”local” infor-
mation: the expansion in powers of (X − α) shows if P (X) vanishes at α, and
to what order. Similarly, the expansion in base p will show if m is divisible by
p, and to what order.
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Figure 5.1: Kurt Hensel (1861-1941)

Now for polynomials, one can go a little further, and consider their Laurent
expansion

f(X) =
∑

i≥n0

ai(X − α)i,

that is any rational function can be expanded into a series of this kind in terms
of each of the “primes” (X − α). From an algebraic point of view, we have
two fields: C(X) of all rational functions, and another field C((X − α)) which
consists of all Laurent series in (X − α). Then the function

f(X) 7→ expansion around (X − α)

defines an inclusion of fields

C(X) → C((X − α)).

Hensel’s idea was to extend the analogy between Z and C[X] to include the
construction of such expansions. Recall that the analogous of choosing α is
choosing a prime number p. We already know the expansion for a positive
integer m, it is just the base p representation. This can be extended for rational
numbers

x =
a

b
=
∑

n≥n0

anp
n

yielding for every rational number x a finite-tailed Laurent series in powers of
p, which is called a p-adic expansion of x.
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We will come back to this construction in this chapter, and also see that it
achieves Hensel’s goal, since the set of all finite-tailed Laurent series in powers
of p is a field, denoted by Qp, and that we similarly get a function

f(X) 7→ expansion around (X − α)

which defines an inclusion of fields

Q → Qp.

Of course, more formalism has been further introduced since Hensel’s idea,
which will be presented in this chapter.

5.1 p-adic integers and p-adic numbers

We start this chapter by introducing p-adic integers, both intuitively by referring
to writing an integer in a given base p, and formally by defining the concept of
inverse limit. This latter approach will allow to show that p-adic integers form
a ring, denoted by Zp. We will then consider ”fractions” of p-adic integers, that
is p-adic numbers, which we will show form the field Qp.

Let p be a prime number. Given an integer n > 0, we can write n in base p:

n = a0 + a1p+ a2p
2 + . . .+ akp

k

with 0 ≤ ai < p.

Definition 5.1. A p-adic integer is a (formal) serie

α = a0 + a1p+ a2p
2 + · · ·

with 0 ≤ ai < p.

The set of p-adic integers is denoted by Zp. If we cut an element α ∈ Zp at
its kth term

αk = a0 + a1p+ · · · + ak−1p
k−1

we get a well defined element of Z/pkZ. This yields mappings

Zp → Z/pkZ.

A sequence of αk, k > 0, such that αk mod pk′ ≡ αk′ for all k′ < k defines a
unique p-adic integer α ∈ Zp (start with k = 1, α1 = a0, then for k = 2, we
need to have α2 = a0 + a1p for it to be a partial sum coherent with α1). We
thus have the following bijection:

Zp = lim
←

Z/pkZ.

The notation on the right hand side is called inverse limit. Here we have an
inverse limit of rings (since Z/pkZ is a ring). The formal definition of an inverse
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limit involves more formalism than we need for our purpose. To define an inverse
limit of rings, we need a sequence of rings, which is suitably indexed (here the
sequence Z/pkZ is indexed by the integer k). We further need a sequence of
ring homomorphisms πij with the same index (here πij with i and j integers,
i ≤ j) satisfying that

1. πii is the identity on the ring indexed by i for all i,

2. for all i, j, k, i ≤ j ≤ k, we have πij ◦ πjk = πik.

In our case, πij : Z/pjZ → Z/piZ is the natural projection for i ≤ j, and the
inverse limit of rings we consider is defined by

lim
←

Z/piZ = {(xi)i ∈
∏

i

Z/piZ | πij(xj) = xi, i ≤ j}.

Example 5.1. We can write −1 as a p-adic integer:

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + (p− 1)p3 + . . .

The description of Zp as limit of Z/pkZ allows to endow Zp with a commuta-
tive ring structure: given α, β ∈ Zp, we consider their sequences αk, βk ∈ Z/pkZ.
We then form the sequence αk +βk ∈ Z/pkZ which yields a well defined element
α+ β ∈ Zp. We do the same for multiplication.

Example 5.2. Let us compute the sum of α = 2+1·3+. . . and β = 1+2·3+. . .
in Z3. We have α1 ≡ 2 mod 3 and β1 ≡ 1 mod 3, thus

(α+ β)1 = α1 + β1 ≡ 0 mod 3.

Then α2 ≡ 5 mod 32 and β2 ≡ 7 mod 32, so that

(α+ β)2 = α2 + β2 = 12 ≡ 3 mod 32.

This yields
α+ β = 0 + 1 · 3 + . . . ∈ Z3.

We are just computing the addition in base 3!

Note that Z is included in Zp.
Let us now look at fractions instead of integers. The fraction −3/2 is the

solution of the equation 2x+ 3 = 0. Does this equation have a solution in Z3?
We have that

3

−2
=

3

1 − 3
= 3(1 + 3 + 32 + . . .)

since
1

1 − x
= 1 + x+ x2 + · · · .

Thus
3

−2
= 1 · 3 + 1 · 32 + 1 · 33 + . . .
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Actually, if x = a/b and p does not divide b, then x = a/b ∈ Zp. Indeed, there
is an inverse b−1 ∈ Z/pkZ and the sequence ab−1 converges towards an x ∈ Zp

such that bx = a. On the contrary, 1/p 6∈ Zp, since for all x ∈ Zp, we have that
(px)1 = 0 6= 1.

Definition 5.2. The p-adic numbers are series of the form

a−n
1

pn
+ a−n+1

1

pn−1
+ · · · + a−1

1

p
+ a0 + a1p+ . . .

The set of p-adic numbers is denoted by Qp. It is a field. We have an inclusion
of Q into Qp. Indeed, if x ∈ Q, then there exists N ≥ 0 such that pNx ∈ Zp. In
other words, Q can be seen as a subfield of Qp.

Example 5.3. Let p = 7. Consider the equation

X2 − 2 = 0

in Z7. Let α = a0 + a1 · 7 + a2 · 72 + . . . be the solution of the equation. Then
we have that a2

0 − 2 ≡ 0 mod 7. We thus two possible values for a0:

α1 = a0 = 3, α1 = a0 = 4.

We will see that those two values will give two solutions to the equation. Let
us choose a0 = 3, and set

α2 = a0 + a1 · 7 ∈ Z/49Z.

We have that

α2
2 − 2 ≡ 0 mod 72 ⇐⇒ a2

0 + a2
1 · 72 + 2 · 7a0a1 − 2 ≡ 0 mod 72

⇐⇒ 32 + 2 · 3 · 7 · a1 − 2 ≡ 0 mod 72

⇐⇒ 7 + 6 · 7 · a1 ≡ 0 mod 72

⇐⇒ 1 + 6 · a1 ≡ 0 mod 7

⇐⇒ a1 ≡ 1 mod 7.

By iterating the above computations, we get that

α = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 1 · 74 + 2 · 75 + . . .

The other solution is given by

α = 4 + 5 · 7 + 4 · 72 + 0 · 73 + 5 · 74 + 4 · 75 + . . .

Note that X2 − 2 does not have solutions in Q2 or in Q3.

In the above example, we solve an equation in the p-adic integers by solving
each coefficient one at a time modulo p, p2, . . . If there is no solution for one
coefficient with a given modulo, then there is no solution for the equation, as
this is the case for Q2 or Q3.
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In the similar spirit, we can consider looking for roots of a given equation in
Q. If there are roots in Q, then there are also roots in Qp for every p ≤ ∞ (that
is, in all the Qp and in R). Hence we can conclude that there are no rational
roots if there is some p ≤ ∞ for which there are no p-adic roots. The fact that
roots in Q automatically are roots in Qp for every p means that a “global” root
is also a “local” root “everywhere” (that is at each p).

Much more interesting would be a converse: that “local” roots could be
“patched together” to give a “global root”. That putting together local in-
formation at all p ≤ ∞ should give global information is the idea behind the
so-called local-global principle, first clearly stated by Hasse. A good example
where this principle is successful is the Hasse-Minkowski theorem:

Theorem 5.1. (Hasse-Minkowski) Let F (X1, . . . ,Xn) ∈ Q[X1, . . . ,Xn] be a
quadratic form (that is a homogeneous polynomial of degree 2 in n variables).
The equation

F (X1, . . . ,Xn) = 0

has non-trivial solutions in Q if and only if it has non-trivial solutions in Qp

for each p ≤ ∞.

5.2 The p-adic valuation

We now introduce the notion of p-adic valuation and p-adic absolute value. We
first define them for elements in Q, and extend them to elements in Qp after
proving the so-called product formula. The notion of absolute value on Qp

enables to define Cauchy sequences, and we will see that Qp is actually the
completion of Q with respect to the metric induced by this absolute value.

Let α be a non-zero element of Q. We can write it as

α = pk g

h
, k ∈ Z,

and g, h, p coprime to each other, with p prime. We set

ordp(α) = k

|α|p = p−k

ordp(0) = ∞
|0|p = 0.

We call ordp(α) the p-adic valuation of α and |α|p the p-adic absolute value of
α. We have the following properties for the p-adic valuation:

ordp : Q → Z ∪ {∞}
ordp(ab) = ordp(a) + ordp(b)

ordp(a+ b) ≥ min(ordp(a), ordp(b))

ordp(a) = ∞ ⇐⇒ a = 0.
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Let us now look at some properties of the p-adic absolute value:

| · |p : Q → R≥0

|ab|p = |a|p|b|p
|a+ b|p ≤ max(|a|p, |b|p) ≤ |a|p + |b|p
|a|p = 0 ⇐⇒ a = 0.

Note that in a sense, we are just trying to capture for this new absolute value
the important properties of the usual absolute value. Now the p-adic absolute
value induces a metric on Q, by setting

dp(a, b) = |a− b|p,

which is indeed a distance (it is positive: dp(a, b) ≥ 0 and is 0 if and only if
a = b, it is symmetric: dp(a, b) = dp(b, a), and it satisfies the triangle inequality:
dp(a, c) ≤ dp(a, b) + dp(b, c)). With that metric, two elements a and b are close
if |a− b|p is small, which means that ordp(a− b) is big, or in other words, a big
power of p divides a− b.

The following result connects the usual absolute value of Q with the p-adic
absolute values.

Lemma 5.2. (Product Formula) Let 0 6= α ∈ Q. Then

∏

ν

|α|ν = 1

where ν ∈ {∞, 2, 3, 5, 7, . . .} and |α|∞ is the real absolute value of α.

Proof. We prove it for α a positive integer, the general case will follow. Let α
be a positive integer, which we can factor as

α = pa1
1 p

a2
2 · · · pak

k .

Then we have 





|α|q = 1 if q 6= pi

|α|pi
= p−ai

i for i = 1, . . . , k
|α|∞ = pa1

1 · · · pak

k

The result follows.

In particular, if we know all but one absolute value, the product formula
allows us to determine the missing one. This turns out to be surprisingly impor-
tant in many applications. Note that a similar result is true for finite extensions
of Q, except that in that case, we must use several “infinite primes” (actually
one for each different inclusion into R and C). We will come back to this result
in the next chapter.

The set of primes together with the “infinite prime”, over which the product
is taken in the product formula, is usually called the set of places of Q.
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Definition 5.3. The set

MQ = {∞, 2, 3, . . .}

is the set of places of Q.

Let us now get back to the p-adic numbers. Let α = akp
k + ak+1p

k+1 +
ak+2p

k+2 + . . . ∈ Qp, with ak 6= 0, and k possibly negative. We then set

ordp(α) = k

|α|p = p−k.

This is an extension of the definition of absolute value defined for elements of
Q.

Before going on further, let us recall two definitions:

• Recall that a sequence of elements xn in a given field is called a Cauchy
sequence if for every ǫ > 0 one can find a bound M such that we have
|xn − xm| < ǫ whenever m,n ≥M .

• A field K is called complete with respect to an absolute value | · | if every
Cauchy sequence of elements of K has a limit in K.

Let α ∈ Qp. Recall that αl is the integer 0 ≤ αl < pl obtained by cutting α
after al−1p

l−1. If n > m, we have

|αn − αm|p = |akp
k + . . .+ amp

m + . . .+ an−1p
n−1 − akp

k − . . .− am−1p
m−1|

= |amp
m + am+1p

m+1 + . . .+ an−1p
n−1|p ≤ p−m.

This expression tends to 0 when m tends to infinity. In other words, the
sequence (αn)n≥0 is a Cauchy sequence with respect to the metric induced by
| · |p.

Now let (αn)n≥1 be a Cauchy sequence, that is |αn−αm|p → 0 when m→ ∞
with n > m, that is, αn − αm is more and more divisible by p, this is just the
interpretation of what it means to be close with respect to the p-adic absolute
value. The writing of αn and αm in base p will thus be the same for more and
more terms starting from the beginning, so that (αn) defines a p-adic number.

This may get clearer if one tries to write down two p-adic numbers. If a, b
are p-adic integers, a = a0 +a1p+a2p

2 + . . ., b = b0 +b1p+b2p
2 + . . ., if a0 6= b0,

then |a−b|p = p0 = 1 if p does not divide a0−b0, and |a−b|p = p−1 if p|a0−b0,
but |a − b|p cannot be smaller than 1/p, for which we need a0 = b0. This
works similarly for a, b p-adic numbers. Then we can write a = a−k1/pk + . . .,
b = b−l1/p

l + . . .. If k 6= l, say k > l, then |a− b|p = |b−l1/p
l + . . .+ a−k/p

k +
. . . |p = pl, which is positive. The two p-adic numbers a and b are thus very far
apart. We see that for the distance between a and b to be smaller than 1, we
first need all the coefficients a−i, b−i, to be the same, for i = k, . . . , 1. We are
then back to the computations we did for a and b p-adic integers.

We have just shown that
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Theorem 5.3. The field of p-adic numbers Qp is a completion of Q with respect
to the p-adic metric induced by | · |p.

Now that we have a formal definition of the field of the p-adic numbers, let
us look at some of its properties.

Proposition 5.4. Let Qp be the field of the p-adic numbers.

1. The unit ball {α ∈ Qp | |α|p ≤ 1} is equal to Zp.

2. The p-adic units are

Z×p = {α ∈ Zp | 0 6= a0 ∈ (Z/pZ)×}
= {α ∈ Zp | |α|p = 1}.

3. The only non-zero ideals of Zp are the principal ideals

pkZp = {α ∈ Qp | ordp(α) ≥ k}.

4. Z is dense in Zp.

Proof. 1. We look at the unit ball, that is α ∈ Qp such that |α|p ≤ 1. By
definition, we have

|α|p ≤ 1 ⇐⇒ p−ordp(α) ≤ 1 ⇐⇒ ordp(α) ≥ 0.

This is exactly saying that α belongs to Zp.

2. Let us now look at the units of Zp. Let α be a unit. Then

α ∈ Z×p ⇐⇒ α ∈ Zp and
1

α
∈ Zp ⇐⇒ |α|p ≤ 1 and |1/α|p ≤ 1 ⇐⇒ |α|p = 1.

3. We are now interested in the ideals of Zp. Let I be a non-zero ideal of Zp,
and let α be the element of I with minimal valuation ordp(α) = k ≥ 0.
We thus have that

α = pk(ak + ak+1p+ . . .)

where the second factor is a unit, implying that

αZp = pkZp ⊂ I.

We now prove that I ⊂ pkZp, which concludes the proof by showing that
I = pkZp. If I is not included in pkZp, then there is an element in I out of
pkZp, but then this element must have a valuation smaller than k, which
cannot be by minimality of k.
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4. We now want to prove that Z is dense in Zp. Formally, that means that for
every element α ∈ Zp, and every ǫ > 0, we have B(α, ǫ) ∩ Z is non-empty
(where B(α, ǫ) denotes an open ball around α of radius ǫ).

Let us thus take α ∈ Zp and ǫ > 0. There exists a k big enough so that
p−k < ǫ. We set ᾱ ∈ Z the integer obtained by cutting the serie of α after
ak−1p

k−1. Then
α− ᾱ = akp

k + ak+1p
k+1 + . . .

implies that
|α− ᾱ|p ≤ p−k < ǫ.

Thus Z is dense in Zp. Similarly, Q is dense in Qp.

The main definitions and results of this chapter are

• Definition of p-adic integers using p-adic expansions, inverse
limit, and that they form a ring Zp

• Definition of p-adic numbers using p-adic expansions, and
that they form a field Qp

• Definition of p-adic valuation and absolute value

• The product formula

• The formal definition of Qp as completion of Q, and that Zp

can then be defined as elements of Qp with positive p-adic
valuation.

• Ideals and units of Zp.


