
Chapter 6
Valuations

In this chapter, we generalize the notion of absolute value. In particular, we will
show how the p-adic absolute value defined in the previous chapter for Q can be
extended to hold for number fields. We introduce the notion of archimedean and
non-archimedean places, which we will show yield respectively infinite and finite
places. We will characterize infinite and finite places for number fields, and show
that they are very well known: infinite places correspond to the embeddings of
the number field into C while finite places are given by prime ideals of the ring
of integers.

6.1 Definitions

Let K be a field.

Definition 6.1. An absolute value on K is a map | · | : K → R≥0 which satisfies

• |α| = 0 if and only if α = 0,

• |αβ| = |α||β| for all α, β ∈ K

• there exists a > 0 such that |α+ β|a ≤ |α|a + |β|a.

We suppose that the absolute value | · | is not trivial, that is, there exists
α ∈ K with |α| 6= 0 and |α| 6= 1.

Note that when a = 1 in the last condition, we say that | · | satisfies the
triangle inequality.

Example 6.1. The p-adic absolute valuation | · |p of the previous chapter,
defined by |α|p = p−ordp(α) satisfies the triangle inequality.

Definition 6.2. Two absolute values are equivalent if there exists a c > 0 such
that |α|1 = (|α|2)c. An equivalence class of absolute value is called a place of
K.
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64 CHAPTER 6. VALUATIONS

Example 6.2. Ostrowski’s theorem, due to the mathematician Alexander Os-
trowski, states that any non-trivial absolute value on the rational numbers Q is
equivalent to either the usual real absolute value (| · |) or a p-adic absolute value
(| · |p). Since | · | = | · |∞, we have that the places of Q are | · |p, p ≤ ∞. By
analogy we also call p ≤ ∞ places of Q.

Note that any valuation makes K into a metric space with metric given by
d(x1, x2) = |x1 − x2|a. This metric does depend on a, however the induced
topology only depends on the place. This is what the above definition really
means: two absolute values on a field K are equivalent if they define the same
topology on K, or again in other words, that every set that is open with respect
to one topology is also open with respect to the other (recall that by open set,
we just mean that if an element belongs to the set, then it also belongs to an
open ball that is contained in the open set).

Lemma 6.1. Let | · |1 and | · |2 be absolute values on a field K. The following
statements are equivalent:

1. | · |1 and | · |2 define the same topology;

2. for any α ∈ K, we have |α|1 < 1 if and only if |α|2 < 1;

3. | · |1 and | · |2 are equivalent, that is, there exists a positive real c > 0 such
that |α|1 = (|α|2)c.

Proof. We prove 1.⇒ 2.⇒ 3.⇒ 1.
(1. ⇒ 2.) If | · |1 and | · |2 define the same topology, then any sequence that

converges with respect to one absolute value must also converge in the other.
But given any α ∈ K, we have that

lim
n→∞

αn = 0 ⇐⇒ lim
n→∞

|αn| = 0

with respect to the topology induced by an absolute value | · | ( may it be | · |1
or | · |2) if and only if |α| < 1. This gives 2.

(2. ⇒ 3.) Since | · |1 is not trivial, there exists an element x0 ∈ K such that
|x0|1 < 1. Let us set c > 0, c ∈ R, such that

|x0|c1 = |x0|2.

We can always do that for a given x0, the problem is now to see that this holds
for any x ∈ K. Let 0 6= x ∈ K. We can assume that |x|1 < 1 (otherwise just
replace x by 1/x). We now set λ ∈ R such that

|x|1 = |x0|λ1 .

Again this is possible for given x and x0. We can now combine that

|x|1 = |x0|λ1 ⇒ |x|c1 = |x0|cλ
1
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with
|x0|c1 = |x0|2 ⇒ |x0|cλ

1 = |x0|λ2
to get that

|x|c1 = |x0|cλ
1 = |x0|λ2 .

We are left to connect |x0|λ2 with |x|2.
If m/n > λ, with m,n ∈ Z, n > 0, then
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that is
|x|2 > |x0|m/n

2 for all
m

n
> λ,

or in other words,

|x|2 > |x0|λ+β
2 , β > 0 ⇒ |x|2 ≥ |x0|λ2 .

Similarly, if m/n < λ, we get that |x|2 < |x0|m/n
2 ⇒ |x|2 ≤ |x0|λ2 . Thus

|x|2 = |x0|λ2 = |x0|cλ
1 = |x|c1

for all x ∈ K.
(3. ⇒ 1.) If we assume 3., we get that

|α− a|1 < r ⇐⇒ |α− a|c2 < r ⇐⇒ |α− a|2 < r1/c,

so that any open ball with respect to | · |1 is also an open ball (albeit of different
radius) with respect to | · |2. This is enough to show that the topologies defined
by the two absolute values are identical. Note that having balls of different
radius tells us that the metrics are different.

6.2 Archimedean places

Let K be a number field.

Definition 6.3. An absolute value on a number field K is archimedean if for
all n > 1, n ∈ N, we have |n| > 1.

The story goes that since for an Archimedean valuation, we have |m| tends
to infinity with m, the terminology recalls the book that Archimedes wrote,
called “On Large Numbers”.

Proposition 6.2. The only archimedean place of Q is the place of the real
absolute value | · |∞.
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Proof. Let | · | be an archimedean absolute value on Q. We can assume that the
triangle inequality holds (otherwise, we replace | · | by | · |a). We have to prove
that there exists a constant c > 0 such that |x| = |x|c∞ for all x ∈ Q. Let us
first start by proving that this is true for positive integers.

Let m,n > 1 be integers. We write m in base n:

m = a0 + a1n+ a2n
2 + . . .+ arn

r, 0 ≤ ai < n.

In particular, m ≥ nr, and thus

r ≤ logm

log n
.

Thus, we can upper bound |m| as follows:

|m| ≤ |a0| + |a1||n| + . . .+ |ar||n|r
≤ (|a0| + |a1| + . . .+ |ar|)|n|r since |n| > 1

≤ (1 + r)|n|r+1

≤
(

1 +
logm

log n

)

|n| log m
log n +1.

Note that the second inequality is not true for example for the p-adic absolute
value! We can do similarly for mk, noticing that the last term is of order at
most nrk. Thus

|m|k ≤
(

1 +
k logm

log n

)

|n| k log m
log n +1,

and

|m| ≤
(

1 +
k logm

log n

)1/k

|n| log m
log n +1/k.

If we take the limit when k → ∞ (recall that n
√
n → 1 when n → ∞), we find

that
|m| ≤ |n| log m

log n .

If we exchange the role of m and n, we find that

|n| ≤ |m| log n
log m .

Thus combining the two above inequalities, we conclude that

|n|1/ log n = |m|1/ log m

which is a constant, say ec. We can then write that

|m| = ec log m = mc = |m|c∞
since m > 1. We have thus found a suitable constant c > 0, which concludes
the proof when m is a positive integer.

To complete the proof, we notice that the absolute value can be extended
to positive rational number, since |a/b| = |a|/|b|, which shows that |x| = |x|c∞
for 0 < x ∈ Q. Finally, it can be extended to arbitrary elements in Q by noting
that | − 1| = 1.
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Let K be a number field and σ : K → C be an embedding of K into C, then
|x|σ = |σ(x)| is an archimedean absolute value.

Theorem 6.3. Let K be a number field. Then there is a bijection

{ archimedean places } ↔ { embeddings of K into C up to conjugation }.

The archimedean places are also called places at infinity. We say that | · | is
a real place if it corresponds to a real embedding. A pair of complex conjugate
embeddings is a complex place.

6.3 Non-archimedean places

Let K be a number field. By definition, an absolute value: | · | : K → R≥0 is
non-archimedean if there exists n > 1, n ∈ N, such that |n| < 1.

Lemma 6.4. For a non-archimedean absolute value on Q, we have that

|m| ≤ 1, for all m ∈ Z.

Proof. We can assume that | · | satisfies the triangle inequality. Let us assume by
contradiction that there exists m ∈ Z such that |m| > 1. There exists M = mk

such that

|M | = |m|k > n

1 − |n| ,

where n is such that |n| < 1, which exists by definition. Let us now write M in
base n:

M = a0 + a1n+ . . .+ arn
r

which is such that

|M | ≤ |a0| + |a1||n| + . . .+ |ar||n|r
< n(1 + |n| + . . .+ |n|r)

since |ai| = |1 + . . .+ 1| ≤ ai|1| < n. Thus

|M | < n
∑

j≥0

|n|j =
n

1 − |n|

which is a contradiction.

Lemma 6.5. Let | · | be a non-archimedean absolute value which satisfies the
triangle inequality. Then

|α+ β| ≤ max{|α|, |β|}

for all α, β ∈ K. We call | · | ultrametric.
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Proof. Let k > 0. We have that

|α+ β|k = |(α+ β)k|

=
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By the previous lemma, we have that
∣
∣
∣

(
k
j

)
∣
∣
∣ ≤ 1, so that

|α+ β|k ≤ (k + 1)max{|α|, |β|}k.

Thus
|α+ β| ≤ k

√
k + 1 max{|α|, |β|}.

We get the result by observing k → ∞.

Proposition 6.6. let K be a number field, and |·| be a non-archimedean absolute
value. Let α 6= 0. Then there exists a prime ideal p of OK and a constant C > 1
such that

|α| = C−ordp(α),

where ordp(α) is the highest power of p which divides αOK .

Definition 6.4. We call
ordp : K× → Z

the p-adic valuation.

Proof. We can assume that | · | satisfies the triangle inequality. It is enough to
show the formula for α ∈ OK .

We already know that |m| ≤ 1 for all m ∈ Z. We now extend this result for
elements of OK .

(|α| ≤ 1 for α ∈ OK). For α ∈ OK , we have an equation of the form

αm + am−1α
m−1 + . . .+ a1α+ a0 = 0, ai ∈ Z.

Let us assume by contradiction that |α| > 1. By Lemma 6.4, we have that
|ai| ≤ 1 for all i. In the above equation, the term αm is thus the one with
maximal absolute value. By Lemma 6.5, we get

|α|m = |am−1α
m−1 + . . .+ a0|

≤ max{|am−1||α|m−1, . . . , |a1||α|, |a0|}
≤ max{|α|m−1, . . . , 1}

thus a contradiction. We have thus shown that |α| ≤ 1 for all α ∈ OK . We now
set

p = {α ∈ OK | |α| < 1}.
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(p is a prime ideal of OK .) Let us first show that p is an ideal of OK .
Let α ∈ p and β ∈ OK . We have that

|αβ| = |α||β| ≤ |α| < 1

showing that αβ ∈ p and α+ β ∈ p since

|α+ β| ≤ max{|α|, |β|} < 1

where the first inequality follows from Lemma 6.5. Let us now show that p is a
prime ideal of OK . If α, β ∈ OK are such that αβ ∈ p, then |α||β| < 1, which
means that at least one of the two terms has to be < 1, and thus either α or β
are in p.

(There exists a suitable C > 1.) We now choose π in p but not in p2 and
let α be an element of OK . We set m = ordp(α). We consider α/πm, which is
of valuation 0 (by choice of π and m). We can write

α

πm
OK = IJ−1

with I and J are integral ideals, both prime to p. By the Chinese Remainder
Theorem, there exists β ∈ OK , β ∈ J and β prime to p. We furthermore set

γ = β
α

πm
∈ I ⊂ OK .

Since both γ and β are elements of OK not in p, we have that |γ| = 1 and
|β| = 1 (if this is not clear, recall the definition of p above). Thus

∣
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We have finally obtained that
|α| = |π|m

for all α ∈ OK , so that we conclude by setting

C =
1

|π| .

Corollary 6.7. For a number field K, we have the following bijection

{places of K} ↔ {real embeddings}∪{pairs of complex embeddings}∪{prime ideals} .

For each place of a number field, there exists a canonical choice of absolute
values (called normalized absolute values).

• real places:
|α| = |σ(α)|R,

where σ is the associated embedding.
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• complex places:

|α| = |σ(α)|2C = |σ(α)σ̄(α)|R,
where (σ, σ̄) is the pair of associated complex embeddings.

• finite places (or non-archimedean places):

|α| = N(p)−ordp(α)

where p is the prime ideal associated to | · |.

Proposition 6.8. (Product Formula). For all 0 6= α ∈ K, we have

∏

ν

|α|ν = 1

where the product is over all places ν, and all the absolute values are normalized.

Proof. Let us rewrite the product as

∏

ν

|α|ν =
∏

ν finite

|α|ν
∏

ν infinite

|α|ν

We now compute N(αOK) in two ways, one which will make appear the finite
places, and the other the infinite places. First,

N(αOK) =
∏

p

N(p)ordp(α) =
∏

ν finite

|α|−1
ν

which can be alternatively computed by

N(αOK) = |NK/Q(α)|R =
∏

σ

|σ(α)|C =
∏

ν infinite

|α|ν .

6.4 Weak approximation

We conclude this chapter by proving the weak approximation theorem. The
term “weak” can be thought by opposition to the “strong approximation the-
orem”, where in the latter, we will state the existence of an element in OK ,
while we are only able to guarantee this element to exist in K for the former.
Those approximation theorems (especially the strong one) restate the Chinese
Remainder Theorem in the language of valuations.

Let K be a number field.

Lemma 6.9. Let ω be a place of K and {ν1, . . . , νN} be places different from ω.
Then there exists β ∈ K such that |β|ω > 1 and |β|νi

< 1 for all i = 1, . . . , N .
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Proof. We do a proof by induction on N .
(N=1). Since | · |ν1

is different from | · |ω, they induce different topologies,
and thus there exists δ ∈ K with

|δ|ν1
< 1 and |δ|ω ≥ 1

(recall that we proved above that if the two induced topologies are the same,
then |δ|ν1

| < 1 implies |δ|ω| < 1). Similarly, there exists γ ∈ K with

|γ|ω < 1 and |γ|ν1
≥ 1.

We thus take β = δγ−1.
(Assume true for N − 1). We assume N ≥ 2. By induction hypothesis,

there exists γ ∈ K with

|γ|ω > 1 and |γ|νi
< 1, i = 1, . . . , N − 1.

Again, as we proved in the case N = 1, we can find δ with

|δ|ω > 1 and |δ|νN
< 1.

We have now 3 cases:

• if |γ|νN
< 1: then take β = γ. We have that |β|ω > 1, |β|νi

< 1,
i = 1, . . . , N − 1 and |β|νN

< 1.

• if |γ|νN
= 1: we have that γr → 0 in the νi-adic topology, for all i < N .

There exists thus r >> 0 such that

β = γrδ

which satisfies the required inequalities. Note that |β|ω > 1 and |β|νN
> 1

are immediately satisfied, the problem is for νi, i = 1, . . . , N − 1 where we
have no control on |δ|νi

and need to pick r >> 0 to satisfy the inequality.

• if |γ|νN
> 1: we then have that

γr

1 + γr
=

1

1 + 1
γr

→r→∞

{
1 for | · |νN

0 for | · |νi
, i < N

Take

β =
γr

1 + γr
δ, r >> 0.

Theorem 6.10. Let K be a number field, ǫ > 0, {ν1, . . . , νm} be distinct places
of K, and α1, . . . , αm ∈ K. Then there exist β ∈ K such that

|β − αi|νi
< ǫ.
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Proof. By the above lemma, there exist βj ∈ K with |βj |νj
> 1 and |βj |νi

< 1
for i 6= j. Set

γr =

m∑

j=1

βr
j

1 + βr
j

αj .

When r → ∞, we have γr → αj for the νj-adic topology, since as in the above
proof

βr

1 + βr
=

1

1 + 1
βr

→r→∞

{
1 for |βj |νj

> 1
0 for |βj |νi

< 1, i 6= j.

Thus take β = γr, r >> 0.

Let Kνi
be the completion of K with respect to the νi-adic topology. We

can restate the theorem by saying that the image of

K →
m∏

i=1

Kνi
, x 7→ (x, x, . . . , x)

is dense.

The main definitions and results of this chapter are

• Definition of absolute value, of place, of archimedean and
non-archimedean places

• What are the finite/infinite places for number fields

• The product formula


