
Chapter 7
p-adic fields

In this chapter, we study completions of number fields, and their ramification
(in particular in the Galois case). We then look at extensions of the p-adic num-
bers Qp and classify them through their ramification, though they are actually
completion of number fields. We will address again the question of ramification
in number fields, and see how ramification locally can help us to understand
ramification globally.

By p-adic fields, we mean, in modern terminology, local fields of character-
istic zero.

Definition 7.1. Let K be a number field, and let p be a prime. Let ν be
the place associated with p and | · |ν = N(p)−ordp(·) (recall that a place is an
equivalence class of absolute values, inside which we take as representative the
normalized absolute value). We set Kν or Kp the completion of K with respect
to the | · |ν-adic topology. The field Kν admits an absolute value, still denoted
by | · |ν , which extends the one of K.

In other words, we can also define Kν as

Kν =
{(xn) | (xn) is a Cauchy sequence with respect to | · |ν}

{(xn) | xn → 0} .

This is a well defined quotient ring, since the set of Cauchy sequence has a ring
structure, and those which tend to zero form a maximal ideal inside this ring.
Intuitively, this quotient is here to get the property that all Cauchy sequences
whose terms get closer and closer to each other have the same limit (and thus
define the same element in Kν).

Example 7.1. The completion of Q with respect to the induced topology by
| · |p is Qp.

Below is an example with an infinite prime.
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Example 7.2. If ν is a real place, then Kν = R. If ν is a complex place, then
Kν = C.

Let us now compute an example where K is not Q.

Example 7.3. Let K = Q(
√

7). We want to compute its completion Kν where
ν is a place above 3. Since

3OK = (−2 −
√

7)(−2 +
√

7),

there are two places ν1, ν2 above 3, corresponding to the two finite primes

p1 = (−2 −
√

7)OK , p2 = (−2 +
√

7)OK .

Now the completion Kν where ν is one of the νi, i = 1, 2, is an extension of Q3,
since the νi-adic topology on K extends the 3-adic topology on Q.

Since K = Q[X]/(X2 − 7), we have that K contains a solution for the
equation X2 − 7. We now look at this equation in Q3, and similarly to what we
have computed in Example 5.3, we have that a solution is given by

1 + 3 + 32 + 2 · 34 + . . .

Thus
Kν ≃ Q3.

One can actually show that the two places correspond to two embeddings of K
into Q3.

In the following, we consider only finite places. Let ν be a finite place of a
number field.

Definition 7.2. We define the integers of Kν by

Oν = {x ∈ Kν | |x|ν ≤ 1}.
The definition of absolute value implies that Oν is a ring, and that

mν = {x ∈ Kν | |x|ν < 1}
is its unique maximal ideal (an element of Oν not in mν is a unit of Oν). Such
a ring is called a local ring.

Example 7.4. The ring of integers Oν of Kν = Qp is Zp, and mν = pZp.

We have the following diagram

K Kν

OK Oν

p mν

-dense

-dense

-dense
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We already have the notion of residue field for p, given by

Fp = OK/p.

We can similarly define a residue field for mν by

Fν = Oν/mν .

We can prove that
OK/p ≃ Oν/mν .

7.1 Hensel’s way of writing

Let πν be in mν but not in m2
ν , so that ordmν

(πν) = 1. We call πν a uniformizer
of mν (or of Oν). For example, for Zp, we can take π = p. We now choose a
system of representatives of Oν/mν :

C = {c0 = 0, c1, . . . , cq−1},

where q = |Fp| = N(p). For example, for Zp, we have C = {0, 1, 2, . . . , p − 1}.
The set

{πk
νc0, π

k
νc1, . . . , π

k
νcq−1} = πk

νC
is a system of representatives for mk

ν/m
k+1
ν .

Lemma 7.1. 1. Every element α ∈ Oν can be written in a unique way as

α = a0 + a1πν + a2π
2
ν + . . .

with ai ∈ C.

2. An element of α ∈ Kν can be written as

α = a−kπ
−k
ν + a−k+1π

−k+1
ν + . . . .

3. The uniformizer generates the ideal mν , that is

πk
νOν = mk

ν .

4. |α|ν = |Fν |−k, where α = akπ
k
ν + . . ., ak 6= 0.

Proof. 1. Let α ∈ Oν . Let a0 ∈ C be the representative of the class α + mν

in Oν/mν . We set

α1 =
α− a0

πν
.

We have that α1 ∈ Oν , since

|α1|ν =
|α− a0|ν
|πν |ν

≤ 1.
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Indeed, a0 ∈ α+ mν implies that α− a0 ∈ mν and thus |α− a0|ν ≤ |πν |ν .
By replacing α by α1, we find a1 ∈ C such that

α2 =
α1 − a1

πν
∈ Oν .

By iterating this process k times, we get

α = a0 + α1πν

= a0 + a1πν + α2π
2
ν

...

= a0 + a1πν + a2π
2
ν + . . .+ αk+1π

k+1
ν .

Thus

|α− (a0 + a1πν + a2π
2
ν + . . .+ akπ

k
ν )|ν = |αk+1|ν |πν |k+1

ν → 0

when k → ∞, since πν ∈ mν and thus by definition of mν , |πν |ν < 1.

2. We multiply α ∈ Kν by π
−ordmν (α)
ν , so that

π
−ordmν (α)
ν α ∈ Oν

and we conclude by 1.

3. It is clear that
πk

νOν ⊂ mk
ν .

Conversely, let us take α ∈ mk
ν . We then have that

a0 = a1 = . . . = ak−1 = 0

and thus
α = akπ

k
ν + . . . ∈ πk

νOν .

4. Since α = akπ
k
ν + . . ., ak 6= 0, we have that α ∈ πk

νOν = mk
ν but not in

mk+1
ν , and

α ∈ πk
νO×ν .

Thus
|α|ν = |πν |kν .

Now note that if πν and π′ν are two uniformizers, then |πν | = |π′ν |, and
thus, we could have taken a uniformizer in the number field rather than
in its completion, that is, π′ν ∈ p but not in p2, which yields

|π′ν | = N(p)−ordp(π′
ν) = N(p)−1 = |Fp|−1 = |Fν |−1.
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7.2 Hensel’s Lemmas

Lemma 7.2. (First Hensel’s Lemma). Let f(X) ∈ Oν [X] be a monic poly-
nomial, and let f̃(X) ∈ Fν [X] be the reduction of f modulo mν . Let us assume
that there exist two coprime monic polynomials φ1 and φ2 in Fν [X] such that

f̃ = φ1φ2.

Then there exists two monic polynomials f1 and f2 in Oν [X] such that

f = f1f2, f̃1 = φ1, f̃2 = φ2.

Proof. We first prove by induction that we can construct polynomials f
(k)
1 , f

(k)
2

in Oν [X], k ≥ 1, such that

(1) f ≡ f
(k)
1 f

(k)
2 mod mk

ν

(2) f
(k)
i ≡ f

(k−1)
i mod mk−1

ν .

(k=1). Since we know by assumption that there exist φ1, φ2 such that

f̃ = φ1φ2, we lift φi in a monic polynomial f
(1)
i ∈ Oν [X], and we have deg f

(1)
i =

deg φi.

(True up to k). We have already built f
(k)
i . Using the condition (1), there

exists a polynomial g ∈ Oν [X] such that

f = f
(k)
1 f2(k) + πk

νg.

Using Bézout’s identity for the ring Fν [X], there exists polynomials ψ1 and ψ2

in Fν [X] such that
g̃ = φ1ψ1 + φ2ψ2

since φ1 and φ2 are coprime. We now lift ψi in a polynomial hi ∈ Oν [X] of
same degree, and set

f
(k+1)
i = f

(k)
i + πk

νhi.

We now need to check that (1) and (2) are satisfied. (2) is clearly satisfied by
construction. Let us check (1). We have

f
(k+1)
1 f

(k+1)
2 = (f

(k)
1 + πk

νh1)(f
(k)
2 + πk

νh2)

= f
(k)
1 f

(k)
2 + πk

ν (f
(k)
1 h2 + f

(k)
2 h1) + π2k

ν h1h2

≡ (f − πk
νg) + πk

ν (f
(k)
1 h2 + f

(k)
2 h1) mod mk+1

ν .

We are now left to show that

πk
ν (−g + f

(k)
1 h2 + f

(k)
2 h1) ≡ 0 mod mk+1

ν ,

that is
−g + f

(k)
1 h2 + f

(k)
2 h1 ≡ 0 mod mν
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or again in other words, after reduction mod mν

−g̃ + f̃
(k)
1 h̃2 + f̃

(k)
2 h̃1 ≡ 0,

which is satisfied by construction of h1 and h2. So this concludes the proof by
induction.

Let us know conclude the proof of the lemma. We set

fi = lim
k→∞

f
(k)
i

which converges by (2). By (1) we have that

f1f2 = lim
k→∞

f
(k)
1 f

(k)
2 = f.

Example 7.5. The polynomial f(X) = X2 − 2 ∈ Z7[X] is factorized as

φ1 = (X − 3), φ2 = (X − 4)

in F7[X].

Corollary 7.3. Let K be a number field, ν be a finite place of K, and Kν be
its completion. Denote q = |Fν |. Then the set µq−1 of (q − 1)th roots of unity
belongs to Oν .

Proof. Let us look at the polynomial Xq−1 − 1. On the finite field Fν with q
elements, this polynomial splits into linear factors, and all its roots are exactly all
the invertible elements of Fν . By Hensel’s lemma, f ∈ Oν [X] can be completely
factorized. That is, it has exactly q − 1 roots in Oν . More precisely, we can
write

Xq−1 − 1 =
∏

ζ∈µq−1

(X − ζ) ∈ Oν [X].

Of course, one can rewrite that µq−1 belongs to O×ν since roots of unity are
clearly invertible in Oν .

Lemma 7.4. (Second Hensel’s Lemma). Let f be a monic polynomial in
Oν [X] and let f ′ be its formal derivative. We assume that there exists α ∈ Oν

such that
|f(α)|ν < |f ′(α)|2ν .

Then there exists β ∈ Oν such that

f(β) = 0

and

|β − α|ν ≤ |f(α)|ν
|f ′(α)|ν

< |f ′(α)|ν .
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Proof. We set

α0 = α

αn+1 = αn − βn

where

βn =
f(αn)

f ′(αn)
.

(First part of the proof.) We first show by induction that

1. |f(αn)|ν < |f(αn−1)|ν
2. |f ′(αn)|ν = |f ′(α)|ν .

Let us assume these are true for n ≥ 1, and show they still hold for n+ 1.
Let us first note that

|βn|ν =
|f(αn)|ν
|f ′(αn)|ν

<
|f(α)|ν
|f ′(αn)|ν

by 1.

=
|f(α)|ν
|f ′(α)|ν

by 2.

< |f ′(α)|ν by assumption.

Since f ∈ Oν [X] and α ∈ Oν , this means that |f ′(α)|ν ≤ 1, and in particular
implies that βn ∈ Oν .

Let us write f(X) = a0 + a1X + a2X
2 + . . .+ anX

n, so that

f(X + αn) = a0 + a1(X + αn) + a2(X
2 + 2Xαn + α2

n) + . . .+ an(Xn + . . .+ αn
n)

= (a0 + a1αn + a2α
2
n + . . .+ anα

n
n) +X(a1 + a22αn + . . .+ annα

n−1
n ) +X2g(X)

= f(αn) + f ′(αn)X + g(X)X2

with g(X) ∈ Oν [X]. We are now ready to prove that the two properties are
satisfied.

1. Let us first check that |f(αn+1)|ν < |f(αn)|ν . We have that

f(αn+1) = f(αn − βn)

= f(αn) + f ′(αn)(−βn) + g(−βn)β2
n take X = −βn

= g(−βn)β2
n recall the definition ofβ

Let us now consider its absolute value

|f(αn+1)|ν = |g(−βn)|ν |βn|2ν
≤ |βn|2ν βn ∈ Oν , g ∈ Oν [X]

< |f(αn)|ν
|f(α)|ν
|f ′(α)|2ν

by 1. and 2.

< |f(αn)|ν by assumption
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2. We now need to prove that |f ′(αn+1)|ν = |f ′(α)|ν . We have that

|f ′(αn+1)|ν = |f ′(αn − βn)|ν
= |f ′(αn) − βnh(−βn)|ν take again X = −βn

≤ max{|f ′(αn)|ν , |βn|ν |h(−βn)ν |}
= max{|f ′(α)|ν , |βn|ν |h(−βn)ν |} by 2.

and equality holds if the two arguments of the maximum are distinct. Now
the first argument is |f ′(α)|ν , while the second is

|βn|ν |h(−βn)ν | ≤ |βn|ν h(−βn) ∈ Oν

< |f ′(α)|ν ,

which completes the first part of the proof.

(Second part of the proof.) We are now ready to prove that there exists
an element β ∈ Oν which satisfies the claimed properties. We set

β = lim
n→∞

αn.

Note that this sequence converges, since this is a Cauchy sequence. Indeed, for
n > m, we have

|αn − αm|ν ≤ max{|αn − αn−1|ν , . . . , |αm+1 − αm|ν}
= max{|βn−1|, . . . , |βm|ν}

=
1

|f ′(α)|ν
max{|f(αn−1)|ν , . . . , |f(αm)|ν} by first part of the proof, part 2.

=
|f(αm)|ν
|f ′(α)|ν

by first part of the proof, part 1.

which tends to zero by 1. Let us check that β as defined above satisfies the
required properties. First, we have that

f(β) = f( lim
n→∞

αn) = lim
n→∞

f(αn) = 0.

Since Oν is closed, β ∈ Oν , and we have that

|β − α|ν = lim
n→∞

|αn − α|ν
≤ lim

n→∞
max{|αn − αn−1|ν , . . . , |α1 − α|ν}

= max{|βn−1|, . . . , |β0|ν}

≤ |f(α)|ν
|f ′(α)|ν

< |f ′(α)|ν .
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7.3 Ramification Theory

Let L/K be a number field extension. Let P and p be primes of L and K
respectively, with P above p. Since finite places correspond to primes, P and p

each induce a place (respectively w and v) such that the restriction of w to K
coincides with v, that is

(| · |w)K = | · |v.
This in turn corresponds to a field extension Lw/Kv. We can consider the
corresponding residue class fields:

FP = OL/P ≃ Ow/mw = Fw

Fp = OK/p ≃ Ov/mv = Fv

and we have a finite field extension Fw/Fv of degree f = fP/|p = fw|v. Note
that this means that the inertial degree f is the same for a prime in L/K and
the completion Lw/Kv with respect to this prime.

Lemma 7.5. Let πv be a uniformizer of Kv. Then

|πv|w = |πw|ew
where e = eP/|p = ew|v is the ramification index.

Note that this can be rewritten as mvOw = me
w, which looks more like the

original definition of ramification index.

Proof. We can take πv ∈ K and πw ∈ L. Then πv ∈ p but not in p2, and
πw ∈ P but not in P2. Thus πvOK = pI where I is an ideal coprime to p. If
we lift p and πv in OL, we get

pOL =
∏

P
ePi|p

i , πvOL =
∏

P
ePi|p

i IOL

where IOL is coprime to the Pi. Now

ordP(πv) = ordP(
∏

P
ePi|p

i IOL) = eP|p = e

and
|πv|w = N(P)−ordP(πv) = (N(P)−1)e = |πw|ew.

This lemma also means that the ramification index coincides in the field
extension and in its completion (this completes the same observation we have
just made above for the inertial degree).

Example 7.6. Let

Kv = Qp

Lw = Qp( n
√
p) = Qp[X]/(Xn − p)
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The uniformizers are given by

πv = p, πw = n
√
p.

Thus

|πw|w = 1/p

|πv|w = 1/pn

which can be seen by noting that

|πv|w = |p|w = | n
√
p|nw

which is the result of the Lemma. Thus

e = n

and the extension is totally ramified.

Example 7.7. Consider

Kv = Qp

Lw = Qp(
√
α) = Qp[X]/(X2 − α)

with α ∈ Z×p , α /∈ (Q×p )2. We have that πw is still a uniformizer for Lw, but
that [Fw : Fv] = 2.

The next theorem is a local version of the fact that if K is a number field,
then OK is a free Z-module of rank [K : Q].

Theorem 7.6. The Ov-module Ow is free of rank

nw|v = [Lw : Kv] = fw|vew|v.

We give no proof, but just mention that the main point of the proof is the
following: if {β1, . . . , βf} ⊂ Ov is a set such that the reductions β̃i generates
Fw as an Fv-vector space, then the set

{βjπ
k
w}0≤k≤e,1≤j≤f

is an Ov-basis of Ow.

7.4 Normal extensions

Let L/K be a Galois extension of number fields. Recall that the decomposition
group D of a prime P ⊂ L is given by

D = {σ ∈ Gal(L/K) | σ(P) = P}
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and that the inertia group I is the kernel of the map that sends an element
of the Galois group in D to the Galois group Gal(FP/Fp). The corresponding
fixed subfields help us to understand the ramification in L/K:

L

LI

LD

K

e

f

g

We further have that
[L : K] = efg

(note the contrast with the local case, where we have that

[Lw : Kv] = ef

by Theorem 7.6).
To analyze local extensions, that is, the extensions of completions, we can

distinguish three cases:

Case 1. if p completely splits in L, that is g = [L : K] and e = f = 1,
then

[Lw : Kv] = ef = 1

and Lw = Kv. This is the case described in Example 7.3, namely

K = Q, L = Q(
√

7), Kv = Q3, Lw = Q3.

Case 2. if p is inert, that is g = e = 1 and f = [L : K], then

[Lw : Kv] = [L : K].

In this case, πv is still a uniformizer for Lw, but Fw 6= Fv. This is a
non-ramified extension. For example, consider

K = Q, L = Q(
√

7), Kv = Q5, Lw = Q5(
√

7).

Case 3. If p is totally ramified, that is e = [L : K], then

[Lw : Kv] = [L : K]

but this time πv is not a uniformizer for Lw, and Fw = Fv. For example,
consider

K = Q, L = Q(
√

7), Kv = Q7, Lw = Q7(
√

7).
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Example 7.8. When does the Golden ratio (1+
√

5)/2 belongs to Qp? It is easy
to see that this question can be reformulated as: when is Qp(

√
5) an extension

of Qp? Let us consider

K = Q, L = Q(
√

5), Kv = Qp, Lw = Qp(
√

5).

Using the above three cases, we see that if p is inert or ramified in Q(
√

5), then

[Lw : Kv] = [L : K] = 2

and the Golden ratio cannot be in Qp. This is the case for example for p = 2, 3
(inert), or p = 5 (ramified). On the contrary, if p splits, then Qp = Qp(

√
5).

This is for example the case for p = 11 (11 = (4 +
√

5)(4 −
√

5)).

To conclude this section, let us note the following:

Proposition 7.7. If L/K is Galois, we have the following isomorphism:

Dw|v ≃ Gal(Lw/Kv).

Compare this “local” result with the its “global” counterpart, where we have
that D is a subgroup of Gal(L/K) of index [Gal(L/K) : D] = g.

7.5 Finite extensions of Qp

Let F/Qp be a finite extension of Qp. Then one can prove that F is the com-
pletion of a number field. In this section, we forget about this fact, and start
by proving that

Theorem 7.8. Let F/Qp be a finite extension. Then there exists an absolute
value on F which extends | · |p.

Proof. Let O be the set of α ∈ F whose minimal polynomial over Qp has
coefficients in Zp. The set O is actually a ring (the proof is the same as in
Chapter 1 to prove that OK is a ring).

We claim that
O = {α ∈ F | NF/Qp

(α) ∈ Zp}.
To prove this claim, we show that both inclusions hold. First, let us take α ∈ O,
and prove that its norm is in Zp. If α ∈ O, then the constant coefficient a0 of
its minimal polynomial over Qp is in Zp by definition of O, and

NF/Qp
(α) = ±am

0 ∈ Zp

for some positive m. For the reverse inclusion, we start with α ∈ F with
NF/Qp

(α) ∈ Zp. Let

f(X) = Xm + am−1X
m−1 + . . .+ a1X + a0
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be its minimal polynomial over Qp, with a priori ai ∈ Qp, i = 1, . . . ,m−1. Since
NF/Qp

(α) ∈ Zp, we have that |am
0 |p ≤ 1, which implies that |a0|p ≤ 1, that is

a0 ∈ Zp. We now would like to show that all ai ∈ Zp, which is the same thing as
proving that if pk is the smallest power of p such that g(X) = pkf(X) ∈ Zp[X],
then k = 0. Now let r be the smallest index such that pkar ∈ Z×p (r ≥ 0 and

r > 0 if k > 0 since then pka0 cannot be a unit). We have (by choice of r) that

g(X) ≡ pkXm + . . .+ pkarX
r mod p

≡ Xr(pkXm−r + . . .+ pkar) mod p.

Hensel’s lemma tells that g should have a factorization, which is in contradiction
which the fact that g(X) = pkf(X) with f(X) irreducible. Thus r = 0 and
pka0 ∈ Z×p proving that k = 0.

Let us now go back to the proof of the theorem. We now set for all α ∈ F :

|α|F = |NF/Qp
(α)|1/n

p

where n = [F : Qp]. We need to prove that this is an absolute value, which
extends | · |p.

• To show that it extends | · |p, let us restrict to α ∈ Qp. Then

|α|F = |NF/Qp
(α)|1/n

p = |αn|1/n
p = |α|p.

• The two first axioms of the absolute value are easy to check:

|α|F = 0 ⇐⇒ α = 0, |αβ|F = |α|F |β|F .

• To show that |α + β|F ≤ max{|α|F , |β|F }, it is enough to show, up to
division by α or β, that

|γ|F ≤ 1 ⇒ |γ + 1|F ≤ 1.

Indeed, if say |α/β|F ≤ 1, then

|α/β + 1|F ≤ 1 ≤ max{|α/β|F , 1}

and vice versa. Now we have that

|γ|F ≤ 1 ⇒ |NF/Qp
(γ)|1/n

p ≤ 1

⇒ |NF/Qp
(γ)|p ≤ 1

⇒ NF/Qp
(γ) ∈ Zp

⇒ γ ∈ O

by the claim above. Now since O is a ring, we have that both 1 and γ are
in O, thus γ + 1 ∈ O which implies that |γ + 1|F ≤ 1 and we are done.
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We set
m = {α ∈ F | |α|F < 1}

the unique maximal ideal of O and F = O/m is its residue class field, which is
a finite extension of Fp. We set the inertial degree to be f = [F : Fp], and e to
be such that pO = me, which coincide with the definitions of e and f that we
have already introduced.

We now proceed with studying finite extensions of Qp based on their rami-
fication. We start with non-ramified extensions.

Definition 7.3. A finite extension F/Qp is non-ramified if f = [F : Qp], that
is e = 1.

Finite non-ramified extensions of Qp are easily classified.

Theorem 7.9. For each f , there is exactly one unramified extension of degree
f . It can be obtained by adjoining to Qp a primitive (pf − 1)th root of unity.

Proof. Existence. Let Fpf = Fp(ᾱ) be an extension of Fp of degree f , and let

ḡ(X) = Xf + āf−1X
f−1 + . . .+ ā1X + ā0

be the minimal polynomial of ᾱ over Fp. Let us now lift ḡ(X) to g(X) ∈ Zp[X],
which yields an irreducible polynomial over Qp. If α is a root of g(X), then
clearly Qp(α) is an extension of degree f of Qp. To complete the proof, it is
now enough to prove that Qp(α)/Qp is a non-ramified extension of Qp, for which
we just need to prove that is residue class field, say Fp, is of degree f over Fp.
Since the residue class field contains a root of g mod p (this is just α mod p),
we have that

[Fp : Fp] ≥ f.

On the other hand, we have that

[Fp : Fp] ≤ [Qp(α) : Qp]

which concludes the proof of existence.
Unicity. We prove here that any extension F/Qp which is unramified and

of degree f is equal to the extension obtained by adjoining a primitive (pf −1)th
root of unity. We already know by Corollary 7.3 that F must contain all the
(pf −1)th roots of unity. We then need to show that the smallest field extension
of Qp which contains the (pf − 1)th roots of unity is of degree f . Let β be a
(pf − 1)th root of unity. We have that

Qp ⊂ Qp(β) ⊂ F.

But now, the residue class field of Qp(β) also contains all the (pf − 1)th roots
of unity, so it contains Fpf , which implies that

[Qp(β) : Qp] ≤ f.
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Let us now look at totally ramified extensions.

Definition 7.4. A finite extension F of Qp is totally ramified if F = Fp (that
is f = 1 and e = n).

Totally ramified extensions will be characterized in terms of Eisenstein poly-
nomials.

Definition 7.5. The monic polynomial

f(X) = Xm + am−1X
m−1 + . . .+ a0 ∈ Zp[X]

is called an Eisenstein polynomial if the two following conditions hold:

1. ai ∈ pZp,

2. a0 6∈ p2Zp.

An Eisenstein polynomial is irreducible.

The classification theorem for finite totally ramified extensions of Qp can
now be stated.

Theorem 7.10. 1. If f is an Eisenstein polynomial, then Qp[X]/f(X) is
totally ramified.

2. Let F/Qp be a totally ramified extension and let πF be a uniformizer.
Then the minimal polynomial of πF is an Eisenstein polynomial.

Example 7.9. Xm−p is an Eisenstein polynomial for all m ≥ 2, then Qp( m
√
p)

is totally ramified.

Proof. 1. Let F = Qp[X]/f(X), where

f(X) = Xm + am−1X
m−1 + . . .+ a1X + a0

and let e be the ramification index of F . Set m = [F : Qp]. We have to
show that e = m.

Let π be a root of f , then

πm + am−1π
m−1 + . . .+ a1π + a0 = 0

and
ordm(πm) = ordm(am−1π

m−1 + . . .+ a0).

Since f is an Eisenstein polynomial by assumption, we have that ai ∈
pZp ⊂ pO = me, so that

ordm(am−1π
m−1 + . . .+ a0) ≥ e

and ordm(πm) ≥ e. In particular, ordm(π) ≥ 1. Let s be the smallest
integer such that

s ≥ e

ordm(π)
.
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Then m ≥ e ≥ s. If ordm(πm) = e, then ordm(π) = e
m and thus s =

e
e/m = m, and m ≥ e ≥ m which shows that m = e. To conclude the

proof, we need to show that ordm(πm) > e cannot possibly happen. Let
us thus assume that ordm(πm) > e. This implies that

ordm(a0) = ordm(πm + π(am−1π
m−1 + . . .+ a1)) > e.

Since ordm(a0) = ordp(a0)e, the second condition for Eisenstein polyno-
mial shows that ordm(a0) = e, which gives a contradiction.

2. We know from Theorem 7.6 that O is a free Zp-module, whose basis is
given by

{pjπk
F }0≤k≤e,1≤j≤f

so that every element in F can be written as

∑

j,k

bjkπ
k
F p

j

and F = Qp[πF ]. Let

f(X) = Xm + am−1X
m−1 + . . .+ a1X + a0

be the minimal polynomial of πF . Then ±a0 = NF/Qp
(πF ) is of valuation

1, since πF is a uniformizer and F/Qp is totally ramified. Let us look at f̃ ,
the reduction of f in Fp[X]. Since Fp[X] is a unique factorization domain,
we can write

f̃(X) =
∏

φki
i

where φi are irreducible distinct polynomials in Fp[X]. By Hensel’s lemma,

we can lift this factorization into a factorization f =
∏
fi such that f̃i =

φki
i . Since f is irreducible (it is a minimal polynomial), we have only one

factor, that is f = f1, and f̃1 = φk1
1 . In words, we have that f̃ is a power

of an irreducible polynomial in Fp[X]. Then f̃ = (X − a)m since f̃ must
have a root in Fp = F. Since a0 ≡ 0 mod p, we must have a ≡ 0 mod p

and f̃ ≡ Xm mod p. In other words, ai ∈ pZp for all i. This tells us that
f(X) is an Eisenstein polynomial.



7.5. FINITE EXTENSIONS OF QP 89

The main definitions and results of this chapter are

• Definition of the completion Kν of a number field K,
of uniformizer.

• Hensel’s Lemmas.

• Local ramification index ew|v and inertial degree fw|v,
and the local formula nw|v = ew|vfw|v.

• Classification of extensions of Qp: either non-ramified
(there a unique such extension) or totally ramified.


