
Chapter 1
Pólya’s Enumeration Theorem

1.1 Counting Necklaces

Consider a decorative ornament that consists of n coloured beads, arranged on
a circular loop of strings. This can be represented as a word of length n over a
suitable alphabet of colours. For example, for n = 4, and the colours blue (B)
and green (G), we could have GBGB:

G

B

G

B

We could also label the above ornament BGBG, and similarly label GBGB
the ornament below:

B

G

B

G

This is because the second ornament is drawn as a rotated version of the
first ornament, but they are in fact the same ornament. The labels should thus
correspond to the same word, and we say that two words that differ uniquely by
a rotation of letters represent the same ornament, and they are called equivalent:
GBGB ≡ BGBG. One may easily check that this indeed defines an equiva-
lence relation (take the identity rotation for reflexivity, the reverse rotation for
symmetry, and the combination of rotations for transitivity).

Definition 1.1. An (n, k)-necklace is an equivalence class of words of length n

5



6 CHAPTER 1. PÓLYA’S ENUMERATION THEOREM

over an alphabet of size k, under rotation.

Example 1.1. The examples above form a (4, 2)-necklace:

G

B

G

B

B

G

B

G

As usual when dealing with equivalent classes, one picks one representative
per class.

Problem 1. [Necklace Enumeration Problem] Given n and k, how many
(n, k)-necklaces are there?

Example 1.2. Suppose n = 4 and k = 2 as above. Let us try to count how
many necklaces with 4 beads and two colours there are. We have necklaces with
a single colour: BBBB and GGGG.

G

G

G

G

B

B

B

B

Then we have necklaces with only one bead B, and those with only one bead
G, and their respective rotations which are not counted as different necklaces:

G

B

B

B

B

G

G

G

Then we have necklaces with exactly two beads of each colour, which could
be contiguous or not.

G

B

G

B

B

B

G

G

This gives us a total of 6 necklaces.

This was easy by hand. Suppose now we have n = 6 beads, but k = 5
colours, what would be the answer? It is probably not advised to try this case
by hand, since the claim is that there are 2635 such necklaces. We will develop
next the tools to be able to prove this.
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The problem involves two objects of different natures. The set X of words of
length n over an alphabet of size k only has a set structure, it has size |X| = kn.
The set of n rotations (or rotations of angle 2πs/n, s = 0, . . . , n − 1) has the
structure of (is isomorphic to) the cyclic group of order n, which we denote by
Cn.

How the group structure of rotations gives structure to the set X is formally
captured by the notion of group action on a set.

Definition 1.2. A (left) group action ϕ of a group G on X is a function

ϕ : G×X → X, (g, x) 7→ ϕ(g, x) = g ∗ x

that satisfies:

• identity. 1 ∗ x = x for all x ∈ X.

• compatibility. (gh) ∗ x = g ∗ (h ∗ x) for all g, h ∈ G, for all x ∈ X.

We can check here that our necklace setting does fit the framework of group
action: 1 is the rotation that does not do anything on a word, so that the
identity property is satisfied. As for compatibility, if we compose two rotations
first, and apply the result on a word, it does give the same thing as applying
the first rotation, and then applying the second one.

Definition 1.3. For a group G acting on a set X, the orbit Orb(x) of x ∈ X
is by definition

Orb(x) = {g ∗ x, g ∈ G}.

In terms of necklaces, x ∈ X is a word of length n over an alphabet of size k,
and g are rotations. An orbit for x is thus obtained by taking the chosen word
x and applying on it all possible rotations in Cn.

Example 1.3. For n = 4 and k = 2, we have 4 rotations (by π/2, π, 3π/2
and the identity), this is isomorphic to the cyclic group C4. Then consider the
ornament

G

B

G

B

and apply the 4 rotations, starting from the identity, to get the following
orbit:

G

B

G

B

B

G

B

G

G

B

G

B

B

G

B

G

which thus consists of two distinct colourings.
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The set of orbits is usually denoted by X/G:

X/G = {Orb(x), x ∈ X}.

It is useful to notice that orbits partition X (and in that, the group action of G
on X does tell us something about the structure of X).

Lemma 1.1. Orbits under the action of the group G partition the set X.

Proof. Firstly, the union of orbits is actually the whole of X:⋃
x∈X

Orb(x) = X.

This is happening because since G is a group, it contains an identity element 1,
so 1 ∗ x ∈ Orb(x), then the “identity” property of the group action implies that
x ∈ Orb(x) for every orbit. Next two orbits Orb(x),Orb(y) are either disjoint,
or they are the same. Suppose that they are not disjoint, then there exists an
element z that lives in both the orbits Orb(x) and Orb(y), then

z = g ∗ x = g′ ∗ y ⇒ x = g−1g′ ∗ y ∈ Orb(y).

We note that we used twice group axioms, once to invert g, and once to say
that g−1g′ ∈ G. We just showed that x ∈ Orb(y) and thus Orb(x) ⊆ Orb(y).
By repeating the same argument, we show the reverse inclusion.

Based on what we just defined, we can rephrase Problem 1:

Problem 2. [Necklace Enumeration Problem] Given n and k, how many
orbits of X under the action of Cn are there?

At this point, we may wonder why it was worth the effort to take our counting
necklace problem and translate it into a problem of counting orbits under a
group action, which does not seem an easier formulation (at first). The point of
the reformulation is the result called Burnside Lemma (even though it was not
proven by Burnside, so other authors call it Cauchy Frobenius Lemma).

Proposition 1.2. [Burnside Lemma] Let G be a finite group action on a set
X. Then

|X/G| = 1

|G|
∑
g∈G
|Fix(g)|, Fix(g) = {x ∈ X, g ∗ x = x}.

Before giving a proof of this result, let us see how useful it is for our necklace
problem.

Example 1.4. Suppose n = 6 and k = 2. We could of course follow the same
approach as in Example 1.2, that is, list ornaments based on how many beads
are of the same colour:

• BBBBBB and GGGGGG,
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Figure 1.1: William Burnside (1852-1927)

• GBBBBB and BGGGGG,

• GGBBBB, GBGBBB, GBBGBB, and the same pattern with reversed
colours, BBGGGG, BGBGGG, BGGBGG,

• GGGBBB, GGBGBB, GGBBGB, GBGBGB (note that the reversed
colours do not give anything new up to rotation).

This list looks ok, but how do we make sure we got the right list? A first simple
observation is that for n = 4, we had only 24 = 16 possible words to check, in
this case, we would have 26 = 64 possible words, if we want to check them all,
then we need to make sure we remove all the words equivalent up to rotation.
So let us try Burnside Lemma. The group action on X is C6, it has a generator
g, which in cycle notation is g = (1, 2, 3, 4, 5, 6). Then

g2 = (135)(246)

g3 = (14)(25)(36)

g4 = (153)(264)

g5 = (165432)

g6 = (1)(2)(3)(4)(5)(6)

and we need to compute Fix(gi) for each i, that is we want ornaments which
are invariant under rotation by gi. Now g fixes only 2 words, BBBBBB and
GGGGGG, so |Fix(g)| = 2. Then g2 fixes words with the same color in posi-
tion 1,3,5 and in position 2,4,6, these are BBBBBB, GGGGGG, BGBGBG
and GBGBGB (yes, the last two are obtained by rotation of each other, but
remember that there is also an average by the number of elements of the group
in the final formula), so |Fix(g2)| = 4. We observe in fact that within one cycle,
all the beads have to be of the same color, thus what matters is the number of
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cycles. Once this observation is made, we can easily compute:

g = (123456) |Fix(g)| = 21

g2 = (135)(246) |Fix(g2)| = 22

g3 = (14)(25)(36) |Fix(g3)| = 23

g4 = (153)(264) |Fix(g4)| = 22

g5 = (165432) |Fix(g5)| = 21

g6 = (1)(2)(3)(4)(5)(6) |Fix(g6)| = 26

and we see that the number of necklaces is

1

6
(2 + 22 + 23 + 22 + 2 + 26) = 14.

This does not really tell whether our above list was correct, but this shows that
we got the right number of necklaces.

The above example shows that the number k of colours does not play a role
but for being the basis of the exponents, so for n = 6 beads in general, we have

g = (123456) |Fix(g)| = k

g2 = (135)(246) |Fix(g2)| = k2

g3 = (14)(25)(36) |Fix(g3)| = k3

g4 = (153)(264) |Fix(g4)| = k2

g5 = (165432) |Fix(g5)| = k

g6 = (1)(2)(3)(4)(5)(6) |Fix(g6)| = k6

and we see that the number of necklaces is

1

6
(2k + 2k2 + k3 + k6).

We can thus set k = 5 in this formula to obtain the number of necklaces with
5 colours and 6 beads, if we want to give an answer to the question asked after
Example 1.2.

This formula for counting necklaces with 6 beads already shows why the
formulation in terms of group action was a good idea. Thanks to Burnside
Lemma, it becomes easy to compute a quantity which grows pretty quickly as
a function of k.

Now this formula supposes that n = 6, and we would like to have a general
formula, that is a formula valid for an arbitrary n. We saw above that the
number of words fixed by an element g ∈ Cn is determined by the number of
cycles in its cycle decomposition: if g has c(g) cycles, then it fixes kc(g) words,
and the number of (n, k)-necklaces is

1

n

∑
g∈Cn

kc(g).
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Let us thus try to understand c(gm) for gm a rotation of angle 2πm/n. Such a
rotation, in cycle notation, will look like

(i, i+m, i+ 2m, . . . , i+ (km − 1)m)

where i is the first index of the cycle, and km = n/ gcd(m,n). Indeed km must
be such that kmm ≡ 0 (mod n), which is the case. But also, there cannot be
a smaller k′ such that k′m ≡ 0 (mod n): we need to multiply m by an integer
such that the product is 0 (mod n), and the smallest integer is obtained by
multiplying m by the prime factors that are missing to m to obtain n, and only
those, which is exactly what km does.

Now that we know that each cycle has length km (note that the reasoning
does not depend on i), and since the union of all cycles must give n, we get that
the number c(gm) of cycles in the decomposition of gm is

n

km
=

n
n

gcd(m,n)

= gcd(m,n).

We thus have an answer to our Problems 1 and 2 of Necklace Enumeration.

Theorem 1.3. Given n, k two positive integers, the number of (n, k)-necklaces
is

1

n

n∑
i=1

kgcd(n,i).

When n = p is prime, this simplifies to

1

p
((p− 1)k + kp).

Corollary 1.4. Let φ be the Euler totient function. Then the number of (n, k)-
necklaces can be alternatively written as

1

n

∑
d|n

φ(d)kn/d.

See Exercise 2 for a proof.

1.2 Pólya’s Enumeration Theorem

We saw in the previous section that Burnside Lemma is a powerful tool, and in
fact it was the key to solve the problem of counting (n, k)-necklaces. It deserves
to spend some time to go through its proof, which furthermore contains a useful
counting technique.

[Burnside Lemma] Let G be a finite group action on a set X. Then

|X/G| = 1

|G|
∑
g∈G
|Fix(g)|, Fix(g) = {x ∈ X, g ∗ x = x}.
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Proof. We have∑
g∈G
|Fix(g)| =

∑
g∈G
|{x ∈ X, g ∗ x = x}|

= |{(g, x) ∈ G×X, g ∗ x = x}|
=

∑
x∈X
|{g ∈ G, g ∗ x = x}|

=
∑
x∈X

|G|
|Orb(x)|

, this is a claim

= |G|
∑
x∈X

1

|Orb(x)|

= |G|
∑

A∈X/G

∑
x∈A

1

|A|
, since X =

⋃
A∈X/G

A

= |G|
∑

A∈X/G

1

= |G||X/G|.

Note that the first lines are a nice combinatorial trick of counting the same set
in two different manners. Also the 6th equality uses Lemma 1.1. We are thus
left to prove the claim.

The set involved in the claim to be proven is called stabilizer of x:

Stab(x) = {g ∈ G, g ∗ x = x}.

We prove the claim separately, it is called the Orbit-Stabilizer Theorem.

Proposition 1.5. [Orbit-Stabilizer Theorem] Let G be a finite group acting
on a set X. Then

|Stab(x)| = |G|
|Orb(x)|

.

Proof. Fix x ∈ X, consider Orb(x), the orbit of x, which contains the elements
g1 ∗ x, . . . , gn ∗ x for G = {g1, . . . , gn}. Look at g1 ∗ x, and gather all the gi ∗ x
such that gi ∗ x = g1 ∗ x, and call A1 the set that contains all the gi. Do the
same process with g2 ∗ x (assuming g2 is not already included in A1), to obtain
a set A2, and iterate until all elements of G are considered. This creates m sets
A1, . . . , Am, which are in fact equivalence classes for the equivalence relation
∼ defined on G by g ∼ h ⇐⇒ g ∗ x = h ∗ x. We have m = |Orb(x)|, since
there is a distinct equivalence class for each distinct g ∗x in the orbit, and since
A1, . . . , Am partition G

|G| =
m∑
i=1

|Ai|.

Now |Ai| = |Stab(x)| for all i. Indeed, fix i and g ∈ Ai. Then

h ∈ Ai ⇐⇒ g∗x = h∗x ⇐⇒ x = g−1h∗x ⇐⇒ g−1h ∈ Stab(x) ⇐⇒ h ∈ gStab(x).
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This shows that |Ai| = |gStab(x)| = |Stab(x)|, the last equality being a conse-
quence of g being invertible.

Thus

|G| =
m∑
i=1

|Ai| = m|Stab(x)| = |Orb(x)||Stab(x)| ⇒ |Orb(x)| = |G|
|Stab(x)|

.

Example 1.5. We already saw an illustration of this theorem in Example 1.3.
For n = 4 and k = 2, we considered the 4 rotations (by π/2, π, 3π/2 and the
identity, denoted by g, g2, g3, g4 = 1). Then consider the ornament x

G

B

G

B

on which we apply the 4 rotations, starting from the identity, to get the
following orbit, formed of x, g ∗ x, g2 ∗ x, g3 ∗ x:

G

B

G

B

B

G

B

G

G

B

G

B

B

G

B

G

Then Stab(x) is given by g2 and g4 = 1, and |Stab(x)| = 2 = |G|
|Orb(x)| since

the orbit contains only 2 distinct colourings.
The same example can be used to illustrate the proof of the Orbit-Stabilizer

Theorem. Let us look again at these 4 ornaments, given by x, g ∗x, g2 ∗x, g3 ∗x.
Since x and g2 ∗ x give the same colouring, group 1, g2 into a set A1, and
since g ∗ x and g3 ∗ x give the same colouring, group g, g3 into a set A2. Then
|G| = |A1|+ |A2|. We also see that A1 is actually the stabilizer of x, and that A2

is gStab(x), thus |A1| = |A2| = |Stab(x)|, and the number of Ai is the number
of distinct colourings in Orb(x), so |G| = 2|Stab(x)| = |Orb(x)||Stab(x)|.

If we look back at the problem of counting necklaces, we used the fact that
necklaces can be seen as orbits under the action of a group of rotations, after
which we used Burnside’s lemma to count the number of orbits. So one can now
imagine that the same principle could apply to other counting scenarios, where
the group acting is not necessarily the cyclic group. But then, the reasoning on
cycles remains the same, so one would have to capture the cycle decomposition
of the group elements involved. This is captured by the notion of cycle index.

Definition 1.4. Given a permutation g on n elements, let ci(g) be the number
of cycles of length i in its cycle decomposition. Then the cycle index of a
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permutation group is a polynomial that summarizes the information about the
cycle types of all the elements of the group:

PG(X1, . . . , Xn) =
1

|G|
∑
g∈G

X
c1(g)
1 X

c2(g)
2 · · ·Xcn(g)

n .

Analogies could be that of a weight enumerator for linear codes, or of theta
series for lattices. Note that we consider group actions on words of length n, so
since the action of g sends a word of length n to another word of length n, g
can always be seen as a permutation on n elements (elements in a finite group
can always be seen as permutations, remember Cayley Theorem).

Example 1.6. We continue Example 1.4, where G = C6, and we have n = 6
beads. Then

g = (123456) c6(g) = 1

g2 = (135)(246) c3(g2) = 2

g3 = (14)(25)(36) c2(g3) = 3

g4 = (153)(264) c3(g4) = 2

g5 = (165432) c6(g5) = 1

g6 = (1)(2)(3)(4)(5)(6) c1(g6) = 6

and

PG(X1, . . . , X6) =
1

6
(X6+X2

3 +X3
2 +X2

3 +X6+X6
1 ) =

1

6
(2X6+2X2

3 +X3
2 +X6

1 ).

We may want to pay attention to the information contained in this polynomial.
For example, 2X6 tells us that we have 2 patterns corresponding to a cycle of
length 6 (one is associated to the cycle (123456) and one is associated to the
cycle (165432)). Then 2X2

3 tells us that we have 2 patterns corresponding to
2 cycles of length 3 (one is associated to the cycle (135)(246), the other to the
cycle (153)(264)).

Now let us add the number k of colors. For 2X6, we have 2 patterns, each
can be of any of the k colours, so this counts 2k necklaces. For 2X2

3 , we also
have 2 patterns, but each pattern contains 2 cycles, and each cycle can take one
colour, so the number of necklaces is 2k2. Iterating the process, we get that the
number of (6, k)-necklaces is

PG(k, . . . , k) =
1

6
(2k + 2k2 + k3 + k6),

as we already know.

The polynomial PG(X1, . . . , Xn) does contain a lot of information, but the
difficulty lies in actually finding it.

To state Pólya’s Enumeration Theorem in a more general setting than count-
ing coloured necklaces, we will consider D,C two finite sets, G a finite group
acting on D, and we will let G act on CD, the set of functions f : D → C, by

(g ∗ f)(d) = f(g−1 ∗ d)
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Figure 1.2: George Pólya (1887-1985). The popularity of the enumeration theo-
rem is in particular due to its applications to chemistry (enumeration of chemical
compounds).

(see Exercise 4 for a discussion on this action). The choice of the letters D,C
corresponds to a colouring (C) of a domain (D), since a popular application
of the theorem is to enumerate coloured objects. Functions f : D → C by
definition of a function must assign a value f(d) ∈ C for every d ∈ D, so it is
the same thing as having |D| slots, and for each slot, assigning a value from C,
or said otherwise, we are looking at words of length |D| with alphabet C. For
(n, k)-necklaces, D = {1, . . . , n} and C = {1, . . . , k}.

We assign a weight to each element c ∈ C, call it w(c).

Definition 1.5. The weight W (f) of a function f ∈ CD is the product

W (f) =
∏
d∈D

w(f(d)).

We first notice that functions which belong to the same orbit under the
action of G have the same weight, and for that reason, we call these orbits
patterns (in the necklace setting, an orbit, or pattern, is a necklace). Indeed,
suppose f1, f2 are in the same orbit under the action of G, that is, there exists
g ∈ G for which f2(d) = g ∗ f1(d) for all d:

W (f2) =
∏
d∈D

w(f2(d)) =
∏
d∈D

w(g ∗ f1(d)) =
∏
d∈D

w(f1(g−1 ∗ d))

=
∏
d∈D

w(f1(d)) = W (f1).

The second line equality is saying that when d runs through all values of D, so
does g−1 ∗ d (if this was not the case, then g−1 ∗ d would not go through all
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possible values of D, and there would exist d 6= d′ ∈ D with g−1 ∗ d = g−1 ∗ d′
which is not possible because g−1 is invertible). Thus if F denotes a pattern (an
orbit under the action of G on CD), instead of considering weights f ∈ F , it is
enough to consider the weight W (F ) of F , which is then W (f) for any choice
of f in F .

Example 1.7. Consider again the (4, 2)-necklace problem of Example 1.2. We
have the set of functions f : D = {1, 2, 3, 4} → C = {c1, c2}, with |D| = 4, and
|C| = 2. Choose weights for c ∈ C, e.g.

w(c1) = R, w(c2) = B,

where the weights capture the property of colouring that is of interest in the
necklace problem. Pick the function f1, given by:

f1(1) = c2, f1(2) = c2, f1(3) = c1, f1(4) = c1,

then w(f1) =
∏4
i=1 w(f1(i)) = B2R2. Then pick the function f2 given by:

f2(1) = c1, f2(2) = c1, f2(3) = c2, f2(4) = c2,

with w(f2) =
∏4
i=1 w(f2(i)) = B2R2. It has the same weights as f1, and if we

take g to be a rotation of 180 degrees clockwise, we get g ∗ f1 = (c1, c1, c2, c2) =
f2, thus f1 and f2 belong to the same pattern. Now pick the function f3, given
by

f3(1) = c2, f3(2) = c1, f3(3) = c2, f3(4) = c1,

with w(f3) =
∏4
i=1 w(f3(i)) = B2R2, which is the same weight as that of f1, f2,

however f3 does not belong to the same pattern. To see this, notice that the
permutation needed to send f3 to f1 cannot be obtained by rotation.

The example illustrates that there is one weight assigned to a pattern because
every function in this orbit has the same weight, however several orbits (or
patterns) could have the same weight. In a sense, this is saying that the weight
is a coarser characterization of functions than patterns.

Theorem 1.6. [Pólya’s Enumeration Theorem] Let D,C be two finite sets,
and let G be a finite group acting on CD. We assign a weight w(c) to each
element c ∈ C. The patterns F have induced weights W (F ). Then the pattern
inventory is

∑
F

W (F ) = PG

(∑
c∈C

w(c),
∑
c∈C

w(c)2,
∑
c∈C

w(c)3, . . .

)
,

where PG is the cycle index.

Corollary 1.7. If all the weights are chosen to be equal to 1, then the number
of patterns (or orbits of G on CD) is given by PG(|C|, . . . , |C|).
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We first prove the corollary.

Proof. If all weights are equal to 1, then W (F ) =
∏
d∈DW (f(d)) = 1 and∑

F W (F ) =
∑
F 1 just counts the number of patterns. Also

∑
c∈C w(c)i =∑

c∈C 1 = |C| for i ≥ 1.

We next prove the theorem.

Proof. To evaluate
∑
F W (F ), we need to consider all possible weights ω of F ,

and for each ω, count how many F we have such that W (F ) = ω:∑
F

W (F ) =
∑
ω

ω|{F, W (F ) = ω}|.

Counting |{F, W (F ) = ω}| means counting the number of orbits F under the
action of G, restricting to functions of given weight, that is we restrict the action
of G on

Sω = {f ∈ CD,W (f) = ω}
and |{F, W (F ) = ω}| = |Sω/G|. Let us count how many patterns (or orbits)
are in Sω using Burnside Lemma:

|Sω/G| =
1

|G|
∑
g∈G
|Fixω(g)|, Fixω(g) = {f ∈ CD, W (f) = ω, g ∗ f = f}.

Thus ∑
F

W (F ) =
∑
ω

ω
1

|G|
∑
g∈G
|Fixω(g)| = 1

|G|
∑
g∈G

∑
ω

ω|Fixω(g)|.

Since

Fix(g) = {f ∈ CD, g ∗ f = f}
= tω{f ∈ CD,W (f) = ω, g ∗ f = f}
= = tωFixω(g),

the sum
∑
ω ω|Fixω(g)| exactly captures all the weights that appear in Fix(g)

for a given g, with their multiplicity.
But this can also be counted as follows: if x ∈ Fix(g), then by definition

g ∗ f = f and the elements of a cycle of g must be given the same value c by
f . A cycle of length i will contribute a factor

∑
c∈C w(c)i, capturing that over

each of the i terms, w(c) must be the same, thus over the cycle of length i, we
have w(c)i, and any choice of c ∈ C is possible thus

∑
c∈C w(c)i. Recalling that

ci(g) denotes the number of cycles of length i, we then have

∑
F

W (F ) =
1

|G|
∑
g∈G

(∑
c∈C

w(c)

)c1(g)
· · ·

(∑
c∈C

w(c)n

)cn(g)

= PG

(∑
c∈C

w(c),
∑
c∈C

w(c)2, . . . ,
∑
c∈C

w(c)n

)
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where n = |D|.

Example 1.8. We illustrate the proof using the example of (4, 2)-necklaces.
There are 24 possible such necklaces before considering their equivalence up to
rotation. We list them by weight:

B4 RB3 R2B2 R3B R4

BBBB RBBB RRBB RRRB RRRR
BRBB RBRB RRBR
BBRB BRRB RBRR
BBBR RBBR BRRR

BRBR
BBRR

What the proof of Pólya’s Enumeration Theorem does, is to look at each column,
they correspond to Sω, for ω ranging from B4 to R4. Now looking at the action
of G = C4 on each column, we see that |Sω/G| = 1 except for ω = R2B2,
in which case |Sω/G| = 2. Thus we have 5 different weights, but 6 different
patterns, since two patterns have the same weight. This illustrates:∑

F

W (F ) =
∑
ω

ω|Sω/G| = B4 +RB3 + 2R2B2 +R3B +R4.

This can be computed differently, by looking at every weight in Fix(g). For
a given g, if x ∈ Fix(g), it must be that the weights are the same for every
elements of a cycle of g:

• for a cycle of length 1, the possible weights are R+B,

• for a cycle of length 2, the possible weights are R2 +B2,

• for a cycle of length 4, the possible weights are R4 +B4.

Let us thus look at the possible group elements, and their cycle information
(ci(g) is the number of cycles of length i in the cycle decomposition of g):

1 c1(1) = 4 (R+B)4

g c4(g) = 1 R4 +B4

g2 c2(g) = 2 (R2 +B2)2 = R4 + 2R2B2 +B4

g3 c4(g) = 1 R4 +B4

• For 1, we have 4 cycles of length 1, thus (R + B)4. Also, (R + B)4 =
(R2 + 2RB +B2)2 = R4 + 4R3B + 6R2B2 + 4RB3 +B4 gives all possible
weights of length 4 involving 2 colours.

• For g and g3, we have 1 cycle of length 4, thus (R4 + B4). This means
that g and g3 fix only RRRR and BBBB.

• For g2, we have two cycles of length 2, thus (R2+B2)2: g2 does fix RRRR
and BBBB but also 2 patterns of weight R2B2.
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If we sum over all g ∈ G their corresponding weight, we get:

(R4 + 4R3B + 6R2B2 + 4RB3 +B4) + 2(R4 +B4) + (R4 + 2R2B2 +B4)

which simplifies to

4R4 + 4R3B + 8R2B2 + 4RB3 + 4B4

as expected.
Let us next just apply the theorem. The cycle index is

PG(X1, . . . , X4) =
1

|G|
∑
g∈G

X
c1(g)
1 · · ·Xc4(g)

1 =
1

|G|
(X4

1 + 2X4 +X2
2 ).

We have two colours R and B, then
∑
c w(c)i = Ri + Bi, and we just need to

evaluate

1

4
PG(B +R,B2 +R2, B3 +R3, B4 +R4)

=
1

|G|
((B +R)4 + 2(B4 +R4) + (B2 +R2)2)

= R4 +R3B + 2R2B2 +RB3 +B4.

This tells us for example that there are two possible necklaces with two beads
of each colour.

Let us see if we can use Pólya’s Theorem for counting something else than
(n, k)-necklaces.

Example 1.9. Consider an n × n chessboard, n ≥ 2, where every square is
either colored by blue (B) or red (R). How many different colourings are there,
if different means that one cannot obtain a colouring from another by either a
rotation or a reflection? For n = 2, we have

We first to observe that:

• There are 4 rotations, r the rotation by 90 degrees clockwise, r2 the ro-
tation by 180 clockwise, r3 the rotation by 270 degrees clockwise, and r4

the identity.

• There are 4 reflections: one with respect to the vertical axis, one with
respect to the horizontal axis, and two with respect to each of the two
diagonals. Let m be the reflection with respect to the horizontal axis.
Note that rm, that is applying first m and then r, gives a reflection with
respect to the left diagonal, that r3m gives a reflection with respect to the
right diagonal, and that r2m gives a reflection with respect to the vertical
axis.
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• The 8 reflections and rotations are thus given by

{1, r, r2, r3,m, rm, r2m, r3m}.

In order to apply Pólya’s enumeration Theorem, we need the action of a group
G, for which we need to show that G = {1, r, r2, r3,m, rm, r2m, r3m} is a group
(see Exercise 5). We then need to compute Fix(g) for each g ∈ G, for which we
write the cycle decomposition. Note that we label the 4 squares of the 2 × 2
chessboard clockwise:

4

1

3

2

so that a permutation by r is of the form (1234). We get

g |Fix(g)|
1 (1)(2)(3)(4) 24

r (1234) 2
r2 (13)(24) 22

r3 (1432) 2
m (14)(23) 22

r2m (12)(34) 22

rm (24)(1)(3) 23

r3m (13)(2)(4) 23

Using Burnside lemma, we get:

1

8
(24 + 2 + 22 + 2 + 22 + 22 + 23 + 23) =

48

6
= 6.

We can compute the cycle index:

PG(X1, X2, X3, X4) =
1

8
(X4

1 + 2X2
1X2 + 3X2

2 + 2X4)

which evaluated in X1 = X2 = X3 = X4 = 2 gives 6 as expected. Now using
Pólya’s enumeration Theorem:

PG((R+B), (R2 +B2), (R3 +B3), (R4 +B4))

=
1

8
((R+B)4 + 2(R+B)2(R2 +B2) + 3(R2 +B2)2 + 2(R4 +B4))

=
1

8
(R4 + 4R3B + 6R2B2 + 4RB3 +B4) +

1

8
(2R4 + 2R2B2 + 4R3B + 4RB3 + 2B2R2 + 2B4) +

1

8
(3R4 + 3B4 + 6R2B2 + 2R4 + 2B4)

= R4 +B4 +R3B + 2R2B2 +RB3.

This enumerates the 6 colourings of the chessboard:
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The case n = 2 could be done by hand, this is much harder in general (see
Exercise 6).

1.3 Exercises

Exercise 1. Compute the number of (6, 3)-necklaces, that is the number of
necklaces with 6 beads and 3 colours.

Exercise 2. Prove that
1

n

∑
d|n

φ(d)kn/d

counts the number of (n, k)-necklaces, where φ is Euler totient function.

Exercise 3. Compute the cycle index PCn(X1, . . . , Xn).

Exercise 4. Let D,C be two finite sets, let G be a group acting on D, and let
CD be the set of functions f : D → C. Show that

(g ∗ f)(d) = f(g−1 ∗ d)

is indeed a group action on CD.

Exercise 5. Show that

{1, r, r2, r3,m, rm, r2m, r3m}

form a group with respect to composition of maps, where r is a rotation by 90
degrees (clockwise) and m is a reflection through the horizontal axis.

Exercise 6. Consider an n×n chessboard, n ≥ 2, where every square is either
colored by blue (B) or red (R). How many different colorings are there, if
different means that one cannot obtain a coloring from another by either a
rotation (by either 90, 180 or 270 degrees) or a reflection (along the vertical and
horizontal axes, and the 2 diagonals)?

Exercise 7. Consider (4, 3)-necklaces, that is the number of necklaces with
4 beads and 3 colours, say blue (B), green (G) and red (R) . Use Pólya’s
Enumeration Theorem to list the different necklaces involving at least two blue
beads.

Exercise 8. Consider an equilateral triangle whose vertices are coloured, they
can be either blue or green. Here is an example of colouring:
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G B

G

Two colourings of the vertices are considered equivalent if one can be ob-
tained from another via a rotation or reflection of the triangle.

1. List all the rotation(s) and reflection(s) of the equilateral triangle and
argue they form a group.

2. Compute the cycle index polynomial for the group of rotations and reflec-
tions of the equilateral triangle.

3. Use Polya’s Enumeration Theorem to list the different colourings using
two colours of the equilateral triangle.

We know that a (n, k)-necklace is an equivalence class of words of length n
over an alphabet size k, under rotation. Consider now an (n, k)-bracelet, that is
an equivalence class of words of length n over an alphabet of size k, under both
rotation (as necklaces), but also under reversal, which means for example that
the bracelet ABCD is equivalent to the bracelet DCBA: ABCD ≡ DCBA.

Exercise 9. We know that a (n, k)-necklace is an equivalence class of words
of length n over an alphabet size k, under rotation. Consider now an (n, k)-
bracelet, that is an equivalence class of words of length n over an alphabet
of size k, under both rotation (as necklaces), but also under reversal, which
means for example that the bracelet ABCD is equivalent to the bracelet DCBA:
ABCD ≡ DCBA.

1. For (4,2)-necklaces, they are orbits under the action of the group of ro-
tations by (2π/4)k, k = 0, 1, 2, 3. For (4,2)-bracelets, they are also orbits
under the action of some groupG. What is this groupG? List its elements.

2. Compute the cycle index polynomial for the group G.

3. Use Polya’s Enumeration Theorem to list the different (4,2)-bracelets.


