
Chapter 2
Basic Graph Theory

2.1 Some Basic Definitions

A graph G = (V,E) consists of a set V of vertices (or nodes), and a set E of
edges. Formally E is a set containing 2-subsets of V , and for u, v two vertices
of V , an edge between u and v is denoted by {u, v}.

Example 2.1. The graph Kn = ({1, . . . , n}, {{i, j}, 1 ≤ i < j ≤ n}) is called
a complete graph. The term “complete” captures the fact that every vertex
is connected to every other vertex. For n = 3, K3 has {1, 2, 3} for vertices,
and {{1, 2}, {1, 3}, {2, 3}} for edges. For K4, the vertices are {1, 2, 3, 4} and the
edges are {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}:

1 2

3

1 2

3 4

Definition 2.1. A graph G = (V,E) is called bipartite if V = AtB and every
edge has one vertex in A and one vertex in B.

Example 2.2. Consider the graph Km,n = (V,E) with V = A t B, |A| = n,
|B| = m, and E = {{a, b}, a ∈ A, b ∈ B}, which is called a complete bipartite
graph. For example, for n = 2 and m = 3, we have K2,3 :

1

2

3

1

2

This graph is bipartite, because V = A t B, and every edge has one vertex
in A and one vertex in B. It is called complete bipartite because every edge
allowed to exist by the definition of bipartite is present.

23

24 CHAPTER 2. BASIC GRAPH THEORY

An edge {i, j} is undirected. This is captured by the set notation, which
means there is no ordering on i, j. In a directed graph (digraph), edges are
ordered 2-tuples, not 2-subsets, and we write (i, j):

i j i j

It is however possible to encounter the notation (i, j) for an undirected graph,
if it is written that G is undirected, and then the notation (i, j) is used, it is to
be understood as a pair where the ordering however does not matter.

Two vertices a, b are adjacent if {a, b} (or (a, b)) is an edge.

Definition 2.2. Let G be a graph with n vertices, say V = {1, . . . , n}. An
adjacency matrix A of G is an n × n matrix defined by Aij = 1 if i and j are
adjacent, and 0 otherwise.

Examples 2.3. An adjacency matrix of K3 is0 1 1
1 0 1
1 1 0

 .
An adjacency matrix of K2,3 is

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 .
We remark that an undirected graph has a symmetric adjacency matrix.

Definition 2.3. The degree deg(v) of a vertex v of a graph G is the number of
vertices adjacent to v.

For directed graphs, we can define similarly the in-degree and out-degree.

Definition 2.4. A graph is called k-regular if all its vertices have degree k.

Example 2.4. The following famous graph, called Petersen graph, is 3-regular.

1

23

4
5

6

78

9

0

2.2. GRAPH ISOMORPHISMS AND AUTOMORPHISMS 25

Figure 2.1: Julius Petersen (1839-1910), a Danish mathematician whose contri-
butions to mathematics led to the development of graph theory.

2.2 Graph Isomorphisms and Automorphisms

Definition 2.5. Let G = (V,E) and G′ = (V ′, E′) be graphs. An isomorphism
between G and G′ is a bijection α : V → V ′ such that {u, v} ∈ E ⇐⇒
{α(u), α(v)} ∈ E′, for all {u, v} ∈ E.

In words, an isomorphism of graphs is a bijection between the vertex sets
of two graphs, which preserves adjacency. An isomomorphism between G and
itself is called an automorphism. Automorphisms of a given graph G form a
group Aut(G) (see Exercise 10).

Example 2.5. Consider the following two graphs: G = (V,E), with vertices
V = {v1, v2, v3, v4} and edges E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}}, and
another graph G′ = (V ′, E′), with vertices V ′ = {w1, w2, w3, w4} and edges
E′ = {{w1, v2}, {w1, w3}, {w3, w4}, {w1, w4}}:

v1

v2

v3

v4

w1 w2

w3w4

These two graphs are isomorphic. To check this, we first establish the bijec-
tion α between vertices.

α : v1 7→ w1, v4 7→ w2, v2 7→ w4, v3 7→ w3.

Now let us apply this bijection on every edge of G:

{α(v1), α(v2)} = {w1, w4}, {α(v1), α(v4)} = {w1, w2},
{α(v2), α(v3)} = {w4, w3}, {α(v3), α(v4)} = {w3, w2}

which gives the 4 edges of E′ as desired.

26 CHAPTER 2. BASIC GRAPH THEORY

Figure 2.2: László Babai (born in 1950), a Hungarian professor of computer
science and mathematics at the University of Chicago, claimed on January 9
2017 to have a quasi-polynomial algorithm with running time 2O((logn)c), for n
the number of vertices and c > 0 a fixed constant.

This looks like a pretty tedious procedure, one can imagine that once the
number of vertices and edges grows, this may become hard to check. As it turns
out, the problem of determining whether two graphs are isomorphic is hard. To
make the term “hard” more precise, as of 2017, the question “can the graph
isomorphism problem be solved in polynomial time?” is still open.

Example 2.6. Compute the automorphism group Aut(G) of the graph G given
by:

1 4

32

Let us try a naive approach, by just applying the definition. We first need
a bijection α : G → G, which is thus a permutation of the vertices. There are
4! = 24 permutations, so we can still list them. There are many ways to list
them systematically. We list them by looking at what happens with position 1.
The first column in the table below looks at the cases where 1 is not permuted,
and thus remains at position 1. The second column looks at the cases where 2
is in position 1, etc. The idea is that once we know what happens with position
1, there are only 6 cases left for the permutations of the other 3 elements:

2.2. GRAPH ISOMORPHISMS AND AUTOMORPHISMS 27

1234 2134 3124 4123
1324 2314 3214 4213
1423 2413 3142 4312
1243 2143 3412 4132
1342 2341 3241 4231
1432 2431 3421 4321

For example, the second row 1324 of the first column means that we are
looking at the labelling

1 4

23

Now the question is, which of these permutations are preserving adjacency?
We have edges E = {{1, 2}, {1, 4}, {2, 3}, {3, 4}}, so let us try out 1324. In this
case, 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 4, we get {{1, 3}, {1, 4}, {3, 2}, {2, 4}}, and so
this is not preserving adjacency, since {1, 3} is not an edge. Said differently, this
permutation keeps 1 where it is, 1 is connected to 2 but not to 3, so switching
the roles of 2 and 3 is not consistent with the adjacency structure.

So let us look at the first column, and see which permutation is an auto-
morphism. The identity 1234 is obviously one. Now once 1 is fixed, since 1 is
connected to both 2 and 4, we can switch these 2. But then we have no choice,
3 remains where it is, and it gives 1432 as the other automorphism of the first
column.

Now that we get a grip on what is going on, let us look at the second column.
If the vertices 2 and 1 are switched, then we have no choice than switching 3
and 4, this is 2143. Then when 2 goes in position 1, apart switching 1 and 2,
the other scenario that can happen is that 1 goes to 4, in which case, there is
no choice either, 4 goes to 3, and we have the permutation 2341.

Applying the same reasoning to the other two columns gives the following
list of group automorphisms: 1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321.

Since we know that automorphisms of G form a group, one may wonder
what group it is in the case of the above example. It turns out to be a dihedral
group (see Exercise 12).

It is thus quite tempting to connect Aut(G) with geometric symmetries (ro-
tations, reflections). However it is dangerous to rely on graph representations
when working with graphs: sometimes visualizing a graph does help, but some-
times, it can do the other way round.

Example 2.7. The following two graphs (one being the Petersen graph already
encountered in Example 2.4) can be shown to be isomorphic (see Exercise 13),
though this is not obvious.

28 CHAPTER 2. BASIC GRAPH THEORY

1

23

4
5

6

78

9

0

3 2

4

9

7

8

6

1

0 5

On the left hand side graph, we “see” a rotation of the vertices, written in
cycle notation as (01234)(56789), but while this is indeed an automorphism of
G, it cannot be seen on the right hand side graph, which is the same graph up
to a different way of drawing it.

Next, let us compute the automorphism group Aut(G) for G the Petersen
graph. To do so, let us construct a labelling of each of its n = 10 vertices, where
each label is a pair {x, y} with x, y ∈ {1, 2, 3, 4, 5}. Note that if we choose any
2 distinct numbers out of {1, 2, 3, 4, 5}, we do have 10 choices:

12, 13, 14, 15

23, 24, 25

34, 35

45.

Now we want this labelling to follow the rule:

{x, y} ∼ {z, w} ⇐⇒ {x, y} ∩ {z, w} = ∅

where ∼ means “adjacent”. Here is an example of such a labelling:

{1, 3}

{2, 5}{3, 4}

{1, 2}

{2, 3}

{2, 4}

{1, 4}{1, 5}

{3, 5}

{4, 5}

2.2. GRAPH ISOMORPHISMS AND AUTOMORPHISMS 29

Now any such a labelling describes exactly the Petersen graph: the adjacency
structure of the graph is fully characterized by the rule {x, y} ∼ {z, w} ⇐⇒
{x, y} ∩ {z, w} = ∅, or in other words, if one takes 10 nodes, labels them with
the 10 pairs 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, and draws edges according to the
intersection rule above, this will give the Petersen graph (a 3-regular graph on
10 vertices, because given xy, it will be connected to exactly 3 other vertices).

Let σ be a permutation on 5 elements (σ ∈ S5, where the symmetric group
Sn is by definition the group of all permutations on n elements). We have

{x, y} ∩ {z, w} = ∅ ⇐⇒ {σ(x), σ(y)} ∩ {σ(z), σ(w)} = ∅

because if this were not true, then there would be an element in the intersection,
say σ(x) = σ(z), but then, since σ is invertible, this would mean that x = z, a
contradiction.

Thus every σ ∈ S5 gives a valid automorphism of G, and we just showed
that S5 ⊆ Aut(G) and in particular |S5| = 5! = 120 ≤ |Aut(G)|.

We will show next that |Aut(G)| = 120, which in turn will prove that

Aut(G) ' S5 for G the Petersen graph.

Step 1. Consider the vertex v1 = {1, 2}. The Orbit-Stabilizer Theorem (see
Proposition 1.5) tells us that when Aut(G) acts on v1, then

|Aut(G)| = |Orb(v1)||StabAut(G)(v1)| = 10|StabAut(G)(v1)|.

We know that |Orb(v1)| = 10 because S5 ⊆ Aut(G), and when we apply every
permutation on {1, 2}, we end up getting every one of the 10 possible labels.

Remark. We can also repeat the Orbit-Stabilizer Theorem computation when S5

acts on v1. In that case, the orbit is the same and |Orb(v1)| = 10. For computing
StabS5

(v1), we need to count the permutations that are sending v1 to itself, and
since v1 is connected to {4, 5},{3, 4} and {3, 5}, there are 3! = 6 permutations
that permute 3, 4, 5 without touching 1, 2, and then either 1 7→ 1, 2 7→ 2, or
1 7→ 2, 2 7→ 1, for a total of 12 permutations, and as desired 12 · 10 = 120.

Step 2. Consider next the vertex v2 = {3, 4}, which is adjacent to v1 =
{1, 2}. In order to compute |StabAut(G)(v1)|, we notice that this is subgroup of
Aut(G), and so now, we can just look at the action of this subgroup on v2, and
invoke again the Orbit-Stabilizer Theorem:

|StabAut(G)(v1)| = |Orb(v2)||StabStabAut(G)(v1)(v2)|.

To compute |Orb(v2)|, we look only at automorphisms that are fixing v1, and
then apply them on v2. But if an automorphism is fixing v1 = {1, 2}, since v1
is connected to {4, 5},{3, 4} and {3, 5}, it has no choice than to permute them,
so |Orb(v2)| = 3, and

|Aut(G)| = 10|StabAut(G)(v1)| = 30|StabStabAut(G)(v1)(v2)|.

30 CHAPTER 2. BASIC GRAPH THEORY

{3, 4}

{1, 2}

{3, 5}

{4, 5}

Step 2

{3, 4}

{1, 2}

{3, 5}

{4, 5}

{1, 5}

{2, 5}

Step 3

{3, 4}

{1, 2}

{3, 5}

{4, 5}

{2, 5}

{1, 5}

Step 4

Step 3. We repeat the process once more. To compute |StabStabAut(G)(v1)(v2)|,
we take a 3rd vertex v3 = {3, 5}, and let the group StabStabAut(G)(v1)(v2) act on
it. The notation is not very friendly, but it just says that among the automor-
phisms that are fixing v1 = {1, 2}, we restrict to those fixing v2 = {3, 4}, and
then we see how they act on v3 = {3, 5}. Since {4, 5},{3, 4} and {3, 5} could
be permuted, but now, we further fix {3, 4}, the only choice left is to permute
{4, 5} and {3, 5}, so the orbit of v3 is now of size 2.

Step 4. We repeat the process one last time with v4 = {1, 5}. Once v1, v2, v3
are fixed, the orbit of v4 contains only 2 elements, v4 and {2, 5}, which give

|Aut(G)| = 30 · 4 = 120.

The process is finished, because: by now, {1, 2}, {3, 5}, {3, 4} are fixed. Then
{4, 5} is fixed because it is connected to {1, 2} whose 2 other adjacent nodes are
fixed. Then we should be looking at automorphisms further fixing {1, 5}, which
means that {2, 5} is fixed, since it is connected to {3, 4}, whose 2 other adjacent
nodes are fixed. Now {1, 4} is connected to both {3, 5} and {2, 5}, both of them
being fixed, so {1, 4} can only be permuted with another vertex also connected
to both {3, 5} and {2, 5}, so {1, 4} is fixed and using the same argument, so are
the other vertices.

{1, 3}

{2, 5}{3, 4}

{1, 2}

{2, 3}

{2, 4}

{1, 4}{1, 5}

{3, 5}

{4, 5}

2.2. GRAPH ISOMORPHISMS AND AUTOMORPHISMS 31

We are next interested in counting isomorphism classes of graphs. Consider
graphs with 3 vertices:

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

How many graphs are there, up to isomorphism? We have 4 of them:

2 3

1

2 3

1

2 3

1

2 3

1

We have an action of S3 (the group of permutations on 3 elements) which
permutes the edges, but note that permutations of vertices and edges are tied
up in the sense that a permutation of vertices induces one on edges. Let us
make this more precise on the above example.

Consider the permutation (123) of vertices:

2 3

1

7→
1 2

3

This permutation of vertices induces a permutation on the edges, because

{1, 2} 7→ {2, 3}, {2, 3} 7→ {1, 3}, {1, 3} 7→ {1, 2}.

So the 3 edges are mapped to each other by a cycle of length 3. If we think in
terms of the cycle index (see Definition 1.4), this corresponds to X3 (one cycle
of length 3).

Let us do the computation once more with the permutation (23) of vertices:

2 3

1

7→
3 2

1

This permutation of vertices induces a permutation on the edges:

{1, 2} 7→ {1, 3}, {1, 3} 7→ {1, 2}, {2, 3} 7→ {3, 2}.

So one edge is mapped to itself, and two edges are swapped by a cycle of length
2. If we think in terms of the cycle index, this corresponds to X1X2 (one cycle
of length 1, one cycle of length 2).

Let us thus summarize the permutations in S3, and the corresponding cycle
index in terms of induced permutations on the edges:

S3 PS3
(X1, X2, X2)

(1)(2)(3) X3
1

(1)(23) X1X2

(2)(13) X1X2

(3)(12) X1X2

(123) X3

(132) X3

32 CHAPTER 2. BASIC GRAPH THEORY

The cycle index is thus

PS3
(X1, X2, X2) =

1

6
(X3

1 + 3X1X2 + 2X3).

Now if an edge does not exist, give 1 as its weight, and if an edge does exist,
give E as its weight. Using Pólya’s Enumeration Theorem:

PS3
(1+E, 1+E2, 1+E3) =

1

6
((1+E)3+3(1+E)(1+E2)+2(1+E3)) = E3+E2+E+1.

This tells us that the number of graphs on 3 vertices up to isomorphism is 1 if
there are 3 edges (E3), 1 if there are 2 edges (E2), 1 if there is one edge (E)
and 1 if there is none (1).

The computations can be repeated for n = 4 vertices (see Exercise 16). The
case n = 4 is arguably more interesting, because for n = 3, we work with 3 nodes
and 3 edges, and not only the number of vertices and edges are the same, but
the permutations induced on the edges are also matching those on the vertices.
For n = 4, we have a different number of vertices (4) and edges (6), and the
permutations induced on the edges are also different from those on the vertices.
One could obviously consider all possible edge permutations, but this would
be a lot of extra work: first, we would need to consider 6! permutations, and
then we would have to anyway remove those which are not giving out a graph
isomorphism, so it is less work to look at the permutations of vertices, and how
they induce permutations on the edges.

2.3 Trees

We start with a series of definitions, that will allow us to define formally what
is a tree.

Definition 2.6. A walk in a graph is a sequence (v1, . . . , vn) of vertices such
that {vi, vi+1} is an edge, for each i = 1, . . . , n− 1.

Definition 2.7. A trail is a walk where none of the edges occurs twice.

Definition 2.8. A cycle is a trail (v1, . . . , vn) such that v1 = vn.

Definition 2.9. A path is a trail where all vertices are distinct.

Definition 2.10. The distance between two vertices u and v, denoted by
d(u, v), is the length of the shortest path between them. If no such a path
exists, then their distance is defined to be infinite, i.e d(u, v) :=∞.

Definition 2.11. A graph is connected if d(u, v) <∞ for all u, v ∈ V .

Examples of graphs which are not connected are:

2 3

1

2 3

1 4

2.3. TREES 33

Definition 2.12. A tree is a connected graph that contains no cycle.

A tree may look the way we expect a tree to be, e.g

1

2

3

4

5

6

but it may also look different:

1

2

3 4

5

6

Definition 2.13. A leaf is a vertex of degree 1.

The leaves are highlighted in the trees below:

1

2

3

4

5

6

1

2

3 4

5

6

We will next prove a series of lemmas, the goal is to get intermediate results
to help us prove equivalent definitions of trees.

Lemma 2.1. Every finite tree with at least two vertices has at least two leaves.

Proof. Take a finite tree with at least two vertices. Since a tree is by definition
connected, one can go from any vertex u to any vertex v 6= u in this tree. Among
all these possible paths, take a maximum path. Since this graph has no cycle,
the endpoints of a maximum path have only one neighbour on the path, and
they are the two leaves whose existence we needed to prove.

Lemma 2.2. Deleting a leaf from an n-vertex tree produces a tree with n − 1
vertices.

Proof. Let v be a leaf and G′ = G\{v}. We want to show that G′ is connected
and has no cycle.

Let u,w ∈ V (G′), then no u,w-path P in G can pass through the vertex v,
since it is of degree 1. So, P is also present in G′ and thus G′ is connected.

Also G′ has no cycle since deleting a vertex cannot create a cycle.

34 CHAPTER 2. BASIC GRAPH THEORY

Lemma 2.3. An edge contained in a cycle is not a cut-edge (that is, an edge
whose deletion disconnects the graph).

Proof. Let {u, v} be an edge belonging to a cycle {u, u1, u2, . . . , uk, v}:
u

v

uk

. . .

u1

Then any path from x to y which uses {u, v} can be replaced by the walk
not using {u, v} as follows:

(x→ · · · → u→ v → · · · y) (x→ · · · → u→ u1 · · · → uk︸ ︷︷ ︸
other part of cycle

→ v → · · · y)

Theorem 2.4. Let G be a graph with n vertices. Then the following are equiv-
alent:

(a) G is connected and has no cycle.

(b) G is connected and has n− 1 edges.

(c) G has n− 1 edges and has no cycle.

(d) For all vertices u, v in G, there is exactly one u, v-path.

Proof. (a) =⇒ (b), (c): We want to show that G has n−1 edges and we proceed
by induction on n, the number of vertices.

For n = 1, the graph has clearly no edge.
Suppose n > 1 and the induction hypothesis holds for graphs with less than

n vertices. We pick a leaf v and consider G′ = G\{v}, which by Lemma 2.2 is a
tree with n−1 vertices, thus, using the induction hypothesis, it has n−2 edges.
Adding back v gives n − 1 edges. This proves (b) because G′ being connected,
adding v keeps it connected, and it also proves (c), because adding a leaf cannot
create a cycle.

(b) =⇒ (a), (c): Suppose that G is connected and has n − 1 edges. To show:
G has no cycle.

A priori, G could have cycles. We delete edges from cycles of G one by one
until the resulting graph G′ has no cycle. Then, G′ is connected by Lemma 2.3
and has no cycle. Now G′ has n vertices, no cycle and is connected. Since we
already showed that (a) ⇒ (b), G′ has n − 1 edges. But G initially had n − 1
edges, which implies that no edge was deleted. So G = G′ has no cycle.

(c) =⇒ (a), (b): Suppose that G has n − 1 edges (|E(G)| = n − 1) and has
no cycle. We want to show that G is connected.

2.4. MINIMUM SPANNING TREES 35

Suppose that G has k connected components, each with ni vertices where
i = 1, . . . , k. Since every component satisfies (a), and (a) ⇒ (b) was already
proven, each of them has ni − 1 edges. So,

|E(G)| =
k∑
i=1

(ni − 1) = n− k !
= n− 1 =⇒ k = 1.

Therefore there is only one component and so G is connected.

We are left to prove the last equivalence. Suppose G is connected and has
no cycle. We want to prove that this is equivalent to: for all vertices u, v in G,
there is exactly one u, v-path.

(a)⇒ (d): Suppose there are two distinct u, v-paths, say P and Q. Let
e = {x, y} be an edge in P but not in Q. Concatenate P to the reverse of
Q; this is a closed walk where e appears exactly once. Hence (PQ−1)\{e} is
an x, y-walk not containing e. This walk from x to y contains a path from x
to y (see Exercise 17). So this path together with e gives a cycle, which is a
contradiction. Therefore, there is exactly one u, v-path.

(d)⇒ (a): Now, suppose for all vertices u, v in G, there is exactly one u, v-
path. Then G is clearly connected. If G had a cycle, then there would be two
distinct paths for every pair of vertices in the cycle. So, G has no cycle.

2.4 Minimum Spanning Trees

Definition 2.14. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′)
such that V ′ ⊆ V and E′ ⊆ E.

Definition 2.15. A subgraph is called a spanning subgraph if V = V ′.

Definition 2.16. A spanning tree is a spanning graph which is also a tree.

Example 2.8.

a graph G

a spanning tree T of G

Definition 2.17. A weighted graph is a graph G = (V,E) together with a
function w : E → R≥0 and w(e) is called the weight of e.

Definition 2.18. The weight of M ⊆ E in a weighted graph G = (V,E) is∑
e∈M w(e).

36 CHAPTER 2. BASIC GRAPH THEORY

Figure 2.3: Prim’s algorithm was developed in 1930 by V. Jarńık, and rediscov-
ered by Robert Prim (shown on the left) in 1957, and then by E.W. Dijkstra
in 1959. Prim was working at Bell Laboratories with J. Kruskal (on the right),
who developed Kruskal’s algorithm.

Problem 3 (Minimum Spanning Tree (MST) Problem). Given a weighted,
connected graph G, find a spanning tree for G of minimum weight.

An algorithm for finding a minimum spanning tree is given below:

Algorithm 1 the MinTree algorithm

Input:
G = (V,E) a connected graph, V = {1, 2, . . . , n}
w : E → R≥0 its weight function

Output: edge set T of a minimum spanning tree

1: Vi ← {i} for each i, 1 ≤ i ≤ n.
2: T ← ∅.
3: for k = 1 to n− 1 do
4: Choose i where Vi 6= ∅.
5: Choose e = {u, v}, u ∈ Vi, v /∈ Vi such that w(e) is minimal among edges
e′ = {u′, v′}, u′ ∈ Vi, v′ /∈ Vi.

6: Let j be the index such that v ∈ Vj .
7: Vi ← Vi ∪ Vj .
8: Vj ← ∅.
9: T ← T ∪ {e}.

10: end for
11: return T

Prim’s algorithm always chooses i = 1 in the MinTree Algorithm.

Proposition 2.5. Let T be the edge set constructed by the above algorithm at
any intermediate step. Then there is a MST for G which contains T .

Note that k goes from 1 to n− 1, thus when k = n− 1, T has n− 1 edges.
Thus the MST which itself has n− 1 edges and contains T must be T itself.

Proof. We proceed by induction on k, the iteration step.

2.4. MINIMUM SPANNING TREES 37

When k = 0 (that is before we start the loop), T is the empty edge set and
thus belongs to some MST of G.

At some iteration k > 0, we have T which is an edge set of some MST M by
the induction hypothesis. At step k + 1, add the edge e to T according to the
algorithm, thus T ∪ {e} is surely an edge set. We want to show that T ∪ {e} is
contained in some MST M ′.

If e is in the MST M , then M ′ = M and we are done. Otherwise, consider
what would have happened if e were added to M . This would have added a
cycle to the tree M (see Exercise 18). Since e has one endpoint in T and one
endpoint not in T , there exists e′ with one endpoint in T and the other not in
T , to close the cycle. The algorithm at step k + 1 could have chosen e′ but it
picked e. Thus, w(e) ≤ w(e′).

Since M ∪ {e} is a spanning subgraph with n edges, remove e′ to get the
graph M\{e′}∪{e} which is connected (removing an edge from a cycle does not
disconnect the graph, see Lemma 2.3) and has n − 1 edges, thus is a spanning
tree. This gives a new spanning tree whose total weight is at most that of M ,
thus we found M ′ a MST which contains T ∪ {e}.

Another algorithm to compute the MST of a graph is Kruskal’s algorithm.

Algorithm 2 Kruskal’s algorithm

Input:
G = (V,E) a connected graph, V = {1, 2, . . . , n}
w : E → R≥0 its weight function

Output: edge set T of a minimum spanning tree

1: Sort all edges such that w(e1) ≤ · · · ≤ w(em).
2: T = ∅.
3: for k = 1 to m do
4: if |T | = n− 1 then
5: break;
6: end if
7: if T ∪ {ek} contains no cycle then
8: T ← T ∪ {ek};
9: end if

10: end for
11: return T

This algorithm can actually be seen as a particular case of the MinTree
algorithm. In the MinTree algorithm, Kruskal’s algorithm always chooses i such
that there is an edge e = {u, v}, u ∈ Vi, v /∈ Vi such that e has minimum weight
among all edges which do not have both vertices inside any set Vi, i = 1, . . . , n.

Example 2.9. Compute the minimum spanning tree (MST) of the following
graph:

38 CHAPTER 2. BASIC GRAPH THEORY

1

2 3 4

5

678

9

4

8 7

9

10

21

99

3

6

411 14

Using Prim’s algorithm, the progression of T is as follows.

1. Choose V1 = {1}, and e = {u, v} with
u ∈ V1 and v outside, with minimal weight.
Between weights 4 and 9, choose 4. 1

2 3 4

5

678

9

4

2. Then V1 = {1, 2} and T = {{1, 2}}. To
pick the next edge, the choices for the weights
are 9, 11, 8, so we pick 8. 1

2 3 4

5

678

9

4

8

3. Then V1 = {1, 2, 3}, T = {{1, 2}, {2, 3}}.
For the next edge, we have weights 9, 11, 3, 4,
and 7. So we choose 3. 1

2 3 4

5

678

9

4

8

3

4. Then V1 = {1, 2, 3, 9}, T =
{{1, 2}, {2, 3}, {3, 9}} and for the next edge,
we can choose among weights 9, 11, 4, 7, and
6 so we pick 4.

1

2 3 4

5

678

9

4

8

3

4

5. Then V1 = {1, 2, 3, 9, 6}, T =
{{1, 2}, {2, 3}, {3, 9}, {3, 6}}. The weights for
the next edge are 9, 11, 7, 6, 2, 14 and 10, so
we pick 2.

1

2 3 4

5

678

9

4

8

3

4

2

2.4. MINIMUM SPANNING TREES 39

6. Then V1 = {1, 2, 3, 9, 6, 7},
T = {{1, 2}, {2, 3}, {3, 9}, {3, 6}, {6, 7}}.
The weights are now 9, 11, 7, 6, 14, 10, and
1. So we pick 1.

1

2 3 4

5

678

9

4

8

3

4

2

7. Then V1 = {1, 2, 3, 9, 6, 7, 8}, T =
{{1, 2}, {2, 3}, {3, 9}, {6, 9}, {6, 7}, {7, 8}}.
The weights are now 9, 11, 7, 14, 10. So we
pick 7. Note a weight of 6 that cannot be
used because {9, 7} has both its endpoints in
V1.

1

2 3 4

5

678

9

4

8

3

4

2

7

1

8. Then V1 = {1, 2, 3, 9, 6, 7, 8, 4}, T =
{{1, 2}, {2, 3}, {3, 9}, {6, 9}, {6, 7}, {7, 8}, {3, 4}}.
The weights are now 9, 11, 14, 10, so we pick
9. This adds {4, 5} to T and the algorithm
stops since we have 8 edges.

1

2 3 4

5

678

9

4

8

3

4

21

7

9

To use Kruskal’s algorithm, we first sort the edges by weight: w({7, 8}) = 1,
w({6, 7}) = 2, w({3, 9}) = 3, w({1, 2}) = 4, w({3, 6}) = 4, w({7, 9}) = 6,
w({3, 4}) = 7, w({2, 3}) = 8, w({1, 8}) = 9, w({4, 5}) = 9, w({8, 9}) = 9,
w({2, 8}) = 11, w({4, 6}) = 14. A progression of T is then as follows:

1.

1

2 3 4

5

678

9

1

2.

1

2 3 4

5

678

9

1 2

3.

1

2 3 4

5

678

9

1 2

3

4.

1

2 3 4

5

678

9

4

1 2

3

5.

1

2 3 4

5

678

9

4

1 2

3

4

6.

1

2 3 4

5

678

9

4

7

3

4

21

7.

1

2 3 4

5

678

9

4

8

3

4

2

7

1

8.

1

2 3 4

5

678

9

4

8

3

4

21

7

9

40 CHAPTER 2. BASIC GRAPH THEORY

Figure 2.4: Minimum spanning tree algorithms are usually implemented by
default in most languages, e.g. above in Python.

Note that {7, 9} has weight 6, but it was skipped, because it would have created
a cycle. Similarly, there are 3 edges of weight 9, but two of them create a cycle.

Sometimes, edges have the same weight, and unlike in the above example,
several of them are valid. In that case, one could choose an edge at random, or
choose the lexicographic order.

Remark. We do not discuss the complexity of these algorithms, because it de-
pends on the data structure used.

Remark. You may be wondering about the unicity of spanning trees, and how
these algorithms behave with respect to this. See Exercise 21 for a discussion
on this.

Minimum spanning tree algorithms can be used as part of more complicated
algorithms, but they have also applications of their own. Here is an example
of application to clustering. Suppose that you have n items, and you know
the distance between each pair of items. You would like to cluster them into
k groups, so that the minimum distance between items in different groups is
maximized. The idea is to create a graph whose vertices are the n items, and
whose edges have for weight the distance between the pair of items. Then
consider for clusters a set of connected components of the graph, and iteratively
combine the clusters containing the 2 closest items by adding an edge between
them. This process stops at k clusters.

What we have just described is actually Kruskal’s algorithm: the clusters are
the connected components that Kruskal’s algorithm is creating. In the language

2.5. LABELED TREES 41

of clustering, this process is also called a single linkage agglomerative clustering.

2.5 Labeled Trees

We next study trees whose n vertices are labeled from 1 to n. Formally, let
l : V → {1, . . . , n}, v 7→ l(v) be the label function attached to the graph
G = (V,E).

Example 2.10. For n = 2, we have
1 2 .

For n = 3, we have

2 3

1

2 1

3

1 3

2

Definition 2.19. Two labeled graphs are isomorphic if their graphs are iso-
morphic and the labels are preserved by the isomorphism. Formally, two labeled
graphs G = (V,E, l) and G = (V ′, E′, l′) are isomorphic if there exists a bijec-
tion α : V → V ′ such that (1) {u, v} ∈ E ⇐⇒ {α(u), α(v)} ∈ E′ for all
{u, v} ∈ E (edges are preserved), (2) l(u) = l′(α(u)) for all u ∈ V (labels are
preserved).

Note that sometimes a further label could be introduced on edges, a case we
are not considering here.

With this definition, we can see why the above example makes sense. For
n = 3, two nodes have degree 1, and one node has degree 2. The node with
degree 2 can take any of the 3 labels, then the leaves have for labels the remaining
labels.

To be able to count the number of labeled trees (up to isomorphism), we
will use a tree labeling called Prüfer’s code, or Prüfer’sequence.

Algorithm 3 Algorithm for Prüfer’s Code

1: Input: A tree T with vertex set V , |V | = n ≥ 2.
2: Output: A sequence (a1, · · · , an−2) ∈ V n−2.
3: Set T1 = T .
4: for i = 1, 2, . . . , n− 2 do
5: Let v be the leaf of Ti with the smallest label.
6: Set ai to be the unique neighbour of v in Ti.
7: Construct Ti+1 from Ti by removing v and the edge {v, ai}.
8: end for
9: if |V | = 2 then

10: return Empty set
11: end if

42 CHAPTER 2. BASIC GRAPH THEORY

Figure 2.5: The mathematician Heinz Prüfer (1896-1934) created Prüfer’s code,
and contributed to diverse areas of mathematics such as group theory, knot
theory and Sturm-Liouville theory.

Example 2.11. Compute the Prüfer’s code of the following labeled tree:

2

6

1

4

3

7

5

8

We have the following progression, where we start with the leaf 4, which is the
smallest label among the leaves:

2

6

1

4

3

7

5

84

1

Sequence = ()

2

6

1 3

7

5

86

2

Sequence = (1)

2 1 3

7

5

8

2 1

Sequence = (1,2)

1 3

7

5

8

1 3

Sequence = (1,2,1)

3

7

5

87

3

Sequence = (1,2,1,3)

3 5

8

3 5

Sequence = (1,2,1,3,3)

5

8

Sequence = (1,2,1,3,3,5)

Theorem 2.6. There is a bijection between V |V |−2 and the set of all labeled
trees with vertex set V , |V | ≥ 2.

2.5. LABELED TREES 43

Corollary 2.7. The number of labeled trees with n ≥ 2 vertices is nn−2.

Proof. Let |V | = n. The preceding algorithm gives a function f which takes a
tree T with n vertices and outputs f(T) = (a1, · · · , an−2). To show that f is a
bijection, we need to show that every sequence (a1, · · · , an−2) defines uniquely
a tree.

By induction on n: for n = 2, there is a single labeled tree with two vertices,
so, () defines uniquely this tree. Assume that the induction hypothesis is true
for all trees with less than n vertices, n ≥ 2. Given (a1, · · · , an−2), we need to
find a unique tree T such that f(T) = (a1, · · · , an−2).

None of the ai is a leaf in T since when a vertex is set to be ai, it is adjacent
to a leaf (when the graph is left with only leaves, then it has two vertices and
the algorithm terminates) and V \{a1, . . . , an−2} contains only nodes that are
leaves.

This implies that the label of the first leaf removed is precisely the minimum
element of V \{a1, . . . , an−2}. Let v be this leaf and it has a unique neighbour
a1. By the induction hypothesis, we know that there exists a unique tree T ′

with vertex set V \{v} such that f(T ′) = (a2, · · · , an−2). Adding the vertex v
and the edge {v, a1} to T ′ gives the desired tree T .

Example 2.12. Compute the tree corresponding to the Prüfer’s code (1,2,1,3,3,5).
We computed this Prüfer’s code in the previous example, so if all works as it
should, we should get back the same labeled tree. We observe that since the
code is of length 6, we are looking for a tree with n = 8 vertices.

4 1

V = {1, 2, 3, 4, 5, 6, 7, 8}
Sequence S = (1,2,1,3,3,5)
V \S = {4,6,7,8}

4 1 2 6

V = {1, 2, 3, 5, 6, 7, 8}
Sequence S = (2,1,3,3,5)
V \S = {6,7,8}

4 1 2 6

V = {1, 2, 3, 5, 7, 8}
Sequence S = (1,3,3,5)
V \S = {2,7,8}

4 1 2 6

3

V = {1, 3, 5, 7, 8}
Sequence S = (3,3,5)
V \S = {1,7,8}

4 1 2 6

37

V = {3, 5, 7, 8}
Sequence = (3,5)
V \S = {7,8}

4 1 2 6

37 5

V = {3, 5, 8}
Sequence = (5)
V \S = {3,8}

4 1 2 6

37 5 8

V = {5, 8}
Sequence = ()
V \S = {5,8}

44 CHAPTER 2. BASIC GRAPH THEORY

If we wanted to use this example to illustrate the proof of Theorem 2.6, then
given the sequence (a2, . . . , an−2) = (2, 1, 3, 3, 5), there is a unique tree T ′ with
vertex set V \{4} corresponding to it, given by

1 2 6

37 5 8

So when considering the sequence (a1, a2, . . . , an−2) = (1, 2, 1, 3, 3, 5), we
know that a1 = 1 has for neighbour a leaf v with label 4, thus we append the
edge {v, a1} to T ′ to get the tree T :

44 1 2 6

37 5 8

2.6 Exercises

Exercise 10. Prove that the set of all automorphisms of a graph forms a group.

Exercise 11. (*) Compute the automorphism group of the following graph.

v1 v2

v3 v4

v5 v6

Exercise 12. Compute the automorphism group of the n-cycle graph, the graph
given by n vertices 1, . . . , n, and n edges given by {i, i + 1} where i, i + 1 are
understood modulo n.

Exercise 13. Show that the following two graphs are isomorphic:

1

23

4
5

6

78

9

0

3 2

4

9

7

8

6

1

0 5

2.6. EXERCISES 45

Exercise 14. 1. Compute the automorphism group of the following graph.

1

2

34

5

2. Give an example of a connected graph with at least 2 vertices whose
automorphism group is of size 1.

3. Suppose two connected graphs G and G′ have the same automorphism
group, that is Aut(G) ∼= Aut(G′). Does it imply that G is isomorphic to
G′? Justify your answer.

Exercise 15. For all n ≥ 2, give a graph whose automorphism group is the
symmetric group Sn, that is, the group of permutations of n elements.

Exercise 16. Count, using Pólya’s Enumeration Theorem, the number of iso-
morphism classes of graphs with 4 vertices, and count how many there are for
each possible number of edges.

Exercise 17. Prove (by induction on the length l of the walk) that every walk
from u to v in a graph G contains a path between u and v.

Exercise 18. Prove that adding one edge to a tree creates exactly one cycle.

Exercise 19. Prove or disprove the following claim: if G is a graph with exactly
one spanning tree, then G is a tree.

Exercise 20. Find a minimum spanning tree for this graph, using once Prim
algorithm, and once Kruskal algorithm:

1 6 3

2

5 4

2

5

6

6 8

3

55

2

4

Exercise 21. 1. Compute a minimum spanning tree in the following graph
with the method of your choice. Describe the steps of the algorithm.

46 CHAPTER 2. BASIC GRAPH THEORY

1

2

3

4

5

6

7

13

9
5

7

7

8

6 8

11

5

9

2. Construct, if possible, a connected weighted graph G with two minimum
spanning trees.

3. Let G be a connected weighted graph, with m edges with respective
weights e1 ≤ e2 . . . ≤ ei−1 < ei = ei+1 < ei+2 ≤ . . . ≤ em, and let
Tk be a minimum spanning tree found by Kruskal algorithm. Suppose
that there exists a different minimum spanning tree T such that T and Tk
share the same edges e1, . . . ei−1, for some i ≥ 2, but Tk contains ei and
not ei+1, while T contains ei+1 but not ei. Show that T can be found by
an instance of Kruskal algorithm.

Exercise 22. (*)

1. Consider the following weighted undirected graph, where x, y are unknown
integers.

v1 v2

v3 v4

5

4 x

1

y

Give, if possible, values for x, y such that the graph contains (a) a single
minimum spanning tree, (b) at least two minimum spanning trees.

2. Given a weighted undirected graph G = (V,E), such that every edge e in
E has a distinct weight. Prove or disprove the following: G contains a
unique minimum spanning tree.

Exercise 23. Compute the Prüfer code of the following tree:

6 1 2 3 4

5

Construct the tree corresponding to the Prüfer code (1,1,3,5,5).

Exercise 24. Determine which trees have Prüfer codes that have distinct values
in all positions.

