
Chapter 3
Network Flows

Definition 3.1. A network is a weighted directed graph with 2 distinguished
vertices s (called source) and t (called sink), where s has only outgoing edges
and t has only incoming edges. For a network, the weight function is called
capacity function (denoted by c).

Example 3.1. Here is an example of network, to each edge is attached a ca-
pacity.
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3.1 Maximum Flow, Minimum Cut

Definition 3.2. A flow on a network G = (V,E) is a map f : E → R+ such
that

(1) 0 6 f(e) 6 c(e),∀ e ∈ E (flow is feasible)

(2)
∑
u∈I(v)

f(u, v) =
∑

u∈O(v)

f(v, u),∀ v ∈ V \{s, t} (flow conservation)

Here, O(v) (resp. I(v)) is the set of vertices which have an edge coming from
(resp. going into) v.
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Sometimes, the term “feasible” refers to both conditions instead of just the
first one.

Problem 4. Given a network G = (V,E), find a maximum flow.

The sum of the values of a flow f on the edges leaving the source is called
the strength of the flow (denoted by |f |), that is

|f | =
∑

u∈O(s)

f(s, u).

It can be shown (see Exercise 25) that |f | =
∑
u∈I(t) f(u, t), that is, the sum of

the values of f leaving the source is also the sum of the values of f entering the
sink.

Definition 3.3. A cut of a network G = (V,E) with source s and sink t is a
decomposition V = S tT of V into disjoint subsets S, T such that s ∈ S, t ∈ T .
Such a cut is denoted by (S, T ). The capacity of (S, T ) is defined as

C(S, T ) =
∑
u∈S
v∈T

c(u, v)

A minimum cut is a cut of minimum capacity.

Lemma 3.1. For any cut (S, T ), |f | 6 C(S, T ).

Proof. First, we prove by induction on |S| that

|f | =
∑
u∈S
v∈T

f(u, v)−
∑
u∈S
v∈T

f(v, u). (3.1)

See Example 3.2 for an illustration of this claim. If |S| = 1, then S contains
only the source s. Then

|f | =
∑
v∈T

f(s, v).

Suppose true for |S| > 1. Now move one vertex w from T to S and we want to
compute ∑

u∈S∪{w}
v∈T\{w}

f(u, v)−
∑

u∈S∪{w}
v∈T\{w}

f(v, u).

Then we both have an increase by∑
x∈O(w)

f(w, x)

(if x ∈ T before, it adds up after, if x ∈ S before it used to count negatively, so
it also adds up after) and similarly a decrease by∑

y∈I(w)

f(y, w),
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that is:∑
u∈S∪{w}
v∈T\{w}

f(u, v)−
∑

u∈S∪{w}
v∈T\{w}

f(v, u) =
∑
u∈S
v∈T

f(u, v)−
∑
u∈S
v∈T

f(v, u)+
∑

x∈O(w)

f(w, x)−
∑

y∈I(w)

f(y, w).

But flow conservation must hold. So the total change∑
x∈O(w)

f(w, x)−
∑

y∈I(w)

f(y, w)

after moving w from T to S is 0 which concludes the proof by induction.
Now

|f | =
∑
u∈S
v∈T

f(u, v)−
∑
u∈S
v∈T

f(v, u) 6
∑
u∈S
v∈T

f(u, v) 6
∑
u∈S
v∈T

c(u, v) = C(S, T )

In particular, if we pick a minimum cut in the above lemma, then we get an
upper bound on the maximum flow:

max |f | ≤ min
S,T

C(S, T ).

Example 3.2. Different cuts of a network whose flow f is described on the
network edges each gives the strength |f | = 3 according to (3.1).
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Cut 1 : |f | = 3 + 2− 2 = 3
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Cut 2 : |f | = 1 + 2 + 0 = 3



50 CHAPTER 3. NETWORK FLOWS

Definition 3.4. Given a flow f on a graph (network) G = (V,E), the corre-
sponding residual graph Gf has V for vertices, and

(1) edges have capacities c(v, w) − f(v, w), only edges with cf := c(v, w) −
f(v, w) > 0 are shown, and they are shown in the same direction as (v, w),

(2) if f(v, w) > 0, place an edge with capacity cf (v, w) = f(v, w) in the
opposite direction of (v, w).

Example 3.3. We show a network G with its residual graph Gf , dashed lines
are used to emphasize “backward” edges, that is edges created based on the
condition (2) of Definition 3.4.

Original Network G
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Definition 3.5. Let f be a flow in a network G. An augmenting path is a
directed path from s to t in the residual network Gf . Alternatively, an aug-
menting path for f is an undirected path P from s to t such that f(e) < c(e)
for all “forward” edges e contained in P , and f(e) > 0 for all “backward” edges
contained in P .

Example 3.4. An augmenting path is shown below, in the residual graph Gf
computed above.
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Residual networks and augmenting paths form the core of Ford-Fulkerson
algorithm.
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Algorithm 4 Ford-Fulkerson (1956)

Input: G = (V,E) a network, with capacity c, source s and sink t.
Output: a maximal flow f∗.

1: Initialize f(e) = 0 ∀ e ∈ E.
2: Compute Gf .
3: while (there is a path P from s to t in Gf ) do
4: Set df = mine∈P cf (e) in Gf .
5: Update f in G: set f(u, v) = f(u, v) + df for (u, v) ∈ P if (u, v) ∈ E

and f(v, u) = f(v, u)− df for (u, v) ∈ P if (v, u) ∈ E.
6: Rebuild the residual network Gf .

Example 3.5. Ford-Fulkerson algorithm is illustrated, the left-hand side shows
the network G while the right hand-side is the corresponding residual graph Gf .
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Ford-Fulkerson algorithm returns the maximum flow |f∗| = 3 when no more
path P is found in the residual graph.
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Since the above example does not use any path in Gf which involves a
“backward” edge, let us illustrate this case using Examples 3.3 and 3.4. Suppose
that one runs the algorithm for some iterations, to get to the step constructed in
Example 3.3, in which the augmenting path displayed in Example 3.4 is chosen.
The example below show what would be the next updated graph G:
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Theorem 3.2. If Ford-Fulkerson algorithm terminates, it outputs a maximum
flow.

Proof. Suppose the algorithm terminates and outputs a flow f∗, this means
there is no path from s to t in Gf∗ . In other words, s and t are disconnected.
Let S be the set of nodes reachable from s in Gf∗ ; i.e., v ∈ S ⇐⇒ ∃ a path
from s to v. Let T = V \S, we claim that |f∗| = C(S, T ). Before proving the
claim, recall that |f∗| ≤ C(A,B) for any cut (A,B), by Lemma 3.1. Thus when
equality is reached, which is the case with |f∗| = C(S, T ), this means f∗ is the
maximum flow and C(S, T ) the minimum cut. We next prove the claim:

|f∗| = C(S, T ).

Consider any edge e from S to T in the original network G. Edge e must not
exist in Gf∗ , or else its endpoint in T would be reachable from s, contradicting
the definition of T . Thus it must be the case that f∗(e) = c(e) for all such e
(by construction of Gf∗ , when f∗(e) = c(e) in G, the edge is removed in its
residual graph). Next consider e′ from T to S in G. If f∗(e′) > 0, there will be
an edge in the opposite direction of e′ in Gf∗ ; i.e., an edge from S to T , again
contradicting the definition of T . We conclude that f∗(e′) = 0 for all such e′.
Now recall from (3.1) that

|f∗| =
∑
u∈S
v∈T

f∗(u, v)−
∑
u∈S
v∈T

f∗(v, u)

where for our particular cut f∗(u, v) = c(u, v) and f∗(v, u) = 0. Thus

|f∗| =
∑
u∈S
v∈T

c(u, v) = C(S, T ).
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Corollary 3.3. (Integral Flow) If all edge capacities are non-negative inte-
gers, then there exists an integral maximum flow.

Proof. Since edge capacities are integral, the capacity of every edge in Gf is
also integral. At each step, df is at least one. Thus the value of the flow f
increases by at least one. Since |f | <∞, |f | cannot increases indefinitely, hence
the algorithm stops after a finite number of steps.

For an example of network where Ford-Fulkerson algorithm may not termi-
nate, see Exercise 27. The above corollary tells us that this counter-example
will use some edge with capacity that is not a non-negative integer.

Corollary 3.4. (Max Flow/Min Cut) The minimum cut value in a network
is the same as the maximum flow value.

Proof. If Ford-Fulkerson algorithm terminates, as in Corollary 3.3, then we
have a proof (we have a flow f∗ for which |f∗| = C(S, T ), and equality means,
as recalled in the proof of Theorem 3.2, that we have both a minimum cut
and a maximum flow). Now it turns out that the algorithm always terminates,
assuming a particular search order for the the augmenting paths, this is a version
of the algorithm called Edmonds-Karp algorithm, which we will see below.

Using the shortest augmenting path found by breadth-first search, instead
of any augmenting path, guarantees that Ford-Fulkerson algorithm terminates.

Algorithm 5 Breadth-First Search (BFS)

Input: a graph G = (V,E), with start vertex s.
Output: a function d : V → R+, d(v) is the distance from v to s in G.
Data Structure: a queue Q (first in first out)

1: Q = ∅ ; d(s) = 0 ; d(v) =∞ ∀ v 6= s
2: Add s to Q;
3: while (Q 6= ∅) do
4: Remove first vertex v from Q;
5: for (all w adjacent to v) do
6: if (d(w) =∞) do
7: d(w) = d(v) + 1;
8: add w to Q;

Example 3.6. We illustrate the Breadth-First Search (BFS) algorithm.

s
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3 4 5

6

Q = ∅, d(s) = 0, d(1) = . . . = d(6) =∞
Q = {s}
Q = {}, d(1) = 1, d(2) = 1, Q = {1, 2}
Q = {2}, d(3) = 2, d(4) = 2, Q = {2, 3, 4}
Q = {3, 4}, d(5) = 2, Q = {3, 4, 5}
Q = {4, 5}
Q = {5}, d(6) = 3, Q = {5, 6}
Q = {6}
Q = {}
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The breadth first search algorithm is incorporated to Ford-Fulkerson algo-
rithm to find an augmenting path with minimum number of edges.

Algorithm 6 Edmonds-Karp (1970)

Input: G = (V,E) a network, with capacity c, source s and sink t
Output: a maximal flow f∗.

1: Initialize f(e) = 0 ∀ e ∈ E
2: Compute Gf .
3: while (there is a path from s to t in Gf ) do
4: Let P be the shortest s, t−path in Gf found by BFS.
5: Set df = mine∈P cf (e) in Gf along P .
6: Update f in G: set f(u, v) = f(u, v) + df for (u, v) ∈ P if (u, v) ∈ E

and f(v, u) = f(v, u)− df for (u, v) ∈ P if (v, u) ∈ E.
7: Rebuild the residual network Gf .

Theorem 3.5. The Edmonds-Karp algorithm terminates after at most |E|(|V |−
1) iterations.

Proof. The proof counts the number of while loop iterations before the algorithm
stops.

At every iteration of the while loop, the algorithm uses a BFS to find the
shortest augmenting path, so it builds a tree that starts at s, then the level 1 of
the tree will contain a set V1 of vertices that are at distance 1 from s, and more
generally, the level i of the tree will contain a set Vi of vertices at distance i
from s. A shortest path from s to t must use edges (u, v) with u ∈ Vi, v ∈ Vi+1

at each step, i = 1, 2, . . . and a path that uses an edge u, v with u ∈ Vi, v ∈ Vj
and j 6 i cannot be a shortest path.

We will look at how the BFS tree starting at s in Gf changes from one
iteration to another. Given Gf , we find an augmenting path P , we then update
G accordingly:

• If P contains a forward edge e (that is e has the same direction in Gf
than in G), then in G, e will get augmented by df , so in the new Gf , the
edge e either has disappeared (if f(e) = c(e)) or is still there with a lower
capacity, and a backward edge may be added to the new Gf if it was not
there before.

• If P contains a backward edge e (that is e has the reverse direction in Gf
than in G), then in G, e will be diminished by df , so in the new Gf , the
edge e either has disappeared, or is still there, and a forward edge may be
added to the new Gf if it was not there before.

Thus every new edge that is created in the residual graph from one iteration to
another is the reverse of an edge that belongs to P . Since every edge of P goes
from level Vi to level Vi+1 in the BFS tree, every new edge that gets created
must go from level Vi+1 to Vi. This shows that:
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• if at a certain iteration of the algorithm, the length of a shortest path from
s to t in the residual network is l, then at every subsequent iteration it is
≥ l.

In words, the length of P from s to t can never decrease as we repeat the while
loop.

Furthermore, if the length of the path from s to t in the residual network
remains l from one iteration T to the next one T + 1, then the path P in Gf
at iteration T + 1 must be using only edges which were already present in the
residual network at iteration T and which were “forward” edges (from Vi to
Vi+1). Thus, in all subsequent iterations in which the distance from s to t
remains l, it is so because there is a length l path made entirely of edges that
were “forward” edges at iteration T . At each iteration however, at least one of
those edges is saturated and is absent from Gf in subsequent stages. So there
can be at most |E| iterations during which the distance from s to t stays l.

So we further established that:

• after at most |E| iterations, the distance ≥ l + 1.

Since the distance from s to t is at most |V | − 1, and it takes at most |E|
iterations to increase the length of the path by 1, after |E|(|V | − 1) iterations,
the length of the shortest path becomes the total number of vertices in the
network, thus it cannot increase anymore, and the algorithm terminates.

3.2 Some Applications of Max Flow-Min Cut

Results around the Max Flow-Min Cut of a network were motivated by comput-
ing a maximum flow in a network. However they can also be used to prove other
results in graph theory. We give as example below Hall’s Theorem. Menger’s
Theorem is given in Exercise 28.

Definition 3.6. Given a graph G = (V,E), a perfect matching is a subset of E
which covers all vertices but each vertex only once.

Theorem 3.6. [Hall’s theorem] Let G = (V,E) be a bipartite graph with
V = A t B and |A| = |B|. For J ⊆ A, let Γ(J) be the set of vertices adjacent
to some vertex in J :

Γ(J) = {v ∈ B, ∃ w ∈ J, {v, w} ∈ E}.

Then G has a perfect matching if and only if

|Γ(J)| > |J | ∀ J ⊆ A.



56 CHAPTER 3. NETWORK FLOWS

Example 3.7. In the bipartite graph below, with A = {a1, a2, a3, a4}, B =
{b1, b2,3 , b4}, a perfect matching is shown using dashed lines.

a1

a2

a3

a4

b1

b2

b3

b4

We can illustrate the condition |Γ(J)| ≥ |J |∀J ⊂ A. For |J | = 1, that is J is {ai}
for some i, each vertex in A has at least 1 adjacent vertex in B. For |J | = 2, that
is J ∈ {{a1, a2}, {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}, {a3, a4}}, then |Γ(J)| = 3.
The same computations can be checked for |J | = 3, 4.

Proof. ( =⇒ ) Suppose we have a perfect matching. The edges of a perfect
matching provide a unique neighbour for each node in J . There maybe other
edges and thus other adjacent nodes in B, but there are at least those provided
by the matching, which makes sure that |J | 6 |Γ(J)|.
( ⇐= ) Suppose by contradiction that G has no perfect matching but |J | 6
|Γ(J)|. We frame the matching problem in terms of network flow by turning G
into a network N as follows:

• Direct all edges in G from A to B and give them capacity ∞.

• Add a node s and an edge (s, a) ∀ a ∈ A with capacity 1.

• Add a node t and an edge (b, t) ∀ b ∈ B with capacity 1.

a1

a2

a3

a4

b1

b2

b3

b4

s t
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Now G has a perfect matching ⇐⇒ the max flow in N is n ⇐⇒ the min
cut in N is n. Our contradiction assumption thus implies that the min-cut is
< n. Consider a min-cut (S, T ) and let J = S ∩ A. Then all of the edges from
s to A\J cross the cut. These edges have total capacity |A\J | (since each edge
has capacity 1).

a1

a2

a3

a4

b1

b2

b3

b4

s t

The edges (a3, b1), (a4, b2)
were removed from the
previous example to re-
move the perfect match-
ing

Now all neighbours of J in G must also lie in S, that is Γ(J) ⊂ S, or else an
edge of capacity ∞ would cross the cut. Then all of the edges from the nodes
Γ(J) to t cross the cut. These edges have total capacity |Γ(J)|. We then have:{

|J |+ |A\J | = |A| = n

|A\J |+ |Γ(J)| 6 C(S, T ) < n

=⇒ n− |J |+ |Γ(J)| < n ⇐⇒ |Γ(J)| < |J |

which is a contradiction.

3.3 The Min Cost Flow Problem and some Ap-
plications

Definition 3.7. Let G = (V,E) be a directed graph, and let

b : E → R (lower capacity)
c : E → R (upper capacity, or just capacity)
γ : E → R (cost function)
d : V → R (demand function)

be functions (note that they take value in the whole of R). Furthermore, the de-
mand function is such that

∑
v∈V d(v) = 0. Then G together with the functions

b, c, γ, d is called a minimum cost flow network.
When d(v) > 0, we refer to v as a supply node, when d(v) < 0, we refer to v

as a demand node, and when d(v) = 0, we say that v is a transit node.
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Example 3.8. Here is an example of minimum cost flow network. The demands
of the nodes are written next to the nodes. We notice that

∑
v∈V d(v) = 0. The

labels on the edges are of the form b(e)/c(e)/γ(e).

v15

v4
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v2

−3

v3 3

-3/5/5

5/10/7

0/10/2

0/5/10

-10/10/5

Definition 3.8. A flow in such a network is a map f : E → R with

1. b(e) ≤ f(e) ≤ c(e) for all e ∈ E,

2. d(v) =
∑
u∈O(v) f(v, u)−

∑
u∈I(v) f(u, v) for all v ∈ V 1.

The cost of such a flow is γ(f) =
∑
e∈E γ(e)f(e).

Problem 5. The min-cost-flow problem consists of finding a flow in a minimum
cost flow network of minimum cost.

We will show first that the maximum flow problem is a special case of the
min-cost-flow problem. Indeed, let G = (V,E) be a network with source s and
sink t, and edge capacities given by a function c. Construct the min-cost flow
network G′ = (V,E′) where E′ = E ∪ {(t, s)}. We specify the 4 functions of a
min-cost flow network G′:

• b′(e) = 0 for all e ∈ E′,

• c′(e) = c(e) for all e ∈ E and c′(t, s) =
∑
u∈O(s) c(s, u),

• γ′(e) = 0 for all e ∈ E and γ′(t, s) = −1,

• d′(v) = 0 for all v ∈ V .

The functions are clearly defined on G = (V,E): the lower bound is 0 for every
edge in E in a max flow problem, so is the demand at every vertex but for the
source and the sink. Then each edge is assigned its capacity in G. The only
things to discuss are the addition of (t, s), the choice of capacity and cost for
this edge, as well as the choice of demand for s and t.

1You may find d(v) = −
∑

u∈O(v) f(v, u) +
∑

u∈I(v) f(u, v), both definitions are found.
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Intuitively, if we want to maximize the flow between s and t using a min-
cost formulation, this means that decreasing the cost must increase the flow.
By introducing a new edge (t, s) with cost γ′(t, s) = −1, we push the flow to
use this new edge as much as possible, since going through it decreases the cost
(all the other costs are 0: γ′(e) = 0 for all e ∈ E). But now, the demand at
the source s is 0, so the edge (t, s), which is the only incoming edge of s, must
carry as much flow as the source can output, and similarly at the sink t whose
demand is also 0, the edge (t, s) being its only outgoing edge, it must take in as
much flow as possible.

Lemma 3.7. With G and G′ as defined above, let f be a flow in G and f ′ be
defined by

f ′(e) = f(e) ∀e ∈ E, f ′(t, s) =
∑

u∈O(s)

f(s, u).

Then f is a maximum flow in G ⇐⇒ f ′ is a minimum cost flow in G′.

Proof. First we check that f ′ is indeed a flow in G′.

• We have that f is a flow in G, thus 0 ≤ f(e) ≤ c(e) for all e ∈ E,
and f ′ satisfies 0 ≤ f ′(e) = f(e) ≤ c(e) = c′(e) for all e ∈ E. Then
f ′(t, s) =

∑
u∈O(s) f(s, u) ≤ c′(t, s) =

∑
u∈O(s) c(s, u) so f ′ is feasible.

• Then for every vertex v in V which is neither the source nor the sink, by
flow conservation of f , and since f(e) = f ′(e) for all e ∈ E:∑

u∈O(v)

f ′(v, u)−
∑
u∈I(v)

f ′(u, v) = 0 = d(s).

For s, since (t, s) is its only incoming edge, and by definition of f ′(t, s):∑
u∈O(s)

f(s, u)− f ′(t, s) = 0 = d(v).

For t, since (t, s) is its only outgoing edge, by definition of f ′(t, s) and
recalling that the flow that goes out of the source must reach the sink (see
Exercise 25) :

f ′(t, s)−
∑
u∈I(t)

f(u, t) = f ′(t, s)−
∑

u∈O(s)

f(s, u) = 0 = d(t).

Now the cost of the flow f ′ is

γ(f ′) =
∑
e∈E′

γ(e)f ′(e) = γ(t, s)f ′(t, s) = −f ′(t, s),

that is
γ(f ′) = −

∑
u∈O(s)

f(s, u)

and minimizing γ(f ′) maximizes
∑
u∈O(s) f(s, u).
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Example 3.9. On the left hand-side, a graph G is shown with a maximal flow.
On the right hand-side, its corresponding min-cost flow network is shown. The
capacity of (t, s) is

∑
u∈O(s) c(s, u). To minimize the cost, the edge (t, s) should

be used as much as possible, constrained by its capacity which is the maximal
amount of flow that can go out of the source, and come in the sink.
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Next we will see that finding a shortest path is a special case of the min-cost
flow too.

Let G = (V,E) be a directed weighted graph with weight function w : E →
R>0, and consider two vertices s, t in V . A path P ⊆ E from s to t with
minimum weight

∑
e∈P w(e) is called a shortest path from s to t.

We define a corresponding min-cost flow network G′ = (V,E) by using the
same vertices and edges as that of G, and by adding the following functions:

• b(e) = 0 for all e ∈ E,

• c(e) = 1 for all e ∈ E,

• γ(e) = w(e) for all e ∈ E,

• d(v) = 0 for all v ∈ V \{s, t}, d(s) = 1, d(t) = −1.

Lemma 3.8. Let f be a minimum cost flow in G′ as defined above, such that
all flow values are integral (in fact they are only 0 or 1). Then the edges with
f(e) = 1 form a shortest path from s to t in G.

Proof. We first note that all nodes have a demand of 0, but for the start s and
end t of the path, whose demands are d(s) = 1 and d(t) = −1. Thus there is
a flow of 1 that has to go from s to t. Then the capacity of every edge is 1,
which means that every edge is used either once or none. Also since the flow is
integral, every visited vertex has at most one incoming edge, and one outgoing
edge (if the flow was not integral, you could have 0.5 going of a node on two
different edges). Now to minimize the cost∑

e∈E
γ(e)f(e) =

∑
e∈E

w(e)f(e),



3.3. THE MIN COST FLOW PROBLEM AND SOME APPLICATIONS 61

this flow of 1 will use edges with the lowest cost (the flow will be either 1 if the
edge is used, or 0 else), thus finding the shortest path. Note that the output is
really a path in that none of the vertices are repeated. This is because repeating
a vertex means there is a cycle, and since the weights are positive, a cycle would
increase the cost.

In the above proof, we use the fact that the weights are positive. If we have
negative edges, it is possible to find a shortest path as a min-cost flow, assuming
that there is no cycle whose sum of weights is negative or zero. In that case,
the same argument holds: adding a cycle would add a larger cost and thus the
algorithm will avoid the cycle.

Example 3.10. This example shows that even with negative weights (this
graph has no cycle whose sum of costs is negative), the shortest path problem
can be solved using the min-cost flow problem. On the left-hand side, a graph
with a shortest path from s to t is given. On the right hand-side, the equivalent
min-cost flow problem is shown, whose cost is 9.

s

t

v2

v1

12

w=10
5

0

4
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s1

t

−1

v2

0

v1 0

1/12

f=0/γ=10
0/5

1/0

0/4

1/-3

Example 3.11. The network below contains the cycle v1, v2, v1 which has
weight -3. The shortest path is given by s, v1, t. Indeed, using the cycle v1, v2, v1
means that v1 is used twice, so we do not get a path. However if we were asked
for a flow that minimizes the weights, we would enter the cycle, this would
not create a path since v1 would be repeated, and the iterations may not even
terminate (if we do not specify a capacity).

s v1

v2

t
w=1

-1 -2

1
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3.4 The Cycle Cancelling Algorithm

We next discuss an algorithm that actually solves the min-cost flow network
problem. Similarly to Ford-Fulkerson algorithm, it relies on the notion of resid-
ual graph, only we need to define residual graph in our new context: we know
how to define a residual graph that takes into account the flow and the capacity
of the edges (see Definition 3.4), but we need to add what happens to the cost.
The differences between the two definitions are highlighted.

Definition 3.9. Given a flow f on a graph (min-cost flow network) G = (V,E),
its residual graph Gf has V for vertices whose demands are set to 0, and

(1) edges have capacities c(v, w) − f(v, w), only edges with cf := c(v, w) −
f(v, w) > 0 are shown, they have a cost of γf (v, w) = γ(v, w), and they
are shown in the same direction as (v, w),

(2) if f(v, w) > 0, place an edge with capacity cf (v, w) = f(v, w) in the
opposite direction of (v, w), with a cost γf (v, w) = −γ(v, w).

ud(u) v d(v)
f/c/γ

u v

c− f/γ

0

f/−γ

0

While augmenting paths were the key ingredient to compute max-flows, for
min-cost flows, we look at negative cost cycles.

Definition 3.10. In a minimum cost flow network, a negative cost cycle is a
cycle C whose edges have a cost γ such that

∑
e∈C γ(e) < 0.

We first give the algorithm, we will prove next why it works. For that, we
will make the following assumptions:

• The lower capacity b is zero (and not written anymore): it is always possi-
ble to replace a min-cost-flow network where b is arbitrary by an equivalent
min-cost-flow network where b(e) = 0 for all e ∈ E (see Exercise 31).

• All upper capacities c(e) are finite: if c(e) is infinite for some edge e
(which we can useful to describe a problem formulation), one can prove
that there exists an optimal flow which is upper bounded by a quantity
that only depends on the demands and the finite capacities of the graph,
and this upper bound can be used as a finite capacity to replace c(e).

• All costs are non-negative: it can be shown that it is possible to replace a
min-cost flow network where γ can be negative (e.g. in G′ in Lemma 3.7)
by an equivalent min-cost-flow network where γ(e) ≥ 0 for all e.

• All upper capacities c, costs γ and demands d are integral: arguments
saying demands and/or flows are decreasing at each iteration and thus
will reach 0 (as used later) do not hold if we deal with real values.
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• Networks have no directed cycle of negative cost and infinite capacity:
this scenario is ill-defined (see Example 3.11), no matter how one can
transform such a network.

Algorithm 7 Cycle Cancelling

Input: G = (V,E) a network, with capacity c : E → Z≥0, |c| <∞, demand
d : V → Z, and cost γ : E → Z≥0

Output: a minimum cost flow f∗, or ∅.

1: f ← FeasibleFlow(G, d, c)
2: if (f = ∅) do
3: return ∅.
4: Compute the residual graph Gf with cost γf and capacity cf .
5: Find a negative cost cycle W in Gf , set W = ∅ if none exists.
6: while (W 6= ∅) do
7: Set df = mine∈W cf (e) in Gf along W .
8: Update f in G: set f(u, v) = f(u, v) + df for (u, v) ∈ W if (u, v) ∈ E

and f(v, u) = f(v, u)− df for (u, v) ∈W if (v, u) ∈ E.
9: Rebuild the residual network Gf , with cost γf and capacity cf .

10: Find a negative cost cycle W in Gf , set W = ∅ if none exists.

The idea is to start with a feasible flow in G (a flow that satisfies Definition
3.8)2, then try to find a negative cost cycle in Gf . When no such a cycle exists,
the claim is that we have an optimal flow. Otherwise, we augment the flow
along the cycle, decrease the cost of the flow, and repeat. To find a negative
cycle, one may use Floyd-Warshall algorithm (see Algorithm 9).

We still need to answer two questions: how do we find a feasible flow, and
why does the cycle cancelling algorithm work.

Algorithm 8 FeasibleFlow

Input: G = (V,E) a network, with capacity c : E → Z≥0, |c| <∞, demand
d : V → Z, and cost γ : E → Z≥0

Output: a feasible flow f , or ∅.

1: V ′ ← V ∪ {s, t}.
2: E′ ← E ∪ {(s, v), d(v) > 0} and set c′(s, v) = d(v).
3: E′ ← E′ ∪ {(v, t), d(v) < 0} and set c′(v, t) = −d(v).
4: Create a graph G′ = (V ′, E′), with capacity c′ and c′(e) = c(e) for all e ∈ E.
5: Find f∗ that solves the max flow problem from s to t in G′.
6: if (f∗ saturates the source edges) do
7: Return f∗|E .
8: else:
9: Return ∅.

2For max flow problems, we use “feasible” for the condition 0 ≤ f(e) ≤ c(e), for min cost
flow problems, we use “feasible” for both properties.
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Example 3.12. Let us try to find a feasible flow for the network on the left
below.
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To start with, we create a graph G′ = (V ′, E′) where V ′ = V ∪ {s, t},
E′ = E ∪ {(s, v), d(v) > 0} ∪ {(v, t), d(v) < 0} and V ′ = V ∪ {s, t}. Then the
capacities are c′(e) = c(e) for all e ∈ E, c′(s, v) = d(v) and set c′(v, t) = −d(v).

Then to solve the max-flow problem in the network G′, we apply Ford-
Fulkerson algorithm. We show the graph and its updates on the left, and the
corresponding residual graphs with paths from s to t on the right.
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At this point, we observe that s has only one outgoing edge which is not
saturated, namely the one from s to 1.
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This gives us a last update:
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We see that the flow obtained saturates the outgoing edges of s. We now
remove s and t and the edges connected them. We can check that the flow
obtained is feasible.

112 2 −3

36 4 −7

514 6 −22

4/5

6/11
2/2

1/18

4/4

6/9
2/2

0/9

20/31

Let us prove that the FeasibleFlow algorithm actually works.

Lemma 3.9. The original network G has a feasible flow if and only if every
maximal flow of G′ saturates all the source edges. Furthermore, if f∗ is a
maximal flow of G′, then the restriction f∗|E to the edges of G is a feasible
flow.

Proof. Recall that a feasible flow for the min-cost-flow problem must satisfy (1)
b(e) ≤ f(e) ≤ c(e), and (2)

∑
u f(v, u) −

∑
u f(u, v) = d(v). We may assume

b(e) = 0 for all e.
(⇐) Consider an arbitrary maximum flow f∗ of G′ which saturates all source

edges. We will show that G has a feasible flow, given by f∗|E (this also proves
the second part of the lemma statements). Clearly f∗|E satisfies (1) by definition
of flow in G′. Then consider vertices v such that d(v) > 0 in the original network
G. They are connected to s in G′ with capacity d(v), so since every such an edge
saturates, this means that the flow on (s, v) is d(v), thus f(s, v)+

∑
u6=s f(u, v) =∑

u f(v, u) by definition of flow in G′, and f∗|E satisfies (2) for these vertices.
Next consider vertices such that d(v) < 0. Since f saturates the edges out of
the source, by definition of demand, it also saturates the edges entering the
sink. Then

∑
u f(u, v) =

∑
u6=t f(v, u) + f(v, t) by definition of flow in G′, that

is
∑
u6=t f(v, u) −

∑
u f(u, v) = −f(v, t) = d(v) and f∗|E satisfies (2) for these

vertices.
(⇒) Suppose we have a feasible flow for G, and a maximal flow for G′. When

the manipulation that transforms the original network into a max flow problem
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is done, the demands have been put as edge capacities between the source and
nodes of positive demand (and between nodes of negative demands and the sink
with a change of sign), so a maximal flow can at most saturate the source edges,
and it will do so since the flow is feasible in G.

This lemma also tells us that if we cannot find a feasible flow, then we cannot
solve the min-cost-flow problem.

Next, we prove a first result that shows why it is interesting to work with a
residual graph. For an edge e = (u, v) ∈ E, we write ẽ = (v, u), that is ẽ is the
backward edge obtained by changing the direction of e.

Theorem 3.10. Let fo be a feasible flow of a network G, and let Gfo be its
residual graph. Then a flow f is feasible in G if and only if the flow f ′ defined
by {

f ′(e) = f(e)− fo(e), f ′(ẽ) = 0 if f(e) ≥ fo(e)
f ′(ẽ) = −f(e) + fo(e), f ′(e) = 0 if f(e) < fo(e)

is a feasible flow in Gfo . Furthermore∑
e∈E

γ(e)f(e) =
∑

e∈E(Gfo )

γ′(e)f ′(e) +
∑
e∈E

γ(e)fo(e)

where γ is the cost in G and γ′ is the cost in Gfo .

This theorem is looking at one update of G with a feasible flow fo, from
which a residual graph Gfo is built. It tells when a feasible flow f ′ in Gfo will
correspond to a feasible flow f in G, and how the cost of the flow f ′ in Gfo will
update the cost of the flow f in G with respect to the cost given by the flow fo.

ud(u) v d(v)
fo/c/γ

u v

f ′/c− fo/γ′ = γ

0

f ′/fo/γ′ = −γ

0

Proof. (⇒) Assume that f is a feasible flow, that is (1) 0 ≤ f(e) ≤ c(e) and (2)∑
u f(v, u)−

∑
u f(u, v) = d(v). We need to check that f ′ is feasible. We start

with (1). Clearly f ′(ẽ) = 0 and f ′(e) = 0 respectively satisfy (1).

• If f(e) ≥ fo(e), then f ′(e) = f(e)− fo(e) ≥ 0 and f ′(e) = f(e)− fo(e) ≤
c(e)− fo(e) = cfo(e) since f is feasible and e is forward.

• If f(e) < fo(e), then f ′(ẽ) = −f(e) + fo(e) > 0 and f ′(ẽ) ≤ fo(e), the
residual capacity of the backward edge ẽ. Since f is feasible, f(e) ≥ 0 and
fo(e) > 0, thus the backward edge ẽ appears in the residual graph.

Then we check (2) for f ′ in Gfo , recalling that d(v) = 0 in Gfo . For every
v, we have, recalling that an edge e in Gfo is either a forward edge in G, or a
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backward version of an edge in G:∑
u,(v,u)∈E(Gfo )

f ′(v, u)−
∑

u,(u,v)∈E(Gfo )

f ′(u, v) (3.2)

=
∑

u,(v,u)∈E(G)

f ′(v, u) +
∑

u,(u,v)∈E(G)

f ′(v, u)−
∑

u,(u,v)∈E(G)

f ′(u, v)−
∑

u,(v,u)∈E(G)

f ′(u, v)

=
∑

u,(v,u)∈E(G)

(f ′(v, u)− f ′(u, v))−
∑

u,(u,v)∈E(G)

(f ′(u, v)− f ′(v, u)) (3.3)

=
∑

u,(v,u)∈E(G)

(f(v, u)− fo(v, u))−
∑

u,(u,v)∈E(G)

(f(u, v)− fo(u, v))

because in the first sum, either f ′(v, u) = f(v, u) − fo(v, u) and f ′(u, v) = 0,
or f ′(v, u) = 0, and −f ′(u, v) = f(v, u) − fo(v, u). Similarly, in the second
sum, either f ′(u, v) = f(u, v) − fo(u, v) and f ′(v, u) = 0, or f ′(u, v) = 0, and
−f ′(v, u) = f(u, v)− fo(u, v). But now, since f is feasible∑

u,(v,u)∈E(G)

f(v, u)−
∑

u,(u,v)∈E(G)

f(u, v) = d(v).

Since fo is also feasible, (2) is proven by noting that

−
∑

u,(v,u)∈E(G)

fo(v, u) +
∑

u,(u,v)∈E(G)

fo(u, v) = −d(v).

ud(u) v d(v)
fo/c/γ

u v

f ′/c− fo/γ′ = γ

0

f ′/fo/γ′ = −γ

0

(⇐) For the converse, assume that f ′ is a feasible flow.

• If f ′(ẽ) = 0, then f(e) = f ′(e) + fo(e), and f(e) ≥ 0. Also since f ′ is a
feasible flow in Gfo , f(e) ≤ cfo(e) + fo(e) = (c(e)− fo(e)) + fo(e) = c(e).

• If f ′(e) = 0, then f(e) = fo(e) − f ′(ẽ), and since f ′ is feasible in Gfo , it
must be less than the residual capacity which for a backward edge is fo(e)
and f(e) ≥ 0. Also, f(e) ≤ fo(e) ≤ c(e) since fo is a feasible in G.

We then need to check that
∑
u f(v, u) −

∑
u f(u, v) = d(v). We write f(e) =

f ′(e)− f ′(ẽ) + fo(e) since either f ′(e) = 0 or f ′(ẽ) = 0, so that∑
u,(v,u)∈E(G)

f(v, u)−
∑

u,(u,v)∈E(G)

f(u, v)

=
∑

u,(v,u)∈E(G)

(f ′(v, u)− f ′(u, v) + fo(v, u))−
∑

u,(u,v)∈E(G)

(f ′(u, v)− f ′(v, u) + fo(u, v))
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Since fo is feasible:∑
u,(v,u)∈E(G)

fo(v, u)−
∑

u,(u,v)∈E(G)

fo(u, v) = d(v).

This proves what we wanted since∑
u,(v,u)∈E(G)

(f ′(v, u)− f ′(u, v))−
∑

u,(u,v)∈E(G)

(f ′(u, v)− f ′(v, u)) = 0

using (3.3), which is equal to (3.2), which is 0 once we know f ′ is feasible.
Finally, we compute the cost of the flow f as a function of the cost of the

flows f ′ and fo. The cost γ′ of f ′ is computed in Gfo , and γ′ = ±γ depending
on whether the edge is forward or backward. Thus

γ′(e)f ′(e) + γ′(ẽ)f ′(ẽ) = γ(e)(f ′(e)− f ′(ẽ)) = γ(e)(f(e)− fo(e))

since f(e) = f ′(e) − f ′(ẽ) + fo(e). Thus γ(e)f(e) = γ′(e)f ′(e) + γ′(ẽ)f ′(ẽ) +
γ(e)fo(e). We conclude the proof by summing over the edges e ∈ E.∑

e∈E
γ(e)f(e) =

∑
e∈E

γ′(e)f ′(e) + γ′(ẽ)f ′(ẽ) + γ(e)fo(e)

=
∑
e∈E

γ′(e)(f ′(e)− f ′(ẽ)) +
∑
e∈E

γ(e)fo(e)

and
∑
e∈E γ

′(e)(f ′(e)− f ′(ẽ)) =
∑
e∈E(Gfo ) γ

′(e)f ′(e) since edges in Gfo come

as both forward and backward edges of G.

The above result states how the cost of a flow changes in G based on the
cost of a flow in its corresponding residual graph. The next result describes the
role of cycles in a flow of G.

Theorem 3.11. [Flow Decomposition Theorem.] Consider a graph G =
(V,E) with |V | = n vertices and |E| = m edges. Every flow f can be decomposed
into cycles and paths, such that:

1. Every directed path with nonzero flow connects a supply node (with positive
demand) to a demand node (with negative demand).

2. At most n + m paths and cycles have nonzero flow, and out of these, at
most m cycles have nonzero flow.

Proof. Suppose v0 is a supply vertex, that is d(v0) > 0. Then there is some
edge e = (v0, v1) with nonzero flow (otherwise the flow is not feasible). If v1 is
a demand vertex, then we stop, we found a path P = (v0, v1). Otherwise, v1 is
either another supply vertex, or transit vertex, and the property

∑
u f(v1, u)−∑

u f(u, v1) = d(v1) ensures that there is another edge (v1, v2) with nonzero
flow. We repeat this argument until either a demand node is reached, or we
encounter a previously visited node. Surely, one of these two cases must occur
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within n steps, since n is the number of vertices. Thus either we obtain a
directed path P from a supply node to a demand node, or we obtain a directed
cycle W . In both cases, the path or the cycle only consists of nonzero flow edges.

If we obtain a directed path P from v0 to vk, set

δ(P ) = min{d(v0),−d(vk),min
e∈P

f(e)}

and update d(v0)← d(v0)−δ(P ), d(vk)← d(vk)+δ(P ), and f(e)← f(e)−δ(P ),
for every e ∈ P .

If instead we obtain a directed cycle W , then set

δ(W ) = min
e∈W

f(e)

and update f(e)← f(e)− δ(W ), for every e ∈W .
We repeat the above process with the newly obtained problem, until there

are no more supply nodes, i.e., d(v) = 0 for all vertices v (if supply nodes
are gone, by the definition of demand, the demand nodes must be gone too).
This will happen because whenever a path is found, the supply demands are
decreased, so they will eventually reach zero. Then we select any node with one
outgoing edge with nonzero flow as a starting point, and repeat the procedure.
Since d(v) = 0, we will find a directed cycle. The process stops when f = 0.

The original flow is the sum of flows on the paths and cycles we found.
Then each time we find a directed path, the update d(v0) ← d(v0) − δ(P ),
d(vk)← d(vk)+δ(P ), and f(e)← f(e)−δ(P ), will send either a supply node, a
demand node, or an edge to 0. Similarly, each time we find a directed path, the
flow on some edge will be updated to 0. Therefore the process terminates after
identifying at most n+m cycles and paths, and identify at most m cycles.

We finally have the result that justifies the cycle cancelling algorithm.

Theorem 3.12. A feasible flow f∗ is an optimal solution of the minimum cost
flow problem if and only if Gf∗ contains no negative cost directed cycle.

Proof.

ud(u) v d(v)
f∗/c/γ

u v

f ′/c− f∗/γ′ = γ

0

f ′/f∗/γ′ = −γ

0

(⇒) Assume that f∗ is an optimal flow, but that Gf∗ contains a negative cost
directed cycle W of cost γ′(W ) =

∑
e∈W γ′(e) < 0. We will get a contradiction

to the optimality of f∗, intuitively because we can augment the flow f ′ along
W , which will decrease its cost value.

Formally, consider the flow f ′ along W in Gf∗ given by: f ′(e) = 0 for e 6∈W ,
and for e ∈W , use the maximal flow obtained by setting f ′(e) for all e ∈W to
be the minimum residual capacity of the cycle W (this flow is surely feasible).
Then by Theorem 3.10, we get a feasible flow f in G such that:∑

e∈E
γ(e)f(e)−

∑
e∈E

γ(e)f∗(e) =
∑

e∈E(Gf∗ )

γ′(e)f ′(e) =
∑
e∈W

γ′(e)f ′(e) < 0
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since f ′(e) = 0 for e 6∈W . Also f ′(e) is constant, it was set to be the minimum
residual capacity for every e ∈W , thus it can be taken out of the sum, and we
can then use that the cycle has a negative cost: γ′(W ) < 0. Then∑

e∈E
γ(e)f(e) <

∑
e∈E

γ(e)f∗(e),

a contradiction to the optimality of f∗.

(⇐) Now assume that f∗ is a feasible flow and that Gf∗ contains no negative
cost directed cycle. We want to show that f∗ is optimal. Let fo be any feasible
flow. We will show that f∗ has a lesser cost than fo.

By Theorem 3.10, with f∗ a feasible flow with residual graph Gf∗ , since
fo is also feasible in G, we can find a feasible flow f ′ in Gf∗ . Now applying
Theorem 3.11 to f ′ in Gf∗ , we decompose f ′ into paths and cycles. But in Gf∗ ,
all nodes have demands 0, thus the flow f ′ is only composed of cycles. But
since Gf∗ contains no negative cost directed cycle, the cost of any cycle must
be nonnegative, and thus the cost of the flow over these cycles must be positive,
and in fact, equal to ∑

e∈E(Gf∗ )

γ′(e)f ′(e) ≥ 0.

By Theorem 3.10, the cost in G is∑
e∈E

γ(e)fo(e)−
∑
e∈E

γ(e)f∗(e) =
∑

e∈E(Gf∗ )

γ′(e)f ′(e) ≥ 0,

that is ∑
e∈E

γ(e)fo(e) ≥
∑
e∈E

γ(e)f∗(e)

thus f∗ is an optimal flow (that is, with minimal cost).

We conclude this chapter by discussing Floyd-Warshall algorithm. The goal
of this algorithm, proposed in 1962, is to compute all shortest paths of a weighted
directed graph G. It is an example of so-called dynamic programming. Given a
path P = (1, . . . , l), any vertex in P different from 1, l is called an intermediate
vertex. We denote by wij the weight w(i, j) of the directed edge (i, j). The
weight 0 is given to wii and the weight ∞ is a convention if there is no edge
between i and j. We form an n × n matrix W whose coefficients are wij for

n = |V |. We then denote by d
(k)
ij the weight of a shortest path from i to j for

which all intermediate vertices are in the set {1, . . . , k}. We similarly store d
(k)
ij

in a matrix D(k). Now to compute d
(k)
ij knowing d

(k−1)
ij , observe that there are

two ways for a shortest path to go from i to j:

• not using k: then only intermediate vertices in {1, . . . , k − 1} are visited,

and the weight of a shortest path is d
(k−1)
ij .
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• using k: observe that a shortest path does not pass through the same
vertex twice, so k is visited exactly once. To ensure that the algorithm
actually does that, we need the assumption that there is no directed cycle
whose sum of weights is negative. Since this means we go from i to k, and
then from k to j, we are then using a shortest path in both cases, so the

length with be d
(k−1)
ik + d

(k−1)
kj .

We then recursively define

d
(k)
ij =

{
wij , k = 0

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj ), k ≥ 1.

To keep track of paths, denote by π
(k)
ij the predecessor of j on a shortest path

from i, with intermediate vertices in {1, . . . , k}:

π
(k)
ij =

{
π
(k−1)
ij , d

(k−1)
ij ≤ d(k−1)ik + d

(k−1)
kj

π
(k−1)
kj , d

(k−1)
ij > d

(k−1)
ik + d

(k−1)
kj

with π
(0)
ij = i for i 6= j and wij < ∞ and NIL if i = j or wij = ∞. Indeed,

the first condition means that k was not used, and we store the predecessor of
j from i, while for the second condition, k was used and the path went from k
to j, so we store the predecessor of j from k.

Algorithm 9 Floyd-Warshall algorithm

Input: G = (V,E) a weighted directed graph with weight w and no directed
cycle whose sum of weights is negative.

Output: D(n)

1: D(0) ←W .
2: for (k = 1, . . . , n) do
3: Initialize D(k).
4: for (i = 1, . . . , n) do
5: for (j = 1, . . . , n) do

6: d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj )

7: Return D(n).

We notice that this involves storing the n matrices D(k), k = 1, . . . , n. We
can instead use a single matrix D, initialized to be W as above. A matrix to

contain the predecessors is initialized at the same time. Then replace d
(k)
ij =

min(d
(k−1)
ij , d

(k−1)
ik +d

(k−1)
kj ) by if dij > dik+dkj , then dij ← dik+dkj , πij = πkj .

The path can be recovered as follows. To know the path between two nodes
i and j: if πij is NIL, output i, j. Otherwise, repeat the procedure using both
i and πij , this gives the path from i to the predecessor of j from i, and πij and
j, this gives the rest of the path.
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Example 3.13. Consider the following weighted graph.

1

2

3

4

81

1

4

9

2

Then the matrix D at k = 0 is given by

D =


0 8 ∞ 1
∞ 0 1 ∞
4 ∞ 0 ∞
∞ 2 9 0

 , Π =


NIL 1 NIL 1
NIL NIL 2 NIL

3 NIL NIL NIL
NIL 4 4 NIL

 .
At the first iteration, k = 1, we look at the condition dij > di1 + d1j , so for
i = 1, d1j > d11 + d1j = d1j which is never true, for i = 2, d2j > d21 + d1j =∞
which is never true either, the same holds for i = 4, so we just need to consider
i = 3, that is d3j > d31 + d1j = 4 + d1j . This gives

D =


0 8 ∞ 1
∞ 0 1 ∞
4 12 0 5
∞ 2 9 0

 , Π =


NIL 1 NIL 1
NIL NIL 2 NIL

3 π12 = 1 NIL π14 = 1
NIL 4 4 NIL

 .
At the second iteration, k = 2, we look at the condition dij > di2 + d2j , so for
i = 1, d1j > d12 + d2j = 8 + d2j and for i = 4, d4j > d42 + d2j = 2 + d2j , the
other cases are never true. This gives

D =


0 8 9 1
∞ 0 1 ∞
4 12 0 5
∞ 2 3 0

 , Π =


NIL 1 π23 = 2 1
NIL NIL 2 NIL

3 1 NIL 1
NIL 4 π23 = 2 NIL

 .
When k = 3, we have dij > di3 + d3j which we consider for i = 1, 2, 4:

D =


0 8 9 1
5 0 1 6
4 12 0 5
7 2 3 0

 , Π =


NIL 1 2 1

3 NIL 2 1
3 1 NIL 1
3 4 4 NIL

 .
Finally for k = 4, we have dij > di4 + d4j which we consider for i = 1, 2, 3:

D =


0 3 4 1
5 0 1 6
4 7 0 5
7 2 3 0

 , Π =


NIL 4 2 1

3 NIL 2 1
3 4 NIL 1
3 4 4 NIL

 .
We know from D that the shortest path from 1 to 3 is of weight 4, to know
the path itself, we look at the path from 1 to π1,3 = 2, which gives 4, so we
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know that the path starts with 1,4,2, and then we look at the path from 2 to 3
which is 2, so the total path is 1,4,2,3. We can check that this path has indeed
a weight of 4.

This algorithm works assuming there is no cycle whose sum of weights is
negative. However, if the graph has such cycles, we can use the algorithm to
actually detect them. The length of a path from i to itself is set to 0 when the
algorithm starts. Now a path from i to itself can only improve if the length is
less than zero, but that would mean a negative cycle. Thus once the algorithm
terminates, if there is a diagonal coefficient in the matrix D which is negative,
that means this node is involved in a negative cycle. Thus the presence of
at least one negative diagonal coefficient reveals the presence of at least one
negative cycle. As an example, one can replace the weight w(3, 1) in the above
example to be -10, this creates a negative cycle (see Exercise 34).

3.5 Exercises

Exercise 25. Show that

|f | =
∑
u∈I(t)

f(u, t),

that is, the strength of the flow is the sum of the values of f on edges entering
the sink.

Exercise 26. Use Ford-Fulkerson algorithm to find a maximum flow in the
following network:

s 1 2 t

3 4

10

10

9 10

62
8

4

10

Exercise 27. Here is a famous example of network (found on wikipedia and
in many other places) where Ford-Fulkerson may not terminate. The edges
capacities are 1 for (2, 1), r = (

√
5 − 1)/2 for (4, 3), 1 for (2, 3), and M for all

other edges, where M ≥ 2 is any integer.
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1 2 3 4

s

t

1 1 r

1. Explain why Ford-Fulkerson algorithm may not be able to terminate.

2. Apply Edmonds-Karp algorithm to find a maximum flow in this network.

Exercise 28. Menger’s Theorem states the following. Let G be a directed
graph, let u, v be distinct vertices in G. Then the maximum number of pairwise
edge-disjoint paths from u to v equals the minimum number of edges whose
removal fromG destroys all directed paths from u to v. Prove Menger’s Theorem
using the Max Flow- Min Cut Theorem.

Exercise 29. Let G = (V,E) be an undirected graph that remains connected
after removing any k − 1 edges. Let s, t be any two nodes in V .

1. Construct a network G′ with the same vertices as G, but for each edge
{u, v} in G, create in G′ two directed edges (u, v), (v, u) both with capacity
1. Take s for the source and t for the sink of the network G′. Show that
if there are k edge-disjoint directed paths from s to t in G′, then there are
k edge-disjoint paths from s to t in G.

2. Use the max-flow min-cut theorem to show that there are k edge-disjoint
paths from s to t in G′.

Exercise 30. 1. Compute a maximal flow in the following network, where
each edge (vi, wj) has a capacity of 1, for i, j = 1, 2, 3:

s

v1

v2

v3

t

w1

w2

w3

/2

/3

/2

/1

/1/1

/1

/1

/1

/1

/3

/2

/2

2. Interpret the above as a placement of a number of balls of different colours
into bins of different capacities, such that no two balls with the same colour
belong to the same bin. More generally, describe in terms of flow over a
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network the problem of placing bi balls of a given colour, for i = 1, . . . ,m
colours, into n bins of different capacities cj , j = 1, . . . , n, such that no two
balls with the same colour belong to the same bin (bi, cj are all positive
integers).

3. Give a necessary and sufficient condition on the max flow of the above
graph to ensure that the ball placement problem has a solution (that is a
condition (C) such that (C) holds if and only if the ball placement problem
has a solution).

Exercise 31. Show that one can always consider min-cost-flow networks were
lower capacities are zero, that is, if a network has lower capacities which are
not zero, the network can be replaced by an equivalent network were all lower
capacities are zero.

Exercise 32. Compute the residual graph Gf of the following graph G with
respect to the flow given. Each edge e is labeled with (f(e), c(e), γ(e)).

112 2 −3

36 4 −7

514 6 −22

5/5/5

5/11/4
2/2/12

2/18/4

4/4/4

7/9/6
0/2/6

1/9/5

21/31/3

Exercise 33. Consider the following graph G. Each edge e is labeled with
(f(e), c(e), γ(e)). Solve the min-cost-low problem for this graph, using the flow
given as initial feasible flow.

112 2 −3

36 4 −7

514 6 −22

5/5/5

5/11/4
2/2/12

2/18/4

4/4/4

7/9/6
0/2/6

1/9/5

21/31/3

Exercise 34. Use Floyd-Warshall algorithm to detect the presence of at least
one negative cycle in the graph below.
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1

2

3

4

81

1

-10

9

2
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