
Chapter 4
Linear Programming

We assume that vectors are defined as column vectors. Also vector inequalities
are understood componentwise, that is, x ≥ 0 for x ∈ Rn means xi ≥ 0 for
i = 1, . . . , n.

Definition 4.1. A linear program is an optimization problem of the form

max cTx

s.t. Ax ≤ b
x ≥ 0

where c, x ∈ Rn, b ∈ Rm and A is an m× n matrix.
We call cTx the objective function, and Ax ≤ b are constraints. We refer to

this linear program as (LP).

The constraint x ≥ 0 can also be included in constraints of the form A′x ≤ b′

by setting A′ =

[
A
−I

]
where In is the identity matrix and b′ =

[
b

0n

]
.

Note that the above form describes a linear objective function in x with
linear constraints in x without loss of generality: if some xj ≤ 0, then set a new
variable x′j = −xj ≥ 0, if some xj ≥ d, for some constant d, then set a new
variable x′j = xj − d ≥ 0, if some xj ≤ d, for some constant d, then set a new
variable x′j = d− xj ≥ 0, and if a constraint is of the form ajx ≥ bj , then write

instead −ajx ≤ −bj , and to minimize cTx, maximize −cTx. Finally, a variable
xj may appear with no constraint on being positive or negative, we call such
a variable a free (or unrestricted) variable. A free variable can be replaced by
xj = uj − vj , uj , vj ≥ 0.

A linear program can also be stated as

min yT b

s.t. yTA ≥ cT

y ≥ 0

79
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where c ∈ Rn, b, y ∈ Rm and A is an m × n matrix. We will discuss more this
form in Section 4.3.

Example 4.1. Consider the linear program:

max 2x1 + x2

s.t. x1 + x2 ≤ 1

x1, x2 ≥ 0

where cT = [2, 1] and A = [1, 1]. The constraints delimit a portion of R2,
namely a triangle whose vertices are (0,0), (0,1) and (1,0). To maximize the
objective function, we notice that since x1, x2 should be as large as possible,
we are looking at points on the line x1 + x2 = 1, and the maximum is reached
at (1, 0).

4.1 Feasible and Basic Solutions

Definition 4.2. The set

{x ∈ Rn, Ax ≤ b, x ≥ 0}

is called the feasible region of (LP). A point x in the feasible region is called a
feasible solution. An LP is said to be feasible if the feasible region is not empty,
and infeasible otherwise.

Example 4.2. In the above example, the feasible region is the triangle whose
vertices are (0,0), (0,1) and (1,0). Consider the linear program:

max x1 + x2

s.t. x1 + x2 ≤ −1

x1, x2 ≥ 0

The constraints are requesting that x1, x2 are non-negative, but also below
the line x1 + x2 = −1, this LP is thus infeasible.
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Definition 4.3. A feasible maximum (respectively minimum) LP is said to
be unbounded if the objective function can assume arbitrarily large positive
(respectively negative) values at feasible points. Otherwise it is said to be
bounded.

Example 4.3. The linear program

max x1 + x2

s.t. x1, x2 ≥ 0

is unbounded, no optimal solution exists.

We thus have 3 possibilities for a LP:

• It is feasible and bounded, see Example 4.1.

• It is feasible and unbounded, see Example 4.3.

• It is infeasible, see Example 4.2.

Definition 4.4. A slack variable is a variable that is added to an inequality
constraint in Ax ≤ b to transform it into an equality.

Example 4.4. Consider the linear program:

max x1 + x2

s.t. x1 + 3x2 ≤ 9

2x1 + x2 ≥ 8

x1, x2 ≥ 0.

We can rewrite it as

max x1 + x2

s.t. x1 + 3x2 + s1 = 9

2x1 + x2 − s2 = 8

x1, x2, s1, s2 ≥ 0

and s1, s2 are slack variables. Indeed, 2x1+x2−s2 = 8 ⇐⇒ 2x1+x2 = 8+s2 ≥
8 for s2 ≥ 0, and similarly x1 + 3x2 + s1 = 9 ⇐⇒ x1 + 3x2 = 9 − s1 ≤ 9 for
s1 ≥ 0.

With slack variables the problem

max cTx

s.t. Ax ≤ b
x ≥ 0
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has the standard form

max cTx

s.t. Ax = b

x ≥ 0

and in fact, as discussed above, any LP can be converted to this standard form.
The converse is true. Suppose we have an LP of the form

max cTx

s.t. Ax = b

x ≥ 0

then we can replace Ax = b by Ax ≤ b and −Ax ≤ −b.
In a linear program in standard form, we assume that the m × n matrix

A has rank m, with m ≤ n. The case m > n corresponds to having an over
determined system, where the number of constraints m is more than the number
of unknowns n. In this case, the system typically does not have a solution, and
this requires a different approach, which we will not consider. We will see in the
next chapter that sometimes having an m×n matrix A of rank less than m can
be exploited to introduce degrees in freedom in how to solve the corresponding
LP, but for this chapter, if we have a redundant equality, we will just assume
that we remove it.

Definition 4.5. A set S ⊂ Rn is called convex if for all u, v ∈ S, λu+(1−λ)v ∈ S
for all λ ∈]0, 1[ (the notation (0, 1) is also often found instead of ]0, 1[).

Example 4.5. The first two sets below are convex, the 3rd one is not.

Proposition 4.1. The feasible region S = {x ∈ Rn, Ax = b, x ≥ 0} of (LP)
is convex.

Proof. Suppose u, v ∈ S, λ ∈]0, 1[. Set w = λu+ (1− λ)v. Then

Aw = λAu+ (1− λ)Av = λb+ (1− λ)b = b

so w satisfies Aw = b. Then w = λu + (1 − λ)v where λ lives in ]0, 1[, and
u, v ≥ 0 so w ≥ 0.

Definition 4.6. A point x in a convex set S is called an extreme point of S is
there are no distinct points u, v ∈ S and λ ∈]0, 1[ such that x = λu+ (1− λ)v.

In words, this is saying that an extreme point is not in the interior of any
line segment in S.
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Example 4.6. In the example above, for the circle, the extreme points are on
its circumference.

Extreme points of convex sets are particularly important in the context of
linear programming because of the following theorem, which tells us that optimal
solutions of (LP) are found among extreme points.

Theorem 4.2. If an LP has an optimal solution (an optimal solution is a
feasible solution that optimizes the objective function), then it has an optimal
solution at an extreme point of the feasible set S = {x ∈ Rn, Ax = b, x ≥ 0}.

Proof. Since there exists an optimal solution, there exists an optimal solution
x with a minimal number of nonzero components.

Suppose x is not extreme, then by definition there exist u, v ∈ S, u 6= v and
λ ∈]0, 1[ such that

x = λu+ (1− λ)v ∈ S.

Since x is optimal and we want to maximize the objective function, then

cTu ≤ cTx, cT v ≤ cTx.

But also

cTx = λcTu+ (1− λ)cT v ≤ λcTx+ (1− λ)cTx = cTx

which forces the inequality to be an equality and since λ ∈]0, 1[, λ(cTx− cTu) +
(1− λ)(cTx− cT v) = 0 means that cTx = cTu = cT v.

Now consider the line

x(ε) = x+ ε(u− v), ε ∈ R.

We start by showing in (a) that the vector x(ε) satisfies the constraints defined
by A for all ε, in (b) that it has the same objective function as x for all ε, and
in (c),(d) that its coefficients are non-negative for values of ε around 0:

(a) Ax = Au = Av = b since x, u, v all are in the feasible region, thus Ax(ε) =
Ax+ ε(Au−Av) = b for all ε.

(b) cTx(ε) = cTx+ ε(cTu− cT v) = cTx for all ε, since we showed above that
cTx = cTu = cT v.

(c) If xi = 0, since xi = λui + (1 − λ)vi with ui, vi ≥ 0, we must have
0 = λui+(1−λ)vi and thus ui = vi = 0. So x(ε)i = xi+ε(ui−vi) = xi = 0.
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(d) If xi > 0, then x(0) = x and x(0)i = xi > 0. Also, by continuity of x(ε)i
in ε, x(ε)i will remain positive for a suitable range of values of ε around 0.

So we just showed that if x is not extreme, then it is on the line x(ε), and
every point on this line satisfies the constraints defined by A, and has the same
optimal objective function cTx, furthermore, x(ε)i > 0 for values of ε around 0.
Now invoking again the continuity of x(ε)i in ε, we can increase ε from 0, in a
positive or negative direction as appropriate (depending on the sign of u − v),
until at least one extra component of x(ε) becomes 0 (since we start at xi > 0
along a line, we are in the feasible region, and then need to go through 0 before
getting something negative). This gives an optimal solution with fewer nonzero
components than x, a contradiction, so x must be extreme.

Example 4.7. Consider the linear program:

max x1 + x2

s.t. x1 + x2 ≤ 1

x1, x2 ≥ 0

where cT = (2, 1) and A = (1, 1). The feasible region S is shown below. The
point x = (0.5, 0.5) is optimal, but not extreme. We can find two vectors
u = (1, 0), v = (0, 1) ∈ S such that x = 1

2u+ 1
2v (λ = 1

2 ). Consider then the line
x(ε) = x+ ε(u− v).

x

u− v

x(ε) = x+ ε(u− v)

Definition 4.7. Given the m × n matrix A which we assumed is of rank m,
select m linearly independent columns, whose indices are put in a set B. Then
we can solve

ABxB = b

by inverting the matrix AB created by selecting the columns of A in B, to find
an m-dimensional vector xB , which contains the coefficients of x whose indices
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are in B. Then set the coefficients of x whose indices are not in B to be zero.
Then x is called a basic solution. A basic solution satisfying x ≥ 0 is called a
basic feasible solution (BFS).

Example 4.8. In Example 4.1, we considered the linear program:

max 2x1 + x2

s.t. x1 + x2 ≤ 1

x1, x2 ≥ 0

whose maximum is reached at (1, 0).

Using a slack variable s1, we can write the constraint x1 + x2 ≤ 1 as x1 +
x2 + s1 = 1 for s1 ≥ 0 so A = [1, 1, 1] and b = 1. We can have a single linearly
independent column, so if we choose B = {1}, we get ABxB = xB = 1 and
the basic solution [1, 0, 0], if we choose the second column, B = {2}, ABxB =
xB = 1 and we get the basic solution [0, 1, 0] and if we choose the third column,
ABxB = xB = 1, we obtain the basic solution [0, 0, 1]. All the basic solutions
are feasible.

Example 4.9. Consider the linear program:

max x1 + x2

s.t. −x1 + x2 ≤ 1

2x1 + x2 ≤ 2

x1, x2 ≥ 0

x2

x1

Using slack variables s1, s2, we can write the constraints so

A =

[
−1 1 1 0
2 1 0 1

]
, b =

[
1
2

]
.
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If we choose B = {1, 2}, we get

ABxB =

[
−1 1
2 1

] [
x1
x2

]
=

[
1
2

]
.

Then

A−1B =
1

−3

[
1 −1
−2 −1

]
⇒
[
x1
x2

]
=

1

−3

[
1 −1
−2 −1

] [
1
2

]
=

[
1/3
4/3

]
and [1/3, 4/3, 0, 0] is a basic feasible solution.

Theorem 4.3. We have that x is an extreme point of S = {x, Ax = b, x ≥ 0}
if and only if x is a basic feasible solution (BFS).

Proof. Let I = {i, xi > 0}.
(⇐) Suppose that x is a basic feasible solution, and write x = λu+ (1− λ)v

for u, v ∈ S, λ ∈]0, 1[. To show that x is extreme, we need to show that u = v.

(a) If i 6∈ I, then xi = 0 (since x is a BFS, we cannot have xi < 0), which
implies xi = λui + (1−λ)vi = 0 and since ui, vi ≥ 0 (recall that u, v ∈ S),
it must be that ui = vi = 0, so we know that u and v coincide on indices
not in I.

(b) Since Au = Av = b, we have A(u − v) = 0. For Ai the ith column of A,
this is equivalent to say that

n∑
i=1

(ui − vi)Ai = 0⇒
∑
i∈I

(ui − vi)Ai = 0

since by (a), ui− vi = 0 for all i 6∈ I. But x is a BFS, this means that the
xi which are zero may be coming either from solving the system ABxB = b
for some choice B of indices, or by being coefficients whose index is not in
B, but the xi which are not zero are necessarily coming from solving the
system ABxB = b. This implies ui− vi = 0 for all i ∈ I since the columns
Ai of AB are linearly independent.

Hence u = v and x is an extreme point.
(⇒) Suppose that x is not a BFS, that is, {Ai, i ∈ I} are linearly dependent.

Then there exists u 6= 0 with ui = 0 for i 6∈ I such that Au = 0. For small
enough ε, x± εu are feasible since

• A(x± εu) = Ax± εAu = Ax = b using that Au = 0 and x ∈ S,

• x± εu ≥ 0 since x ≥ 0, and when xi = 0, then i 6∈ I and ui = 0 for i 6∈ I,
while when xi > 0, we take ε small enough,

and x = 1
2 (x+ εu) + 1

2 (x− εu), so x is not extreme.
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Example 4.10. In Example 4.9, we already saw that B = {1, 2} gives the
point [1/3, 4/3, 0, 0]. By choosing B = {1, 3}, we get [1, 0, 2, 0], by choosing B =
{2, 4}, we get [0, 1, 0, 1], and for B = {3, 4}, we get [0, 0, 1, 2]. The other choices
ofB are not feasible. We thus get points (x1, x2) ∈ {(1/3, 4/3), (1, 0), (0, 1), (0, 0)}.

x2

x1

Corollary 4.4. If there is an optimal solution, then there is an optimal BFS.

Proof. By Theorem 4.2, we know that if an LP has an optimal solution, then
it has an optimal solution at an extreme point of the feasible set. Then by
Theorem 4.3, we have that if x is an extreme point of the feasible set S =
{x, Ax = b, x ≥ 0}, then x is a basic feasible solution (BFS).

In words, we have reduced our search space considerably: we started by
trying to find an optimal solution for our optimization problem by looking at
all points of our feasible region, while it turns out that it is enough to look at
basic feasible solutions (which are extreme points of the feasible region). We
also have an algorithm to do so, based on the definition of BFS. Sometimes the
set B is called a basis.

1. Choose n−m of the variables to be 0 (xi = 0 for i 6∈ B). They are called
the non-basic variables. We may group them into the vector xN where
N = {1, . . . , n}\B.

2. Look at the remaining m columns {Ai, i ∈ B}. Are they linearly inde-
pendent? if so, we have an invertible m×m matrix AB and we can solve
to find xB and thus x. We call these xi (those in xB), the basic variables.

If we try all possible choices of n −m variables, we get at most
(
n
m

)
of them.

This is actually a bad algorithm... First of all,
(
n
m

)
grows quickly when n and

m grow, e.g.
(
20
11

)
= 167960 and solving the m×m system of equations to find

xm also costs a Gaussian elimination.
A classical method that provides a better alternative to the above algorithm

is the so-called Simplex Algorithm.

4.2 The Simplex Algorithm

We argued above that trying all the possible basic feasible solutions is too expen-
sive. The idea of the Simplex Algorithm is to start from one BFS (an extreme
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Figure 4.1: G.B. Dantzig (1914-2005) proposed the Simplex Algorithm in 1947,
on the above picture, he is awarded the National Medal of Science.

point of the feasible region), and then to try out an adjacent (or neighbouring)
BFS in such a way that we improve the value of the objective function. By
adjacent, we mean that the two BFS differ by exactly one basic (or non-basic)
variable. This would lead to an algorithm of the following form:

Algorithm 10 General Simplex Algorithm

Input: an LP in standard form max cTx, such that Ax = b, x ≥ 0.
Output: a vector x∗ that maximizes the objective function cTx.

1: Start with an initial BFS.
2: while (the current BFS is not optimal) do
3: Move to an improved adjacent BFS.
4: return x∗ =BFS;

This needs a lot of clarifications.

Non-Degeneracy. To start with, we are relying on the fact that a BFS
corresponds to extreme points of the feasible region. We need to make sure
that when we are moving from one BFS to another BFS, we actually go from
one extreme point to another extreme point, the risk being that several BFS
correspond to the same extreme point, and we could get stuck trying to improve
a BFS which actually remains the same extreme point: this results in stalling
if we eventually move to another solution, or worse, cycling, if we return to a
tried degenerate BFS.
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Example 4.11. Consider the linear program:

max x1 + x2

s.t. x1 + x2 ≤ 1

2x1 + x2 ≤ 2

x1, x2 ≥ 0

thus, with slack variables s1, s2, we get

A =

[
1 1 1 0
2 1 0 1

]
, b =

[
1
2

]
.

x2

x1

We thus have the following basic feasible solutions.

B = {1, 2} [1, 0, 0, 0]
B = {1, 3} [1, 0, 0, 0]
B = {1, 4} [1, 0, 0, 0]
B = {2, 4} [0, 1, 0, 1]
B = {3, 4} [0, 0, 1, 2]

Definition 4.8. We say that a basic feasible solution is degenerate if there exists
at least one basic variable which is 0. It is called non-degenerate otherwise. An
LP is non-degenerate if every basic feasible solution is non-degenerate.

Indeed, in order to compute x, we are given a choice B of columns of A
which are linearly independent, and

ABxB = b.

Suppose that we solve for xB , and find that the ith coefficient of xB is zero.
Then this means that the ith column of AB contributes 0 to obtain b, therefore
it can be replaced by a column of AN such that the resulting matrix ÃB remains
full rank. The ith column of AB then gets moved to form a new matrix ÃN ,
which does not interfere in the computation of the extreme point.

This is exactly what happened in our previous example. Once the choice
of B = {1, 2} gives a basic feasible solution where the basic variable x2 = 0,
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then the second column of AB where column 2 of A is could be replaced by the
column 3 and 4 of A to create the same extreme point:

B = {1, 2} [1, 0, 0, 0]
B = {1, 3} [1, 0, 0, 0]
B = {1, 4} [1, 0, 0, 0]

We thus need non-degenerate BFS to look for improved BFS in our algorithm.

Pivoting. Once we have a non-degenerate BFS, we need to compute an
adjacent BFS. We recall that two BFS are adjacent if they have m − 1 basic
variables in common (or equivalently, they differ by exactly one basic variable).
Given a BFS, an adjacent BFS can be reached by increasing one non-basic
variable from zero to positive, and decreasing one basic variable from positive
to zero. This process is called pivoting. As a result, one non-basic variable
“enters” B (that is, its index is put in B), while one basic variable “leaves” B.

Formally, suppose that we have a BFS x, and let xq denote the non-basic
variable of x which we would like to increase by a coefficient of λ ≥ 0 (the other
non-basic variables are kept to 0). Then xN will be updated to

xN + λ



0
...
1
...
0


where λ multiplies a vector containing only zeroes, but for a 1 in the position
of xq. To simplify the notation, let us suppose that xq is the qth non-basic
variable, and write eq for the vector with only zero coefficients but a 1 in the
qth component (we could alternatively index xq with respect to its position in
A instead of AN ).

We need to decrease correspondingly a basic variable. SinceABxB+ANxN =
b, we have that

xB = A−1B (b−ANxN ).

When xq increases by λ, we just saw above that xN gets updated to xN + λeq,
and by similarly updating xN in ANxN , we get

AN (xN + λeq)

and

x =

[
xB
xN

]
=

[
A−1B (b−ANxN )

xN

]
gets updated to

x̃ =

[
A−1B b−A−1B AN (xN + λeq)

xN + λeq

]
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and in conclusion

x̃ = x+ λ

[
−A−1B ANeq

eq

]
.

Write (AN )q for the qth column of AN . Then

x̃ = x+ λ

[
−A−1B (AN )q

eq

]
.

It is clear that multiplying x̃ by A = [AB , AN ] gives Ax̃ = Ax = b. For the
non-degenerate case, xB > 0, thus for λ ≥ 0 small enough, x̃ ≥ 0. Note that
this is not true for the degenerate case, if some xi = 0, no matter how small λ is,
the negative sign in −A−1B AN could create a negative coefficient. This confirms
that there exist choices of λ ≥ 0 such that the pivoting operation sent one BFS
to a feasible solution, however do note that we still have to discuss the actual
choice of λ.

Example 4.12. Let us continue Example 4.9, for which

A =

[
−1 1 1 0
2 1 0 1

]
, b =

[
1
2

]
.

and basic feasible solutions are:

B = {1, 2} [1/3, 4/3, 0, 0]
B = {1, 3} [1, 0, 2, 0]
B = {2, 4} [0, 1, 0, 1]
B = {3, 4} [0, 0, 1, 2]

x2

x1

x2

x1

Suppose we start with the BFS [1, 0, 2, 0]. Then xB , xN satisfy

xB = A−1B (b−ANxN ) =

[
0 1/2
1 1/2

]([
1
2

]
−
[
1 0
1 1

] [
x2
s2

])
.

We want to update xN , so we can update x2 or s2.

• If we update s2 while keeping x2 = 0, the constraint 2x1+x2+s2 = 2 tells
us that s2 can be increased to s2 = 2, which in turn sends x1 to 0. The
constraint −x1 + x2 + s1 = 1 with x1 = x2 = 0 means that s1 is updated
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to 1. Replace s2 = 2 and x2 = 0 in the above equation gives x1 = 0 and
s1 = 1 as desired. Thus this instance of pivoting sends the BFS [1, 0, 2, 0]
to [0, 0, 1, 2].

• If we update x2 while keeping s2 = 0, the constraint 2x1 + x2 + s2 = 2
tells us that 2x1 + x2 = 2, but while we could increase x2 to 2 by sending
x1 to 0, this would violate the constraint −x1 + x2 + s1 = 1. Replacing
x2 = 2 − 2x1 in this latter constraint gives −3x1 + s1 = −1 and we can
send s1 to 0, x1 to 1/3, and x2 to 4/3. Replace x2 = 4/3 and s2 = 0 in the
above question gives x1 = 1/3 and s1 = 0 as desired. Thus this instance
of pivoting sends the BFS [1, 0, 2, 0] to [1/3, 4/3, 0, 0].

Alternatively, for the BFS x = [1, 0, 2, 0], use the formula

x̃ =

[
xB
xN

]
+ λ

[
−A−1B (AN )q

eq

]
for q = 1 (x2) and λ = 4/3 to get

x̃ =


1
2
0
0

+
4

3

−
[
0 1/2
1 1/2

] [
1
1

]
[
1
0

]
 =


1/3
0

4/3
0


and for q = 2 (s2) and λ = 2:

x̃ =


1
2
0
0

+ 2

−
[
0 1/2
1 1/2

] [
0
1

]
[
0
1

]
 =


0
1
0
2


which gives the desired result.

We may want to look at the geometrical interpretation of the above formula:

x is an extreme point, we add the vector

[
−A−1B (AN )q

eq

]
to it, so this vector gives

the direction in which we move away from x, and λ tells us how far we move
away from x along the given direction. We notice that we move while remaining
in the feasible set.

Example 4.13. Consider the linear program

max x1 + x2

s.t. x1 + x2 ≤ 1

2x1 + x2 ≤ 2

x1, x2 ≥ 0

of Example 4.11, for which we saw that

B = {1, 2} [1, 0, 0, 0]
B = {1, 3} [1, 0, 0, 0]
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are two basic feasible solutions corresponding to the extreme point [1, 0, 0, 0].

x2

x1

Let us compute the vector

[
−A−1B (AN )q

eq

]
that gives the direction in the

pivoting process, for B = {1, 2}, q = 1:

[
−A−1B (AN )1

e1

]
=


1
−2
1
0


and B = {1, 3}, q = 1: [

−A−1B (AN )1
e1

]
=


−1/2
−1/2

1
0


which since B = {1, 3}, corresponds to [−1/2, 1,−1/2, 0].

This illustrates the problem that with degenerate BFS, we have no guarantee
to remain within the feasible region.

Reduced Cost. We now know (or rather, almost know, we are still left
to figure out how to compute λ) how to move from one BFS (which uniquely
determines an extreme point) to an adjacent BFS. We next need to discuss how
to look for an adjacent BFS which improves the objective function. For that,
we observe how it changes from x to x̃:

cT x̃ = cT
(
x+ λ

[
−A−1B (AN )q

eq

])
= cTx+ λ[cTB , c

T
N ]

[
−A−1B (AN )q

eq

]
= cTx+ λ((cTN )q − cTBA−1B (AN )q).

Definition 4.9. The quantity

rq = (cTN )q − cTBA−1B (AN )q
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is called a reduced cost with respect to the non-basic variable xq.

If rq < 0, then cT x̃ = cTx+ λrq ≤ cTx, which improves the cost function if
it is a minimization, or in our case, where we chose a maximization of the cost
function, we want rq > 0.

Algorithm Termination. Since the reduced cost characterizes the im-
provement in the cost function by moving from one BFS to an adjacent one,
we expect that once the reduced cost cannot improve anymore, the algorithm
terminates, and we found an optimal solution. This is under the assumption
that BFS are not degenerate.

Theorem 4.5. Given a basic feasible solution x∗ with respect to a given B,

that is x∗ =

[
A−1B b
0n−m

]
, if rq ≤ 0 for all non-basic variables x∗q (we assume the

objective function is a maximization), then x∗ is optimal.

Proof. Consider an arbitrary other feasible solution x, that is x is such that

Ax = b and x ≥ 0. Write x =

[
xB
xN

]
. We have

[
AB AN

0(n−m)×m In−m

]
(x− x∗) =

[
AB AN

0(n−m)×m In−m

] [
xB −A−1B b

xN

]
=

[
ABxB − b+ANxN

xN

]
=

[
0m
xN

]

since Ax = [AB , AN ]

[
xB
xN

]
= b. Thus

x−x∗ =

[
AB AN

0(n−m)×m In−m

]−1 [
0m
xN

]
=

[
A−1B −A−1B AN

0(n−m)×m In−m

] [
0m
xN

]
=

[
−A−1B AN
In−m

]
xN

that is

x = x∗ +
∑
q∈N

xq

[
−A−1B (AN )q

eq

]
.

We can now compare the objective function of both x and x∗:

cTx = cTx∗ +
∑
q∈N

xq[c
T
B , c

T
N ]

[
−A−1B (AN )q

eq

]
= cTx∗ +

∑
q∈N

xq(−cTBA−1B (AN )q + cTNeq)

= cTx∗ +
∑
q∈N

xq((c
T
N )q − cTBA−1B (AN )q)

= cTx∗ +
∑
q∈N

xqrq

where rq ≤ 0 for all q ∈ N , showing as desired that cTx ≤ cTx∗.



4.2. THE SIMPLEX ALGORITHM 95

Example 4.14. In Example 4.12, where we want to maximize x1 + x2, we
showed that we can start from the BFS x = [1, 0, 2, 0], which for B = {1, 3}, is

rewritten as

[
xB
xN

]
=


1
2
0
0

, and reach two new extreme points x̃ using

x̃ =

[
xB
xN

]
+ λ

[
−A−1B (AN )q

eq

]
.

The corresponding objective function to maximize is thus

x1 + x2 = [1, 0, 1, 0]

cT


x1
s1
x2
s2

 .
We can compute the corresponding reduced cost rq = (cTN )q − cTBA

−1
B (AN )q.

For q = 1 (x2) and λ = 4/3:

x̃ =


1
2
0
0

+
4

3

−
[
0 1/2
1 1/2

] [
1
1

]
[
1
0

]
 =


1/3
0

4/3
0


thus

r1 = (cTN )1 − cTBA−1B (AN )1 = 1− 1/2 = 1/2 > 0.

There is thus an improvement in the cost function by moving into this direction,
given by λrq and

cT x̃ = cTx+ λrq = 1 +
4

3

1

2
= 5/3.

For q = 2 (s2) and λ = 2:

x̃ =


1
2
0
0

+ 2

−
[
0 1/2
1 1/2

] [
0
1

]
[
0
1

]
 =


0
1
0
2


thus

r2 = (cTN )2 − cTBA−1B (AN )2 = 0− 1/2 = −1/2 ≤ 0,

and there is thus no improvement in the cost function by moving into this
direction. In fact, the objective function decreases:

cT x̃ = cTx+ λr2 = 1 + 2
−1

2
= 0.
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x2

x1

x2

x1

From the BFS [1, 0, 2, 0], we thus go the BFS [1/4, 4/3, 0, 0]. We can check
by computing the reduced costs (see Exercise 36) that this solution is optimal

Choice of λ. We saw that given a BFS x, we can compute a new feasible
solution x̃ given by

x̃ =

[
xB
xN

]
+ λ

[
−A−1B (AN )q

eq

]
,

where we will denote by dq the “direction” vector

[
−A−1B (AN )q

eq

]
and we next

determine λ > 0 (if the BFS is not degenerate which we assume, λ > 0 always
exists). We choose q (among the possible non-basic variables) such that the
reduced cost rq > 0 to guarantee that the cost function increases.

The choice of λ tells us “how far” we will go away from the BFS x in the
direction given by dq.

If dq ≥ 0, then x̃ = x + λdq ≥ 0 for any choice of λ, so λ can be chosen
arbitrarily big. Then

cT x̃ = cTx+ λcT dq = cTx+ λrq

becomes arbitrarily big and the LP is unbounded.
Thus we may assume that dq has at least one negative component (dq)i (and

i must be in B since indices in N correspond to eq). For the ith component x̃i
of x̃ which should be non-negative so x̃ remains feasible, we have

x̃i = xi + λ(dq)i ≥ 0⇒ λ ≤ xi
−(dq)i

.

and since there may be several negative components in dq, we choose

λ = min
i∈B

{
xi
−(dq)i

, (dq)i < 0

}
.

Then for the index i that achieves the minimum, we get

x̃i = xi −
xi

(dq)i
(dq)i

and the corresponding basic variable xi is set to 0. Thus this choice of λ takes
us from one BFS to another BFS. We emphasize again that if the BFS were
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degenerate, we could have xi = 0, this would achieve the above minimum, λ
would be set to zero, and we would remain at the same extreme point.

We can now revisit Algorithm 10.

Algorithm 11 Simplex Algorithm

Input: an LP in standard form max cTx, such that Ax = b, x ≥ 0.
Output: a vector x∗ that maximizes the objective function cTx (or that

the LP is unbounded).

1: Start with an initial BFS x with basis B and N = {1 . . . n}\B;
2: For q ∈ N , compute rq = cT dq = cq − cTBA

−1
B (AN )q.

3: while (there is a q such that rq > 0) do
4: if (dq ≥ 0) then
5: the LP is unbounded, stop.
6: else
7: Compute λ = mini∈B{ xi

−(dq)i , (dq)i < 0}.
8: x← x+ λdq.
9: Update B and N .

An Initial Basic Feasible Solution. The first step of the algorithm
consists of finding one BFS. Remark that if the matrix A contains Im as an
m×m submatrix, and b ≥ 0, then there is an obvious BFS x′: choose AB = Im,
then xB = A−1B b = b and

x′ =

[
0n−m
b

]
⇒ Ax′ = [AN , Im]

[
0n−m
b

]
= b.

Now an m×m submatrix which is the identity will be present if the LP is such
that we need m slack variables to transform the m inequalities (of the form ≤)
defining the constraints into m equalities.

Tableau. The Simplex Algorithm can be computed by writing a linear
program in the form of a tableau. Suppose we have an initial BFS given by
setting the slack variables to be s = xB = b, and x = xN = 0, and create an
array of the form:

AN Im b
cT 0m −0

representing the linear system of equations

[
0 AN Im
−1 cT 0m

]fx
s

 =

[
b
0

]
⇐⇒ s = b−ANx, − f + cTx = 0

so the first n columns of the tableau correspond to x1, . . . , xn, while the next
n+m columns correspond to s1, . . . , sm. When x = 0 and s = b, cTx = 0, and
f = −0, this is the value of the objective function in the BFS x = 0, s = b,
shown in the right bottom of the tableau. The BFS can be read from the
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tableau, since the variables corresponding to the columns of AN are 0, and we
read xB = s = b, xN = 0.

The next step of the algorithm is to compute the reduced costs rq = cq −
cTBA

−1
B (AN )q, where AB = Im, but since B contains the indices of the slack

variables, cB = 0m, and rq = cq. The condition “there is a q such that rq > 0”
then simplifies to check whether we have cq > 0 (ci = 0 for all i ∈ B), so we pick
a column q of the tableau (called pivot column) corresponding to a coefficient
cq > 0. We then compute

dq =

[
−A−1B (AN )q

eq

]
=

[
−(AN )q
eq

]
,

λ = min
i∈B

{
xi
−(dq)i

, (dq)i < 0

}
= min

i∈B

{
bi
ai
, ai ∈ (AN )q

}
since AB = Im, xB = b. Note that if dq ≥ 0, the LP is unbounded. So
there should be coefficients in −(AN )q which are negative, that is, coefficients
in (AN )q which are positive. This means that given the choice of the column
q, we look at the coefficients aiq > 0, and choose i that minimizes bi/aiq, this
gives the limit on how much we can increase xq, and i is the pivot row. The last
step is the update of x,B,N , and x is updated to x̃:

x̃ =

[
b

0n−m

]
+

bi
aiq

[
−(AN )q
eq

]
so the ith row of x̃ becomes 0 as it should be, the qth non-basic variable is
increased by bi/ai, thus i goes form B to N , while q goes from N to B. We
denote by B̃ the new basis, and by Ñ the other indices.

Next we wish to read the new basic variables xB̃ from the tableau, and how

the objective function changes as a function of B̃. The current tableau allows

us to read [AN , Im]

[
x
s

]
= b, so given the new B̃, we get a corresponding matrix

AB̃ , we multiply the above equation by A−1
B̃

to get

A−1
B̃

[AN , Im]

[
x
s

]
= A−1

B̃
b.

Now some columns of [AN , Im] correspond to the matrix AB̃ and to the vector
xB̃ . From them, we get xB̃ . The other columns of [AN , Im] correspond to AÑ
and to the vector xÑ , from them, we get A−1

B̃
AÑxÑ , that is we can rewrite the

above equation as

xB̃ +A−1
B̃
AÑxÑ = A−1

B̃
b

where setting xÑ = 0 gives xB̃ = A−1
B̃
b as the current BFS. The cost cTx for the

current BFS is given by cT
B̃
A−1
B̃
b. More generally, we evaluate cTx in [xB̃ , xÑ ]T

to get

cTx = cT
B̃
xB̃ + cT

Ñ
xÑ = cT

B̃
A−1
B̃
b+ (cT

Ñ
− cT

B̃
A−1
B̃
AÑ )xÑ .
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The linear system of equations is updated by:[
A−1
B̃

0

−cT
B̃
A−1
B̃

1

] [
0 AN Im
−1 cT 0m

]fx
s

 =

[
A−1
B̃

0

−cT
B̃
A−1
B̃

1

] [
b
0

]
=

[
A−1
B̃
b

−cT
B̃
A−1
B̃
b

]
.

We just computed the upper part, for the lower part, the same principle applies:
cT
B̃
A−1
B̃

multiplies [AN , Im] so the columns corresponding to B̃ and the corre-

sponding coefficients xB̃ of [x, s]T will give cT
B̃
xB̃ , while the other columns will

give cT
B̃
A−1
B̃
AB̃xB̃ , and −f − cT

B̃
xB̃− cTB̃A

−1
B̃
AÑxÑ + cT

B̃
xB̃ + cT

Ñ
xÑ = −cT

B̃
A−1
B̃
b.

So
s = b−ANx, f = cTx

got updated to

xB̃ = A−1
B̃
b−A−1

B̃
AÑxÑ , f = cTx = cT

B̃
A−1
B̃
b+ (cT

Ñ
− cT

B̃
A−1
B̃
AÑ )xÑ . (4.1)

The multiplication by A−1
B̃

is done by a Gaussian elimination, in such a way
that the column corresponding to the new basic variable gets a 1 in row i and
0 elsewhere, elsewhere includes the objective function row:

• Multiply row i of AN by 1/aiq, where aiq is the coefficient in the ith row
and qth column of AN .

• For row i′ 6= i of A, add −ai′q/aiq times row i to row i′, where ai′q is the
coefficient in the i′th row and qth column of AN .

• Add −cq/aiq times row i to the last (objective function) row.

For an explicit computation, the tableau from the initial stage gets updated to:

x1 column xq column si column
ai1
aiq

. . .
aiq
aiq

= 1 1
aiq

bi
aiq

row i

ai′1 −
ai′q
aiq

ai1 . . . ai′q −
ai′q
aiq

aiq = 0 0 bi′ −
ai′q
aiq

bi row i′

c1 − ai1 cqaiq . . . cq − aiq cqaiq = 0 − cq
aiq

−0− cq
aiq
bi

and the matrix AB̃ at this stage is an identity matrix where the ith column
got replaced by the column [a1q, . . . , aiq, . . . , amq]

T , so its inverse is also an
identity matrix, where the ith column got replaced this time by the column
[−a1qaiq

, . . . , 1
aiq
, . . . ,−amq

aiq
]T .

The coefficients cT
Ñ
− cT

B̃
A−1
B̃
AÑ appear in the last row of the tableau for the

non-basic variables (we have zeroes for basic variables), −cT
B̃
A−1
B̃
b in the last col-

umn of the last row, as a result of the multiplication [−cT
B̃
A−1
B̃
, 1]

[
AN Im
cT 0m

]
x =

−cT
B̃
A−1
B̃
b.

At this step of the tableau, the last column containing −0 gets updated
to −0 − bi

aiq
cq = −0 − λrq, so we can read the updated value of the objective
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function by negating the coefficient contained in the last row last column. Also,
cq becomes 0 for the new basic variable xq, and 0 becomes − cq

aiq
for the new

non-basic variable si. The last row of the tableau thus contains cj − aij cqaiq for

j = 1, . . . , n, and 0 after that but for the term that corresponds to si, for which
it is − cq

aiq
and

∑
j

(
cj − aij

cq
aiq

)
xj − si

cq
aiq

=
∑
j

cjxj −
cq
aiq

∑
j

aijxj + si

 = cTx− cq
aiq

bi

by looking at the ith row of [AN , Im]

[
x
s

]
.

We can now iterate the process (call AN , b, c the newly obtained matrix and
vectors), which gives the simplex algorithm in tableau form.

Algorithm 12 Simplex Algorithm

Input: an LP in standard form max cTx, such that Ax = b, x ≥ 0.
Output: a vector x∗ that maximizes the objective function cTx (or that

the LP is unbounded).

1: Start with an initial BFS x with basis B and N = {1 . . . n}\B;
2: Create the corresponding tableau.
3: while (there is a q such that cq > 0) do
4: Choose the pivot column q.
5: if (aiq ≤ 0 for all i) then
6: the LP is unbounded, stop.
7: Choose a pivot row i, that is among aiq > 0, choose i such that bi/aiq

is minimized.
8: Multiply row i by 1/aiq.
9: For i′ 6= i add −ai′q/aiq times row i to row i′.

10: Add −cq/aiq times row i to the objective function row.

Example 4.15. Consider the following LP:

max x1 + x2

s.t. x1 + 3x2 ≤ 9

2x1 + x2 ≤ 8

x1, x2 ≥ 0

and introduce the slack variables s1, s2. A BFS is given by [0, 0, 9, 8], and for
this BFS, the objective function is taking the value 0. Using slack variables, we
write the initial tableau

x1 x2 s1 s2 b

1 3 1 0 9

2 1 0 1 8
1 1 0 0 0



4.2. THE SIMPLEX ALGORITHM 101

We are looking for a column q for which cq > 0, pick q = 1. This corresponds
to the non-basic variable x1 which we want to increase. For choosing the row,
compute b1/a11 = 9 and b2/a21 = 8/2 = 4, so the minimum is given by choosing
the row i = 2.

You may want to keep in mind how this step of the algorithm relates to
the constraints of the LP: since x1 and x2 are constrained by x1 + 3x2 ≤ 9,
2x1 + x2 ≤ 8, the first equation says that x1 could be at most 9 if x2 = 0, the
second equation says that 2x1 could be at most 8, that is x1 could be at most
8/2 = 4 if x2 = 0. In order not to violate any constraint, we choose the smallest
increment for x1, which is x1 = 4.

If the rows are called ρ1, ρ2, ρ3, ρ′2 = ρ2/2, ρ′1 = ρ1 − ρ′2, ρ′3 = ρ3 − ρ′2:

x1 x2 s1 s2 b

0 5/2 1 −1/2 5

1 1/2 0 1/2 4
0 1/2 0 −1/2 −4

The objective function increased from 0 to 4. The new BFS is [4, 0, 5, 0]. Let
us also illustrate (4.1) on this example. The last row of the tableau is

0 · x1 + 1
2x2 −

1
2s2 = (1− 1)x1 + (1− 1

2 )x2 − 1
2s2

= x1 + x2 − 1
2 (2x1 + x2 + s2)

= x1 + x2 − 4

since 2x1 +x2 +s2 = 8. Thus we have that the objective function cTx = x1 +x2
can be read from the last row of the tableau:

cTx = (0 · x1 + 1
2x2 −

1
2s2)︸ ︷︷ ︸

last row

+ 4︸︷︷︸
−last row, last column

.

Next for the column pivot 2, we choose the pivot row to be 1, since 5/(5/2) =
2 while 4/(1/2) = 8. Then ρ′′1 = (2/5)ρ′1, ρ′′2 = ρ′2 − ρ′′1/2, ρ′′3 = ρ′3 − ρ′1/2:

x1 x2 s1 s2 b

0 1 2/5 −1/5 2

1 0 −1/5 3/5 3
0 0 −1/5 −2/5 −5

We see that cq ≤ 0 for all q, thus the algorithm stops. The objective function
has value 5. The optimal solution is given by x1 = 3, x2 = 2.

Geometrically, the algorithm goes from one BFS to another as shown below:
it starts at (0, 0), then goes to (4, 0), and then to (3, 2).
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x2

x1

3

21

Artificial Variables. We argued above that if the matrix A contains Im as
an m×m submatrix, and b ≥ 0, then we have an immediate BFS. That b ≥ is
not a restriction, one can always multiply the corresponding equality in the LP
standard form so that −bi ≤ 0 becomes bi ≥ 0. Finding an m ×m submatrix
inside A may not be easy, if we can cannot just take the columns corresponding
to the slack variables. Of course, we can try some exhaustive search, pick m
columns of A until we get a choice which is linearly independent, and then we
inverse this m×m submatrix. Alternatively, we can introduce artificial variables
w1, . . . , wm and solve the LP:

min
x,w

∑m
i=1 wi

s.t. Ax+ w = b

x, w ≥ 0.

We can solve this LP using the Simplex Algorithm (and note the presence of
the identity matrix in front of w).

• If the original problem Ax = b, x ≥ 0, has a feasible solution, then the
above LP has for optimal value 0 and w = 0. This optimal solution with
w = 0 gives the desired BFS for Ax = b, x ≥ 0.

• If the above LP has an optimal value which is strictly positive, then the
original LP is not feasible.

This is called the Two Phase Simplex Algorithm. See Exercise 38 for an Exam-
ple.

4.3 Duality

Definition 4.10. Given a primal program

P : max cTx

s.t. Ax ≤ b
x ≥ 0
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where c, x ∈ Rn, b ∈ Rm and A is an m× n matrix of rank m, m ≤ n, the dual
of P is defined by

D : min yT b

s.t. yTA ≥ cT

y ≥ 0

where c ∈ Rn, b, y ∈ Rm and A is an m× n matrix of rank m, m ≤ n.

It is not hard to see that the dual of the dual is the primal (see Exercise 39).

Theorem 4.6. (Weak Duality Theorem) If x is feasible for P and y is
feasible for D, then cTx ≤ bT y.

Proof. Since y is feasible for D, yTA ≥ cT , and since x is feasible for P , x ≥ 0
so

cTx ≤ (yTA)x.

We flip the same argument. Since x is feasible for P , Ax ≤ b, and since y is
feasible for D, y ≥ 0 so

yTAx ≤ yT b.

Hence

cTx ≤ (yTA)x ≤ bT y.

Corollary 4.7. If y is a feasible solution for D, then P is bounded. Similarly,
if x is a feasible solution for P , then D is bounded.

Proof. If y is a feasible solution for D, then any feasible solution x for P satisfies
cTx ≤ bT y so bT y is an upper bound for any x feasible.

If x is a feasible solution for P , then any feasible solution y for d satisfies
bT y ≥ cTx, so cTx is a lower bound for any y feasible.

Corollary 4.8. If x∗ is feasible for P , and y∗ is feasible for D and cTx∗ = bT y∗,
then x∗ is optimal for P and y∗ is optimal for D.

Proof. For all x feasible for P , the Weak Duality theorem tells us that

cTx ≤ bT y∗ = cTx∗.

This shows that x∗ is optimal (maximal) for P .
Similarly, for all y feasible for D, the Weak Duality theorem tells us that

bT y ≥ cTx∗ = bT y∗.

This shows that y∗ is optimal (minimal) for D.
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Example 4.16. Consider the primal program

max x1 + x2

s.t. x1 + 3x2 ≤ 9

2x1 + x2 ≤ 8

x1, x2 ≥ 0

with bT = [9, 8] and cT = [1, 1].

We compute its dual:

max 9y1 + 8y2 = bT y

s.t. y1 + 2y2 ≥ 1

3y1 + y2 ≥ 1

y1, y2 ≥ 0.

The points x∗ = (3, 2) and y∗ = (1/5, 2/5) are both feasible, cTx∗ = 5 = bT y
so both are optimal.

x2

x1

x2

x1

Weak duality states than any feasible solution of the dual gives an upper
bound on any solution of the primal (and vice-versa). There is a stronger
version stated next, that says that values of the optimal solutions for the primal
and dual match.

Theorem 4.9. (Strong Duality Theorem) If P has an optimal solution x∗,
then D has an optimal solution y∗ such that cTx∗ = bT y∗.

Proof. Write the constraints of P as

Ax+ s = b, x, s ≥ 0,

where s is the vector of slack variables (an LP already in the form Ax = b can
be written with inequalities by noting that Ax = b ⇐⇒ Ax ≤ b, −Ax ≤ −b).
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Consider the bottom row in the final tableau of the Simplex Algorithm applied
to P :

x columns s columns b column

c∗1 . . . c
∗
n −y∗1 . . .− y∗m −f∗

where for now c∗1, . . . , c
∗
n,−y∗1 . . . − y∗m are just some notations for the reduced

costs that appear at this stage of the tableau computations. What we know
is that f∗ is by construction of the tableau the optimal value of the objective
function cTx, and that all the reduced costs are negative or zero, since we
assumed that this is the final tableau, thus:

c∗j ≤ 0 for all j, − y∗i ≤ 0 for all i.

Recall (see (4.1)) that the last row of the tableau can be read as cTx = (c∗)Tx−
(y∗)T s+ f∗ where s = b−Ax, thus

cTx = f∗ − bT y∗ + ((c∗)T + (y∗)TA)x

and using x = 0 in this expression gives f∗ = bT y∗. But if this is the case, then

cTx = ((c∗)T + (y∗)TA)x⇒ c = c∗ +AT y∗. (4.2)

Since c∗j ≤ 0 for all j, we get

AT y∗ ≥ c.
This combined with y∗j ≥ 0 shows that y∗ is feasible for D, and f∗ = bT y∗ gives
the objective function of D at y∗, namely it is the optimal value of P . Using
the Weak Duality Theorem, y∗ is optimal for D.

Example 4.17. Consider the primal problem

max x1 + x2

s.t x1 + 3x2 + s1 = 9

2x1 + x2 + s2 = 8

x1, x2, s1, s2 ≥ 0

whose dual problem is

min 9y1 + 8y2

s.t y1 + 2y2 ≥ 1

3y1 + y2 ≥ 1

y1, y2 ≥ 0

The initial tableau for the primal is:

x1 x2 s1 s2 b

1 3 1 0 9

2 1 0 1 8
1 1 0 0 0



106 CHAPTER 4. LINEAR PROGRAMMING

corresponding to the initial BFS x = [0, 0, 9, 8].
We already computed in Example 4.15 that the final tableau is

x1 x2 s1 s2 b

0 1 2/5 −1/5 2

1 0 −1/5 3/5 3
0 0 −1/5︸ ︷︷ ︸

−y∗1

−2/5︸ ︷︷ ︸
−y∗2

−5

corresponding to the BFS x∗ = [3, 2, 0, 0], with value 5 for the objective function.
According to the proof of the Strong Duality Theorem, the coefficients y∗1 , y

∗
2

read in the last row of the tableau form an optimal solution for the dual. We
can check that 9 1

5 + 8 2
5 = 5, thus the primal has an optimal solution x∗ =

[3, 2, 0, 0], and the dual has an optimal solution y∗ = [1/5, 2/5] such that both
their objective functions take value 5 at their respective optimal solutions. This
confirms that y∗ = [1/5, 2/5] is indeed an optimal solution for the dual.

We saw an LP may be feasible and bounded, feasible and unbounded, and
infeasible. Thus for a primal and its dual, there are a priori 9 possibilities:

P feasible P feasible P infeasible
bounded unbounded

D feasible bounded X × ×
D feasible unbounded × × X

D infeasible × X X

• The Weak Duality Theorem says that if a primal and its dual are both
feasible, then both are bounded feasible.

• The Strong Duality Theorem says if an LP has an optimal solution (thus
feasible and bounded), then its dual cannot be infeasible.

The following theorem can be proven as a corollary of the Strong Duality
Theorem.

Theorem 4.10 (The Equilibrium Theorem). Let x∗ and y∗ be feasible solutions
for a primal and its dual respectively. Then x∗ and y∗ are optimal if and only
if

(1)
∑n
j=1 aijx

∗
j < bi (or (Ax∗)i < bi) ⇒ y∗i = 0 for all i,

(2)
∑m
i=1 aijy

∗
i > cj (or (y∗A)j > cj) ⇒ x∗j = 0 for all j.

Proof. (⇐) (1) The sum
∑m
i=1 y

∗
i bi contains terms for which

∑n
j=1 aijx

∗
j = bi,

and terms for which
∑n
j=1 aijx

∗
j < bi but in this case y∗i = 0:

m∑
i=1

y∗i bi =

m∑
i=1

y∗i (

n∑
j=1

aijx
∗
j ) =

m∑
i=1

n∑
j=1

aijx
∗
jy
∗
i .



4.3. DUALITY 107

(2) Repeating the above argument, namely that when
∑m
i=1 aijy

∗
i > cj , x

∗
j = 0:

m∑
i=1

n∑
j=1

aijx
∗
jy
∗
i =

n∑
j=1

cjx
∗
j .

Putting both equalities together gives

m∑
i=1

y∗i bi =

n∑
j=1

cjx
∗
j ⇐⇒ bT y∗ = cTx∗

and by Corollary 4.8, x∗ and y∗ are optimal.
(⇒) We repeat the proof of the Weak Duality Theorem. Since y∗ is feasible,

(y∗)TA ≥ cT , and since x∗ is feasible, x∗ ≥ 0, thus

cTx∗ ≤ (y∗)TAx∗.

Since x∗ is feasible, Ax ≤ b, and since y∗ is feasible, y ≥ 0, so

(y∗)TAx∗ ≤ (y∗)T b⇒ cTx∗ ≤ (y∗)TAx∗ ≤ bT y∗,

or equivalently
n∑
j=1

cjx
∗
j ≤

m∑
i=1

n∑
j=1

y∗i aijx
∗
j ≤

m∑
i=1

y∗i bi.

But we know more, we know that x∗ and y∗ optimal, so we may invoke the
Strong Duality Theorem to tell us that cTx∗ = bT y∗ and in fact all the above
inequalities and equalities.

The first inequality thus becomes

n∑
j=1

cj − m∑
i=1

n∑
j=1

y∗i aij

x∗j = 0.

Since x∗ is feasible, each x∗j is nonnegative, and the constraints yTA ≥ cT on

the dual forces cj −
∑m
i=1

∑n
j=1 y

∗
i aij ≤ 0, thus for this sum (composed of only

non-positive terms) to be zero, for each j, either one of the terms needs to be
zero. Hence if

∑m
i=1

∑n
j=1 y

∗
i aij > cj , x

∗
j = 0.

We repeat the same argument. The second inequality gives the equality

m∑
i=1

 n∑
j=1

aijx
∗
j − bi

 y∗i = 0.

Since y∗ is feasible, each y∗i is nonnegative, and the constraints Ax ≤ b on the
primal forces

∑n
j=1 aijx

∗
j − bi ≤ 0, thus for the sum to be zero, for each i, either

one of the terms needs to be zero. Hence, if
∑n
j=1 aijx

∗
j < bi, then y∗i = 0.
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(1) and (2) are sometimes called the complementary slackness conditions.
They require that a strict inequality (slackness) in a variable in a standard
problem implies that the complementary constraint in the dual be satisfied with
equality.

Example 4.18. Consider the primal problem

max x1 + x2

s.t x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

−x1 + x2 ≤ 1

x1, x2 ≥ 0

whose dual problem is

min 4y1 + 12y2 + y3

s.t y1 + 4y2 − y3 ≥ 1

2y1 + 2y2 + y3 ≥ 1

y1, y2, y3 ≥ 0

We are given that (x∗1, x
∗
2) = (8/3, 2/3), and x∗1 + x∗2 = 10/3. Since x∗1 > 0,

x∗2 > 0, this means that constraints on y∗ must be met with equality, namely

y∗1 + 4y∗2 − y∗3 = 1, 2y∗1 + 2y∗2 + y∗3 = 1.

Now using (x∗1, x
∗
2) = (8/3, 2/3), we have

x∗1 + 2x∗2 = 4 ≤ 4

4x∗1 + 2x∗2 = 12 ≤ 12

−x∗1 + x∗2 = −2 < 1.

Since we have two constraints with equality, and one with strict inequality, the
one with strict inequality means y∗3 = 0. Thus the two equalities in y∗1 , y

∗
2

become
y∗1 + 4y∗2 = 1, 2y∗1 + 2y∗2 = 1.

We can solve for y∗1 , y
∗
2 : (y∗1 , y

∗
2) = (1/3, 1/6). Since this vector is feasible,

the if part of the Equilibrium Theorem implies it is optimal. Furthermore
4(1/3) + 12(1/6) = 10/3, which is the same as the optimal value for the primal,
another check for optimality!

4.4 Two Person Zero Sum Games

We give an application of linear programming to game theory, for zero sum
games with two players.

A two person zero sum game is a game with two players, where one player
wins and the other player loses.
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Example 4.19. Consider the game of “Odds and Evens” (also known as match-
ing pennies). Suppose that Player 1 takes evens, and Player 2 takes odds. Each
player simultaneously shows either one finger or two fingers, if the number of
fingers matches, the result is even, Player 1 wins (say 2 dollars) otherwise it is
odd, Player 2 wins (say 2 dollars). Each player has 2 strategies, show one finger
or two fingers.

Player 2, 1 finger Player 2, 2 fingers
Player 1, 1 finger 2 -2
Player 1, 2 fingers -2 2

This table is read from the view point of Player 1, that is a 2 is a gain of 2
for Player 1, and a -2 is a loss of 2 for Player 1. It is read the other way round
for Player 2, a 2 is bad for Player 2, this is what he has to pay to Player 1, while
a -2 is good, it means Player 1 owes him 2.

We get a pay off matrix

A =

[
2 −2
−2 2

]
We consider games where players move simultaneously. For two players, we

have a general pay off matrix A = (aij) which summarizes the gains/losses of
both players. Suppose Player 1 indexes the rows of A, and Player 2 its columns,
which means that there is one row of A for every move of Player 1, and one
column of A for every move of Player 2. We say that Player 1 wins aij > 0 from
Player 2, so aij > 0 is good for Player 1, and bad for Player 2.

Suppose we are given the pay off matrix−5 3 1 20
5 5 4 6
−4 6 0 −5


For Player 1, each row consists of a move, so for the first move, the worst is
-5, for the second move, the worst is 4, for the last move, the worst is -5. For
Player 1, it makes sense to play move 2, because this moves ensures a win.

For Player 2, each column consists of a move, and the worst for him is the
largest gain for Player 1, so for the first move, the worst is 5, for the second
move, the worst is 6, for the 3rd move, the worst is 4, and for the last move,
the worst is 20. So it makes sense for Player 2 to use move 3, this ensures the
least loss.

It turns out that for this example a23 = 4 is both the smallest entry in row
2, and the largest entry in column 3. The game is thus considered “solved”,
or we say that the game has an equilibrium which has value 4 (4 is sometimes
called a saddle point), because there is exists a strategy which is best for both
players: at the same time, it maximizes Player 1’s win, and minimizes Player
2’s loss.

Example 4.20. The game “Scissors-Paper-Stone” has no saddle point. In this
game, each player shows either scissors, paper or stone with a hand: scissors
cut paper, paper covers stone, stone breaks scissors,
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Scissors Paper Stone
Scissors 0 1 -1
Paper -1 0 1
Stone 1 -1 0

The worst for Player 1 is -1 on each row. The worst for Player 2 is 1 on each
column, so there is no saddle point.

The game ”Odds and Evens” has no saddle point either.

We speak of “mixed” strategy when each move of a player is probabilistic.
In contrast, a “pure” strategy is when each move is deterministic. In the above
solved game, there was a pure strategy leading to an equilibrium: Player 1
chooses move 2, and Player 2 chooses move 3.

Consider a “mixed” strategy. Player 1 has a set of moves, move i, i =
1, . . . ,m, whose gains/losses are specified by the coefficients aij of the pay off
matrix A. Each move is done with probability pi. If Player 2 plays j, Player 1’s
expected pay off is

m∑
i=1

aijpi.

Player 1 wishes to maximize (over p = (p1, . . . , pm)) his minimal expected pay
off:

min
j

m∑
i=1

aijpi.

Similarly, Player 2 has a set of moves, and move j, j = 1, . . . , n is attached
a probability qj . Player 2 wishes to minimize over q = (q1, . . . , qn) his maximal
expected loss:

max
i

n∑
j=1

aijqj .

There may be other ways to define what both players are interested in doing,
but we will see that this formulation is meaningful in that it will lead to a saddle
point.

Let us write the Player’s optimization problem as a linear program. Player
2 wants to minimize its maximal expected loss, that is

min
q

max
i

n∑
j=1

aijqj


such that

n∑
j=1

qj = 1, q ≥ 0.
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An equivalent formulation is

min
q,v

v

s.t.
∑m
j=1 aijqj ≤ v, i = 1, . . . ,m∑n

j=1 qj = 1

q ≥ 0.

This is an equivalent formulation because the first constraint
∑m
j=1 aijqj ≤

v, i = 1, . . . ,m ensures that
∑m
j=1 aijqj will take the highest possible value v,

while v itself will be minimized. The second and third constraints tell us that q
defines a probability distribution. Similarly, for Player 1, we have

max
p,v

v

s.t.
∑m
i=1 aijpi ≥ v, j = 1, . . . , n∑m

i=1 pi = 1

p ≥ 0.

Now we add a constant k to each aij so that aij > 0 for all i, j, this does not
change the nature of the game (if the constraints

∑m
j=1 aijqj ≤ v is replaced by

the constraints
∑m
j=1(aij + k)qj =

∑m
j=1 aijqj + k ≤ v ⇒

∑m
j=1 aijqj ≤ v − k,

then just set v′ = v− k and the objection function becomes to minimize v′ + k,
this thus does not change the optimal solution, though the value of the objective
function is of course shifted by k), but it guarantees v > 0. For example, if all
aij < 0, v = 0 could be a candidate for an upper bound. So without loss of
generality, assume aij > 0 for all i, j. Then do the following change of variables
xj = qj/v (now v cannot be zero, and xj is not infinite) inside Player 2’s LP:

min
x,v

v

s.t.
∑m
j=1 aijxj ≤ 1, i = 1, . . . ,m∑n

j=1 xj = 1
v

x ≥ 0

and since v = 1/
∑n
j=1 xj from the second constraint, we finally get

(P ) : max
∑n
j=1 xj

s.t. Ax ≤ 1

x ≥ 0

which is a primal LP in the form we are familiar with. We do the same trans-
formation for Player 1. Assume aij > 0 and set yi = pi/v:

max
p,v

v

s.t.
∑m
i=1 aijyi ≥ v, j = 1, . . . , n∑m

i=1 yi = 1
v

y ≥ 0,
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which becomes

(D) : min
y

∑m
i=1 yi

s.t. AT y ≥ 1

y ≥ 0,

and we see that P and D are dual, hence they have the same optimal value
(that is, assuming they are feasible and bounded), reached respectively for x∗

and y∗.
Thus Player 1 can guarantee an expected gain of a least

v = 1/
m∑
i=1

y∗i

using the strategy p = vy∗.
Player 2 can guarantee an expected loss of a most

v = 1/

n∑
j=1

x∗j

using the strategy q = vx∗.
The game is thus solved, and has value v.

Example 4.21. Consider the game of “Odds and Evens”, given by the pay off
matrix:

Player 2, 1 finger, q1 Player 2, 2 fingers, q2
Player 1, 1 finger, p1 2 -2
Player 1, 2 fingers, p2 -2 2

We saw there is no saddle point for a pure strategy, so we consider a mixed
strategy where each move is assigned a probability.

If we look at Player 2, if Player 1 chooses move 1, his expected loss is
2q1− 2q2, if Player 1 chooses move 2, his expected loss is −2q1 + 2q2. So Player
2 will try to minimize the maximum loss between 2q1−2q2 and −2q1 +2q2. The
corresponding LP is

min
q,v

v

s.t. 2q1 − 2q2 ≤ v
−2q1 + 2q2 ≤ v
q1 + q2 = 1

v, q ≥ 0,

and in order to have only pay off coefficients that are positive, we add a
constant k = 3 to every coefficient, to get
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min
q,v

v

s.t. 5q1 + q2 ≤ v
q1 + 5q2 ≤ v
q1 + q2 = 1

v, q ≥ 0.

We do the change of variables xj = qj/v to get

max x1 + x2

s.t. 5x1 + x2 ≤ 1

x1 + 5x2 ≤ 1

x ≥ 0.

We then solve this LP. The initial tableau is:

5 1 1 0 1
1 5 0 1 1
1 1 0 0 0

for the BFS [0, 0, 1, 1] whose objective function takes value 0. Pick q = 1 as
column pivot, then the row pivot is i = 1:

1 1/5 1/5 0 1/5
0 24/5 −1/5 1 4/5
0 4/5 −1/5 0 −1/5

This is the BFS [1/5, 0, 0, 4/5] whose objective function takes value 1/5. Pick
q = 2 as column pivot, then pick the row pivot i = 2:

1 0 1/5 + 1/120 −1/24 1/5− 1/30
0 1 −1/24 5/24 1/6
0 0 −1/5 + 1/30 −1/6 −1/5− 4/30

This is the BFS [1/6, 1/6, 0, 0] whose objective function takes value 1/3 = 1/v.
To x1 = 1/6 = q1/v corresponds the probability q1 = vx1 = 3/6 = 1/2. Thus
Player 2’s optimal strategy is to choose move 1 with probability q1 = 1/2, and
move 2 with probability q2 = 1/2. A posteriori, this is the strategy that makes
most sense, due to the symmetry of the pay off matrix.
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4.5 Exercises

Exercise 35. Compute all the basic feasible solutions of the following LP:

min x1 + x2

s.t. x1 + 2x2 ≥ 3

2x1 + x2 ≥ 2

x1, x2 ≥ 0

Exercise 36. Consider the linear program:

max x1 + x2

s.t. −x1 + x2 ≤ 1

2x1 + x2 ≤ 2

x1, x2 ≥ 0

Prove by computing reduced costs that [1/3, 4/3, 0, 0] is an optimal solution for
this LP.

Exercise 37. Solve the following LP using the simplex algorithm:

max 6x1 + x2 + x3

s.t. 9x1 + x2 + x3 ≤ 18

24x1 + x2 + 4x3 ≤ 42

12x1 + 3x2 + 4x3 ≤ 96

x1, x2, x3 ≥ 0

Exercise 38. Solve the following LP using the simplex algorithm:

max 3x1 + x3

s.t. x1 + 2x2 + x3 = 30

x1 − 2x2 + 2x3 = 18

x1, x2, x3 ≥ 0

Exercise 39. Show that the dual of the dual is the primal.

Exercise 40. Consider the following LP:

max x1 + x2

s.t. x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

−x1 + x2 ≤ 1

x1, x2 ≥ 0

Compute its dual.
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Exercise 41. Consider the following LP:

max 2x1 + 4x2 + x3 + x4

s.t. x1 + 3x2 + x4 ≤ 4

2x1 + x2 ≤ 3

x2 + 4x3 + x4 ≤ 3

x1, x2, x3, x4 ≥ 0

Compute its dual. Show that x = [1, 1, 1/2, 0] and y = [11/10, 9/20, 1/4] are
optimal solutions for respectively this LP and its dual.

Exercise 42. In Exercise 40, we computed the dual of the LP:

max x1 + x2

s.t. x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

−x1 + x2 ≤ 1

x1, x2 ≥ 0.

Solve both this LP and its dual.

Exercise 43. Solve the “Scissors-Paper-Stone” whose pay off matrix is 0 1 −1
−1 0 1
1 −1 0

 .
Exercise 44. Solve the game whose pay off matrix is 2 −1 6

0 1 −1
−2 2 1

 .
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