
Chapter 6
Semidefinite Programming

Semidefinite programming is a form of convex optimization that generalizes
linear programming, and also provides a unified framework for several standard
problems, including quadratic programming. The notes below follow closely [6].

Definition 6.1. An n× n real matrix X is positive semidefinite if

vTXv ≥ 0, ∀v ∈ Rn.

We write X � 0. We say that X is positive definite if

vTXv > 0, ∀v ∈ Rn.

We write X � 0.

We denote by Sn the set of n× n real symmetric matrices, that is

Sn = {X ∈Mn(R), XT = X}.

Then

Sn+ = {X ∈ Sn, X � 0},
Sn++ = {X ∈ Sn, X � 0}.

Note that X � Y means X − Y � 0.

Lemma 6.1. The set
Sn+ = {X ∈ Sn, X � 0}

is convex.

Proof. Pick λ ∈]0, 1[, and X,W ∈ Sn+, we want to see that λX+(1−λ)W ∈ Sn+.
So take any v ∈ Rn, then

vT (λX + (1− λ)W )v = λvTXv + (1− λ)vTWv ≥ 0

as needed.
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142 CHAPTER 6. SEMIDEFINITE PROGRAMMING

We recall a few facts about symmetric matrices.

• If X ∈ Sn, we have a decomposition of X into X = QDQT for Q orthonor-
mal (that is Q−1 = QT ) and D diagonal. The columns of Q form a set of
n orthonormal eigenvectors of X, whose eigenvalues are the corresponding
diagonal entries of D.

• If X ∈ Sn and X � 0, then vTQDQT vT = (vTQ)D(vTQ)T ≥ 0 for all v,
so pick vT to be in turn each of the row of Q−1 = QT , then vTQ will range
through all the unit vectors, and (vTQ)D(vTQ)T will range through all
the eigenvalues of X, so all of them are are non-negative.

• If X ∈ Sn, X � 0 and if xii = 0, then xij = xji = 0 for all j = 1, . . . , n
(see Exercise 49).

• Consider the matrix

M =

[
P v
vT d

]
for P � 0, P ∈ Sn, v a vector, d scalar. Then M � 0 ⇐⇒ d− vTP−1v >
0. This is saying that a symmetric matrix is positive definite if and only
if its Schur complement is.

Definition 6.2. A semidefinite program (SDP) is an optimization problem of
the form

min C •X
s.t. Ai •X = bi, i = 1, . . . ,m

X � 0

where we will assume that X, C and Ai, i = 1, . . . ,m, are symmetric, and we
use the notation:

C •X =

n∑
i=1

n∑
j=1

cijxij = trace(CTX).

Recall that by definition, trace(M) =
∑n
j=1mjj .

Example 6.1. Take

A1 =

1 0 1
0 3 7
1 7 5

 , A2 =

0 2 8
2 6 0
8 0 4

 , C =

1 2 3
2 9 0
3 0 7

 , b1 = 11, b2 = 19.

Then we have

min C •X = x11 + 4x12 + 6x13 + 9x22 + 7x33

s.t. x11 + 2x13 + 3x22 + 14x23 + 5x33 = 11

4x12 + 16x13 + 6x22 + 4x33 = 19

X � 0.



6.1. DUALITY 143

The above example almost looks like an LP, but for the constraint X � 0.
We will show next that in fact, every LP can be written as an SDP (the above
example serves as a counter-example that the converse is not true).

Suppose that we have the LP:

min cTx

s.t. Ax = b

x ≥ 0

(constraints of the form Ax ≤ b can be rewritten with equality using slack
variables).

Then define

Ai = diag(ai1, . . . , ain), i = 1, . . . ,m, C = diag(c1, . . . , cn), X = diag(x1, . . . , xn)

and the above LP can be written as the following SDP:

min C •X = cTx

s.t. Ai •X = bi, i = 1, . . . ,m

X � 0

where the eigenvalues of X are x1, . . . , xn so x1, . . . , xn ≥ 0 can be expressed in
terms of X � 0.

6.1 Duality

Given an SDP:

(SDP ) : min C •X
s.t. Ai •X = bi, i = 1, . . . ,m

X � 0,

define its dual as

(SDD) : max
∑m
i=1 yibi

s.t.
∑m
i=1 yiAi + S = C

S � 0.

In particular, we get from the dual that C −
∑m
i=1 yiAi � 0. Note that S has

to be symmetric since C and Ai are.

Example 6.2. For our previous example, we get

(SDD) max 11y1 + 19y2

s.t. y1

1 0 1
0 3 7
1 7 5

+ y2

0 2 8
2 6 0
8 0 4

+ S =

1 2 3
2 9 0
3 0 7


S � 0.
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Alternatively:

(SDD) max 11y1 + 19y2

s.t.

 1− y1 2− 2y2 3− y1 − 8y2
2− 2y2 9− 3y1 − 6y2 −7y1

3− y1 − 8y2 −7y1 7− 5y1 − 4y2

 � 0.

The above SDP-SDD formulation is the equivalent of the primal-dual for-
mulation for LP:

(P ) : min cTx

s.t. Aix = bi, i = 1, . . . ,m

x ≥ 0,

where Ai are the rows of A, and

(D) : max
∑m
i=1 yibi

s.t.
∑m
i=1 yiA

T
i + s = c

s ≥ 0.

We express the duality here using equalities instead of inequalities, but as we saw
in the chapter on linear programming, one can always move from one formulation
to another, and express the dual programs accordingly.

Let us start by recalling what we know about weak and strong duality for
LP, then we shall see what can be generalized to SDP.

Given a feasible solution x of (P ), and a feasible solution (y, s) of its dual
(D), we have, using that Aix = bi

cTx−
m∑
i=1

yibi =

(
cT −

m∑
i=1

yiAi

)
x = sTx ≥ 0

since x, s ≥ 0. This is the Weak Duality Theorem, which says that if x is feasible
for (P ) and y is feasible for (D), then cTx ≤ bT y.

The difference cTx−
∑m
i=1 yibi is called the duality gap, it is the gap between

the two objective functions. We know from the Strong Duality Theorem that
as long as the primal LP is feasible and bounded, then the primal and the dual
both attain their optima with no duality gap. That is, there exist x∗ and (y∗, s∗)
feasible for the primal and the dual respectively, such that

cTx∗ −
m∑
i=1

y∗i bi = (s∗)Tx∗ = 0.

It turns out that weak duality holds for SDP:

Theorem 6.2. Given a feasible solution X of SDP , a feasible solution (Y, S)
of SDD, the duality gap is

C •X −
m∑
i=1

yibi = S •X ≥ 0.
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If C •X −
∑m
i=1 yibi = 0, then X and (Y, S) are each optimal solutions to the

SDP and SDD respectively, and furthermore SX = 0.

Proof. To start with, we want to prove that S • X ≥ 0. Since S and X are
symmetric and positive definite, write

S = PDPT , X = QEQT

for P,Q orthornomal and D,E diagonal matrices whose diagonal entries are
non-negative. Then since S is symmetric:

S •X = trace(STX) = trace(SX)

= trace(P (DPTQEQT )) = trace(DPTQEQTP )

since trace(MN) = trace(NM). Now multiplying PTQEQTP byD = diag(d1, . . . , dn)
means that row j of PTQEQTP is multiplied by dj , and

trace(DPTQEQTP ) =

n∑
j=1

dj(P
TQEQTP )jj ≥ 0

because dj ≥ 0 (S is positive semidefinite) and (PTQEQTP )jj are the diagonal
coefficients of the matrix (PTQEQTP ) which is positive semidefinite (write
vT (PTQ)E(PTQ)T v = wTEw with w = vT (PTQ)), thus they are non-negative
(see Exercise 50). This completes the proof that S •X ≥ 0.

Next we want to prove that if C •X −
∑m
i=1 yibi = 0, then X and (Y, S) are

optimal and SX = 0. Since C •X−
∑m
i=1 yibi = S •X, we have that S •X = 0.

Optimality is clear from this, because C •X ≥
∑m
i=1 yibi, for all X and (Y, S),

so from the view point of X, it is true for every X that C • X ≥
∑m
i=1 y

∗
i bi

where y∗ gives the largest value, and thus since we want to minimize C • X,
optimality for X is reached with equality. From the view point of Y , for every
Y , C •X∗ ≥

∑m
i=1 yibi for X∗ which minimizes C •X, and so optimality for Y

is reached with equality.
We are left to show that SX = 0. We just showed above that S • X =∑n
j=1 dj(P

TQEQTP )jj where every term of the sum is non-negative, so

n∑
j=1

dj(P
TQEQTP )jj = 0

and for each j, either dj = 0 or (PTQEQTP )jj = 0.

• If dj = 0, then the jth row and column of D are zero, so S and SX have
their jth row and column zero as well.

• If (PTQEQTP )jj = 0, then (PTQEQTP )ij = (PTQEQTP )ji = 0 (see
one of the facts recalled above about symmetric positive definite matrices),
and so the jth row and column of (PTQEQTP ) are zero. Multiplying this
matrix by PD will give a new matrix whose jth row and columns are still
zero, which is SX.
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Strong duality on the other hand does not hold. Here is a classical example
given by Lovász.

Example 6.3.

min y1

s.t.

 0 y1 0
y1 y2 0
0 0 y1 + 1

 � 0.

We remember from the facts about symmetric positive semidefinite matrices
listed earlier that a zero on the diagonal means the corresponding row and
column are zero. Thus y1 = 0 in any feasible solution for this SDP. Once
y1 = 0, we must have y2 ≥ 0, and so the minimum for this SDP is 0.

One can compute (see Exercise 51) that the dual of this SDP is:

max −x33
s.t. x12 + x21 + x33 = 1

x22 = 0

X � 0.

Since x22 = 0 and X � 0, again, a zero on the diagonal means the corresponding
row and column are zero, so x12 = x21 = 0 and x23 = x32 = 0. But x12 + x21 +
x33 = 1, so x33 = 1 and the optimum is -1. So strong duality does not hold.

For SDP, strong duality holds under the so-called Slater conditions.

Theorem 6.3. Let z∗P and z∗D denote the optimal values of the objective func-
tions for the SDP and its dual respectively. Suppose there exists a feasible so-
lution X∗ of the SDP such that X∗ � 0, and there exists a feasible solution
(Y ∗, S∗) of its dual SDD such that S∗ � 0. Then both the SDP and the SDD
attain their optimal value, and z∗P = z∗D.

See [8] for a proof.
Weak duality extends from LP to SDP. Strong duality, under some stronger

conditions for SDP than for LDP, extends as well. However, there is no direct
analog of a basic feasible solution for SDP. There is no finite algorithm for
solving SDP, but while this sounds discouraging at first, SDP is an actually very
powerful optimization framework, and there are extremely efficient algorithms
to solve semidefinite programs.

SDP has wide applications in combinatorial optimization.

• A number of NP-hard combinatorial optimization problems have convex
relaxations that are semidefinite programs (we will give an example of
such a relaxation in the next section). SDP relaxations are often tight in
practice, in certains cases, the optimal solution fo the SDP relaxation can
be converted to a feasible solution for the original problem with provably
good objective value.
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• SDP can be used to model constraints that include linear inequalities, con-
vex quadratic inequalities, lower bounds on matrix norms, lower bounds
on determinants of symmetric positive semidefinite matrices.

• SDP can be used to solve linear programs, to optimize a convex quadratic
form under convex quadratic inequality constraints among many other
applications (see Exercise 52 for an eigenvalue optimization example).

6.2 An SDP Relaxation of the Max Cut Prob-
lem

Let G = (V,E) be an undirected graph. Let wij = wji ≥ 0 be the weight on
the edge (i, j) ∈ E.

Problem 6. The max cut problem consists of determining a subset S of nodes
for which the sum of weights of the edges that cross from S to its complement
S̄ = V \S is maximized.

Set xj = 1, j ∈ S, and xj = −1 for j ∈ S̄. Then we can formulate our max
cut problem as:

maxcut : max 1
4

∑n
i,j=1 wij(1− xixj)

s.t. xj ∈ {1,−1}, j = 1, . . . , n.

Every term in this sum is of the form 1 − xixj , which is equal to 0 if both
xi, xj have the same sign, and equal to 2 if xi, xj have reverse signs. Having
the same sign means that both nodes i, j are either in S or S̄, so they should
not contribute to the cut, and indeed 1 − xixj = 0 in this case. When xi, xj
have reverse signs, then it means that one node i or j is in S and the other is
in S̄. However, since the sum is over i, j, we will encounter in the sum once the
term wij(1− xixj) and once the term wji(1− xjxi), accounting for 4wij , which
explains the factor 1/4.

1x1 = 1

2

x2 = 1

3

x3 = 1

4

x4 = −1

5

x5 = −1

6 x6 = −1

Then let

Y = xxT =


x1
x2
...
xn

 (x1, . . . , xn)

so that yij = xixj . Set W = (wij) to be the matrix containing all the weights.
The coefficients xi, xj must be ±1 by construction, we can capture this by
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asking yjj = 1. Indeed yjj = x2j = 1 implies that xj = ±1 for all j. Then we
can reformulate the max cut problem as follows:

maxcut : max 1
4

∑n
i,j=1 wij −W • Y

s.t. yjj = 1, j = 1, . . . , n

Y = xxT .

We note that Y is a rank 1 positive semidefinite matrix. We “relax” this
condition by removing the rank 1 restriction. This gives

relaxmaxcut : max 1
4

∑n
i,j=1 wij −W • Y

s.t. yjj = 1, j = 1, . . . , n

Y � 0.

Now we have that the optimal solution for the relax-max-cut problem is
greater or equal to that for the max-cut problem, we write MAXCUT ≤ RE-
LAX. However, it was proven by Goemans and Williamson (1995) that in fact
0.87856·RELAX ≤ MAXCUT ≤ RELAX, that is, the optimal value of the SDP
relaxation is guaranteed to be no more than 12% higher than the optimal value
for the NP-hard max cut problem.

6.3 An SDP Relaxation of the Independent Set
Problem

Let G = (V,E) be an undirected graph with |V | = n vertices.

Problem 7. The stable/independent set problem consists of determining a sub-
set S of nodes, no two of which are connected by an edge. The size α(G) of the
largest stable set is called the stability number of a graph.

A natural integer programming formulation of α(G) is

α(G) = max
∑n
i=1 xi

s.t. xi + xj ≤ 1, {i, j} ∈ E
xi ∈ {0, 1}, i = 1, . . . , n.

Label every node by 0 or 1, the first condition tells that if there is an edge
between i and j, then both labels cannot be 1, it is either 0 and 1 or 0 and 0,
capturing the property that nodes with label 1 form a stable set.

We can give an LP relaxation of this problem by letting xi range from 0 to
1:

LP = max
∑n
i=1 xi

s.t. xi + xj ≤ 1, {i, j} ∈ E
0 ≤ xi ≤ 1, i = 1, . . . , n.


