
Chapter 2

Propositional Logic

“Contrariwise,’ continued Tweedledee, ’if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That’s logic”.
(Lewis Carroll, Alice’s Adventures in Wonderland and Through
the Looking-Glass)

This chapter is dedicated to one type of logic, called propositional logic.
The world logic refers to the use and study of valid reasoning. Logic contains
rules and techniques to formalize statements, to make them precise. Logic
is studied by philosophers, mathematicians and computer scientists. Logic
appears in different areas of computer science, such as programming, circuits,
artificial intelligence and databases.

It is useful to represent knowledge precisely and to help extract informa-
tion. This last sentence may not be clear at this point, but hopefully it will
become once we progress.

The term propositional logic thus refers to a logic which relies on propo-
sitions, which is defined as follows:

Definition 10. A proposition is a statement either true or false, but not
both.

Example 10. 1. The statement ”1 + 1 > 3” is false, while the statement
”5 > 3” is true. Both statements are propositions.

2. The statement ”What a great book!” is not a proposition. Someone is
expressing an opinion.
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Logic 
• Accepted rules for making precise statements. 

 

 

• Logic for computer science: programming, artificial 
intelligence, logic circuits, database.  

 

 
• Logic  

– Represents knowledge precisely 

– Helps to extract information (inference) 

 

 

Proposition 
A statement that is either true or false but not both 
is called a proposition. 

• Examples of propositions 

– “1 + 1 = 2” · · ·  True  

– “1 + 1 > 3” · · ·   False  

– “Singapore is in Europe.” · · ·  False 

• Examples (which are not propositions) 

– “1 + 1 > x” · · ·   × 

– “What a great book!” . . . × 

– “Is Singapore in Asia?” . . .× 
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We just said that a proposition is a statement which is either true or false.
We next give a definition for a statement which cannot be assinged a truth
value.

Definition 11. A paradox is a statement that cannot be assigned a truth
value.

Thus a paradox cannot be a proposition!

Example 11. Here is a paradox called the liar paradox: “This statement
is false”. Suppose that “This statement is false” takes a true value, then it
must be that the statement is false, but then if ”this statement is false” is
false, then the statement is true, and we can iterate this process which will
never lead to any conclusion.

To formalize statements, we will use symbols, and these symbols will have
the same truth values as the statements. For example, if we consider the
proposition “1 + 1 > 5”, we will denote it by p: p =“1 + 1 > 5”. Since
“1 + 1 > 5” is false, p will take the truth value false (F ).

Sometimes, we will use logical operators to combine statements. Here are
three basic operators that we will discuss into details next:

∧ conjunction (and)

∨ disjunction (or)

¬ negation (not)

The ¬ operator is sometimes denoted ∼ instead.
We are particularly interested in combining propositions (statements that

either true or false).

Definition 12. A compound proposition is a statement obtained by com-
bining propositions with logical operators.

Let us start with the negation operator:

¬ negation (not) .

We will use a truth table to describe how ¬ operates on a proposition p:

p ¬p
T F
F T

The way the truth table is read is: on the first row, if p = T , then ¬p = F ,
on the second row, if p = F , then ¬p = T .
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Paradox 
A paradox is a statement that cannot be assigned a 
truth value.  

 

 

Art Work by Escher (“Relativity”) 

• A paradox is not a 
proposition. 

• Example: the liar paradox  

“This statement is false” 

 

Symbolic Logic 
• Use symbols to represent statements (both have the 

same truth values) 

• Use logical operators to combine statements 

– Compound  propositions = propositions combined with 
logical operator(s) 

 

• Three basic operators 

–  ∧:  conjunction (and) 

–  ∨:  disjunction (or) 

–  ￢:  negation (not, alternatively ∼) 
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Here is an example: if p =“you shall pass”, ¬p =“you shall not pass”.
Next we have the disjunction operator:

∨ disjunction (or)

It is an operator that combines two propositions p and q as described in the
following truth table:

p q p ∨ q q ∨ p
T T T T
T F T T
F T T T
F F F F

The disjunction operator returns T when at least one of the two propositions
p,q is true. This is why whenever there is at least one T on a row, p ∨ q is
true. We notice that p∨ q and q ∨ p have the same truth table. In this case,
we will say that the compound propositions p ∨ q and q ∨ p are equivalent
propositions. We also say that the operator ∨ is commutative.

Finally we have the conjunction operator:

∧ conjunction (and)

It is an operator that combines two propositions p and q as described in the
following truth table:

p q p ∧ q q ∧ p
T T T T
T F F F
F T F F
F F F F

This time, for p∧ q to be true, we need both p and q to be true, which is why
there is only one row for which p∧q is true. Note that ∧ is also commutative.

We now have three operators ¬,∨,∧, that we can apply on propositions
p, q. Our first big result of this chapter is called De Morgan’s Law, and states
connections between these three operators.

Theorem 1 (De Morgan’s Law.). We have

¬(p ∧ q) ≡ ¬p ∨ ¬q, ¬(p ∨ q) ≡ ¬p ∧ ¬q.
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Negation ￢  
•  Negation (not) of p: ￢p (∼ p is also used) 

 

 

 

 

 

•   p: You shall pass  

  ￢p: You shall not pass   

 

p ￢p 

T F 

F T 

Picture from the movie Lord of the Rings 

Truth Table 

Disjunction ∨ 
• Disjunction (or) of p with q: p∨q 

 

 

 

 

 

 

• p ∨ q ≡ q ∨ p,  i.e. operator ∨ commutes 

 

 

T  T  T  

T F  T   

F  T  T   

F  F  F  

p q p∨q 

T  

T  

T  

F  

q∨p 

True when 
`at least one’ 

of them is 
true 

means “equivalent” 
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Conjunction ∧ 
• Conjunction (and) of p with q: p ∧ q 

 

 

 

 

 

• ∧ is also commutative: p ∧ q ≡ q ∧ p 

 

 

T  T  T  

T F  F  

F  T  F  

F  F  F  

p q p∧q 

True only when 
`both’ of them 

are true 

De Morgan’s Law 
 

 ￢ (p ∧ q) ≡ ￢ p ∨ ￢ q      

 ￢ (p ∨ q) ≡ ￢ p ∧ ￢ q  
 

Augustus De Morgan 
(1806-1871) 

p q ￢p ￢q  p ∧ q  ￢(p ∧ q)  ￢p ∨￢q 

T T F     F       T F F 

T F F     T       F T T 

F T T     F       F T T 

F F T     T       F T T 

Picture from Wikipedia 
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Contradiction 

A statement that is always false is called a contradiction. 

© Mike Baldwin, www.cartoonstock.com 

Example: This course is easy 
`and’ this course is not easy 

p ∧ (￢p) ≡ F 

Tautology 
An expression that always gives a true value is called a 
tautology . 

 

 

 
Example: p ∨ (￢p) ≡ T   

 
 
 
 
 
 
 

 

Somewhat similar to “Head I win, Tail you lose“  
 

© xkcd 

 p ￢p p∨￢p 

T F T  

F  T  T  
Always 
true! 
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Proof. The proof consists of computing the truth table. We need to show
that the truth table for ¬(p ∧ q) and ¬p ∨ ¬q are the same, which will say
that both compound propositions are equivalent. Let us compute in details
the first row of the truth table for ¬(p∧ q) and ¬p∨¬q: if both p and q are
true, then ¬p and ¬q are false, and p∧ q is true, since it is true exactly when
both p and q are true. Then ¬(p∧ q) is the negation of p∧ q, that is ¬(p∧ q)
is false. We only need to show that ¬p ∨ ¬q is false too, which is the case,
since both ¬p and ¬q are false. The other rows are filled in similarly. The
proof of ¬(p ∨ q) ≡ ¬p ∧ ¬q is done in Exercise 9.

So far, we have seen two types of statements: (1) a proposition, which is
a statement either always true, or always false, and (2) a paradox, which is
a statement whose truth value cannot be assigned. Here are two new types
of statements:

Definition 13. A contradiction is a statement that is always false.

Example 12. A typical example of a contradiction is p∧ (¬p). Why? recall
that p ∧ q takes the truth value true only when both p and q are true at the
same time...but it is not possible for both p and ¬p to be true both at the
same time.

If a statement which is always false is called a contradiction, you may
wonder whether there is a name for a statement which is always true?

Definition 14. A tautology is a statement that always gives a true value.

Example 13. For an example of contradiction, we choose ∧, because p∧q is
true only when both p and q is true. Now we may similarly get an example
of tautology. Pick ∨ instead. For p ∨ q to be true, it is enough that either p
or q is true. Thus p ∨ (¬p) is a tautology.

We already said that two statements are equivalent if their truth tables
are the same. Here is an example of three statements which are equivalent:

¬h ∧ ¬b ≡ ¬b ∧ ¬h ≡ ¬(b ∨ h).

We notice that the first equivalence follows from the commutativity of ∧. For
the second equivalence, this is one of De Morgan law! (which can be seen
through a truth table).
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Equivalent Expressions 
Consider the following three statements 

• Alice is not married but Bob is not single 

￢h ∧ ￢b                            

• Bob is not single and Alice is not married 

  ￢b ∧ ￢h  

• Neither Bob is single nor Alice is married 

  ￢(b ∨ h) 

• These three statements are equivalent 

￢h ∧ ￢b ≡ ￢b ∧ ￢h  ≡ ￢(b ∨ h) 

Equivalent Expressions 
The three statements 

￢h ∧ ￢b ≡ ￢b ∧ ￢h  ≡ ￢(b ∨ h) 

are equivalent. 
 

T T T T     T     F F F 

F F F T     F     T F T 

F F F F     T     T T F 

F F F F     F     T T T  

b h   ￢b ￢h  b ∨ h (￢h ∧￢b)   (￢b∧￢h)    ￢(b ∨ h) 
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The term logical equivalence (law) is new to us, but in fact, we already
saw several examples of such equivalences. We speak of logical equivalences
to describe laws that express transformations from one logical expression to
another equivalent one. Let us summarize those we know already:

• De Morgan laws: ¬(p ∧ q) ≡ ¬p ∨ ¬q, and ¬(p ∨ q) ≡ ¬p ∧ ¬q,

• Commutativity of ∨ and ∧: p ∧ q ≡ q ∧ p, p ∨ q ≡ q ∨ p,

• The negation of true is false, the negation of false is true: ¬T = F ,
¬F = T .

Here are two other ones that we saw implicitly. Suppose that T is a tautology
(statement always true) and C is a contradiction (statement always false).
Then

• The negation of a tautology is a contradiction: ¬T ≡ C.

• The negation of a contradiction is a tautology: ¬C ≡ T .

Here are three new logical equivalences:

• Double negation: ¬(¬p) ≡ p.

• Idempotent: p ∧ p ≡ p, p ∨ p ≡ p.

• Absorption: The first one is p ∨ (p ∧ q) ≡ p. Let us see why, using a
truth table:

p q p ∧ q p ∨ (p ∧ q)
T T T T
T F F T
F T F F
F F F F

The section absorption law is p ∧ (p ∨ q) ≡ p (see Exercise 10).
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Logical Equivalences 
• Useful laws to transform one logical expression to an 

equivalent one. 

 

© Herge 

•  Axioms (T ≡ tautology, C ≡ contradiction):   

￢ T ≡ F   ￢ F ≡ T     ￢ T ≡ C ≡ F     ￢ C ≡ T ≡ T  

 

 

 

  

• De Morgan: ￢(p ∧ q) ≡ ￢p ∨￢q  

                          ￢(p ∨ q) ≡ ￢p ∧￢q 

• Commutativity:  

     p ∧ q ≡ q ∧ p       p ∨ q ≡ q ∨ p 

• double negation: ￢(￢p) ≡ p 

 

• idempotent:  p ∧ p ≡ p and  p ∨ p ≡ p 

 

 

• absorption: p ∨ (p ∧ q) ≡ p and  p ∧ (p ∨ q) ≡ p 

 

Logical Equivalence Laws 
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We will next add three more logical operators. We already know 3 of
them:

∧ conjunction (and)

∨ disjunction (or)

¬ negation (not)

Our fourth logic operator is a conditional statement:

→ if then

that is p → q means “if p then q”. You have to be a bit careful with this
operator! It sounds a lot like a statement you may have encountered while
programming, but actually it is a bit different: if p is true, then p→ q takes
the truth value of q, this part is not too surprising. However, if p is false,
then it is assumed that p→ q is true by default, also called vacuously true!!

Now that we have a new logic operator, let us see how it relates to those
we know.

Theorem 2 (The Conversion Theorem.). We have

p→ q ≡ ¬p ∨ q.

Proof. This can be seen using the truth tables:

p q p→ q
T T T
T F F
F T T
F F T

p q ¬p ¬p ∨ q
T T F T
T F F F
F T T T
F F T T

Alternatively

p q ¬q p ∧ ¬q ¬(p ∧ ¬q)
T T F F T
T F T T F
F T F F T
F F T F T

and then use De Morgan law.
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Conditional Statement → 
Known operators: ∧ conjunction (and),∨ disjunction (or), ￢  negation.  

 

• if p then q:  p → q 

 
 

T  T    T  

T  F  F  

F  T  T  

F  F  T  

p q p → q 

By definition, when p is false,  
p → q is true.  This is called 
vacuously true or true by 
default. 

Not really 
the same! 

Conversion Theorem 

Proof 

 

T T T F T 

T F F F F 

F T T T T 

F F T T T 

p q    p → q  ￢p  ￢p ∨ q 

Theorem: p → q   ≡   ￢ p ∨ q 

• Apply DeMorgan’s law 

• p → q means ￢(p∧￢ q) (it cannot be that p is true 
but q is false). 
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Given the conditional statement if p → q, it can be modified in three
different ways to give raise to some other statements:

• The converse of p→ q is q → p.

• The inverse of p→ q is ¬p→ ¬q.

• The contrapositive of p→ q is ¬q → ¬p.
The notion of converse and contrapositive often appear in the context of
proof techniques. The reason why the contrapositive appears in the context
of proof is because of this theorem:

Theorem 3. We have
¬q → ¬p ≡ p→ q,

that is the contrapositive of p→ q is equivalent to p→ q!

Proof. Recall the Conversion Theorem: p → q ≡ ¬p ∨ q. Let us start with
¬q → ¬p:

¬q → ¬p
≡ ¬(¬q) ∨ ¬p Conversion Theorem
≡ q ∨ ¬p double negation
≡ ¬p ∨ q commutativity
≡ p→ q Conversion Theorem.

Another proof using truth tables is found in Exercise 13.

The contrapositive of p → q is also called only if, which is our 5th logic
operator (, means “equal by definition”)

only if , ¬q → ¬p,
even though it is equivalent to p→ q.

Example 14. The formulas are saying

(p only if q) = (¬q → ¬p) ≡ (p→ q).

Let us see how this translates into sentences:

“Bob pays taxes︸ ︷︷ ︸
p

only if his income is more than 1000 SD”.︸ ︷︷ ︸
q

We notice where is the “only if”. Then ¬q → ¬p is

“if Bob’s income is less than 1000 SD,︸ ︷︷ ︸
¬q

then he does not pay taxes.︸ ︷︷ ︸
¬p
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Conditional Statements 
The converse of p → q is q → p, the inverse of p → q 
 is ￢p →￢q, the contrapositive of p → q is ￢q →￢p. 

Theorem: ￢q→￢p  ≡  p→ q 

Proof 

    ￢q→￢p  

 ≡ ￢(￢q) ∨ ￢p   

≡  q ∨ ￢p      

≡ ￢p ∨ q     

≡  p → q   

© Mimi and Eunice  (http://mimiandeunice.com) 

Only If 
• p only if q  ≜  ￢q →￢p 

• ￢q →￢p is the contrapositive of p → q. 

• (if not q then not p) ≡  (p → q). Why? 

 

 

• Example: ‘Bob pays taxes only if his income ≥ $1000’ 

≜ ‘if Bob’s income < $1000 then he does not pay taxes’ 

≡ ‘if Bob pays tax then his income ≥ $1000’ 
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Finally p→ q is

“if Bob pays taxes,︸ ︷︷ ︸
p

then his income is more than 1000 SD.︸ ︷︷ ︸
q

The terms “sufficient” and “necessary” might sound more or less like
having the same meaning, but they have different specific meanings in the
world of logic:

Definition 15. When p → q, we call p a sufficient condition for q, while q
is called a necessary condition for p.

Our list of logical operators will now be complete, with the addition of
the biconditionial operator:

p↔ q biconditional of p and q.

By definition p↔ q means (p→ q) ∧ (q → p). This statement, also referred
to as if and only if, appears very often during proofs.

Finally, when combining logic operators, there may be doubts on which
operator to apply first. The use of parentheses helps in deciding which opera-
tors should be computed first. If several ¬ are used, start with the rightmost
one (the one that applies directly on the proposition). If several → are used
instead (or other logical operators connecting two propositions), start from
the leftmost one.

A good exercise to see whether the different logical equivalence laws seen
so far are handled is to prove that p ∨ q → r ≡ (p → r) ∧ (q → r). The
details are given in Exercise 14.
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Sufficient and Necessary Conditions 

• Being Japanese is a sufficient condition for being Asian. 

≡ if someone is Japanese then s/he will be an Asian 

• Being Asian is a necessary condition for being Japanese.  
≡ ‘if someone is not Asian, he can not be Japanese’ 

 

 

 

© Jorge Cham 

When p → q, p is called a sufficient condition for q , q is 
a necessary condition for p. 

Example 
 

– ‘you fix my ceiling or I won’t pay my rent’ 

 

– `If you do not fix my ceiling then I won’t pay my rent’ 

 

– ‘I will pay my rent only if you fix my ceiling’ 

 

 

 

• Let f: ‘you fix my ceiling’, p: ‘I pay my rent’. 

 

• f ∨ ￢p     ≡  p → f 

 

• ￢f → ￢p  ≡  p → f 

 

• ￢f → ￢p  ≡  p → f 
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Biconditional ↔ 
• The biconditional of p and q: p ↔ q  ≜  (p → q) ∧ (q → p)  

–  True only when p and q have identical truth values 

• If and only if (iff) 

 

 

p  q p → q  q → p  p ↔ q 

T  T T T T 

T  F  F T F 

F  T  T F F 

F  F T  T T 

Known operators: 

 ∧ conjunction (and), 

∨ disjunction (or),  

￢  negation,    

→ conditional (if then) 

 

Operator  Precedence 
• From high to low: ( ) ,   ￢,   ∧∨ , → ,  ↔ 

• When equal priority instances of binary connectives 
are not separated by (), the leftmost one has 
precedence.   E.g. p → q → r ≡ (p → q) → r 

• When instances of ￢ are not separated by (), the 
rightmost one has precedence:  

     E.g.￢￢￢p ≡ ￢(￢(￢p)) 

 

 

All animals are equal, but some are more equal than others – George Orwell, Animal Farm 

© to the artist, http://pda-animalfarm.wikispaces.com/Animalism 
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Example 

• Show that p ∨ q → r  ≡  (p → r) ∧ (q → r) 

 p ∨ q → r  

 ≡ (p ∨ q) → r                 (operator precedence) 

 ≡ ￢(p ∨ q) ∨ r              (why?) 

 ≡ (￢p ∧ ￢q) ∨ r             (DeMorgan’s) 

 ≡ (￢p ∨ r) ∧ (￢q ∨ r)     (why?) 

 ≡ (p → r) ∧ (q → r)          (why?) 

 

Summary 
• Useful logical equivalence laws 

– Proving equivalence using these laws 

• Conditional & Biconditional statements 

– Sufficient and necessary conditions 

• Operator precedence 

 

© Scott Adams 
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Before continuing, it is probably a good time to summarize shortly what
we did. We defined 6 logical operators:

∧ conjunction (and) p ∧ q
∨ disjunction (or) p ∨ q
¬ negation (not) ¬p
→ conditional (if then) p→ q

only if p only if q

↔ biconditional (if and only if) p↔ q

We also saw several important logical equivalences, De Morgan Laws and
the Conversion Theorem:

¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q, p→ q ≡ ¬p ∨ q.

Now that we have these basic tools, we will use them to construct more
sophisticated logical constructs, such as arguments.

Definition 16. An argument is a sequence of statements. The last state-
ment is called the conclusion, all the previous statements are premises, or
assumptions/hypotheses.

Definition 17. A valid argument is an argument where the conclusion is
true if the premises are true.

We may rephrase this definition of valid argument in the language of logic:
a series of statements forms a valid argument if and only if the conjunction
of premises (that is, premises connected by a ∧) implying the conclusion is
a tautology. Recall that a tautology is a proposition which is always true.
Here is an example of conjunction of premises implying a conclusion:

((premise) ∧ (premise))→ conclusion

Thus if the premises are true, then the truth value of

((premise) ∧ (premise))

is true, and thus the truth value of

((premise) ∧ (premise))→ conclusion

is true as well.
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Valid Argument 
An argument is a sequence of statements. The last 
statement is called the conclusion, all the previous 
statements are premises (or assumptions/ hypotheses). 

 
A valid argument is an argument where the 
conclusion is true if the premises are true. 

 
 Example:  
‘if you pay up in full 
then I will deliver it’;  
‘you pay up in full’; 
‘I will deliver it’;  

premises 

conclusion 

© belongs to the cartoonist  

Valid Argument 

• A series of statements form a valid argument if 
and only if `the conjunction of premises implying 
the conclusion’ is a tautology 

 

• ((premise)∧(premise)) → conclusion 

A valid argument is an argument where the 
conclusion is true if the premises are true. 
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If instead any of the premises is false, then

((premise) ∧ (premise))

takes the value false, and by definition of the conditional operator →, the
truth value of

((premise) ∧ (premise))→ conclusion

is true as well. Thus

((premise) ∧ (premise))→ conclusion

always takes true as truth value, and is indeed a tautology.
Here is a typical template of what an argument looks like:

p→ q;
p;
∴ q;

The premises are p→ q; p;, and the conclusion is q.
How do we know that this argument is valid? We check that it is indeed

a tautology...which is something that we do as usual, using a truth table,
where the first columns contain the premises, and the last column contains
((p→ q)∧p)→ q, and we need that the last column contains the truth value
true.

In fact, it is even easier than a normal truth table, because here, the
only case we really care about is the case where all premises are true (the
corresponding rows are called critical rows)! Again, this is because if any
premise is wrong, then the truth value of ((p → q) ∧ p) → q is always true
by default.

Let us compute the first row of the truth table:

p q (p→ q) (p→ q) ∧ q ((p→ q) ∧ p)→ q
T T T T T

This first row is a critical row, because all premises namely p→ q and p,
both are true. There is only one critical row, because the only other entry
with p true is when q is false, in which case the other premise p→ q is false.
On this first row, the truth value of the conclusion is true, this is thus a
tautology, and we do have a valid argument.
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Valid Argument Template 
      p → q; 

        p; 
 
     q  
 
 

p  q p→q (p→q) )∧p ((p→q) )∧p) → q 

T  T T T T 

T  F  F F  T  

F  T  T F  T  

F  F T  F  T 

premises 

conclusion 

• By definition, a valid argument  
satisfies: “If  the premises are true, 
then the conclusion is true” 

• Also: ((p→q)∧p) → q is a tautology.   

truth values of premises 
and of the conclusion 

critical rows are rows 
with all premises true 

if in all critical rows the 
conclusion is true, then 
the argument is valid 
(otherwise it is invalid). 

Counter Example 

 A critical row with a false conclusion is a counter 
example that invalidates the argument (=makes the 
argument not valid). 

– A counter example indicates a situation where the 
conclusion does not follow from the premises. 

 

If in all critical rows the conclusion is true, then the 
argument is valid (otherwise it is invalid). 
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Note that we could use another simplification, which is to replace the last
column by the conclusion, namely to compute

p q (p→ q) (p→ q) ∧ q q
T T T T T

Why? because once all the premises are true, then the truth value of
((p→ q) ∧ p)→ q is that of q...this is true in general, once

((premise) ∧ (premise))

is true, then the truth value of

((premise) ∧ (premise))→ conclusion

is exactly the truth value of the conclusion!
It is enough to have one critical row with a truth value false, to invalide

the arugment: this row provides a counter-example, that is a situation where
all the premises are true, yet the conclusion does not follow.

Example 15. Consider the argument:

S = (f ∧ a→ r);
f ;
¬a;
∴ ¬r;

To check whether this argument is valid, we need to check the truth tables
when the premises are all true. The premises are S, f and ¬a. When is S
true? it is true when f ∧ a is false, and when f ∧ a is true and r is true.

a r f ¬a f ∧ a S ¬r
F T

T T T

Note that we put the value of ¬r, namely the conclusion, in the last
column.

Then we need f and ¬a to be true, that is f is true and a is false. This
means that f ∧ a is false, thus the second row in the above table cannot be a
critical row. Now the first row is one, irrespectively of the truth value of r.
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Invalid Argument Example 

Critical rows 

  

a  r  f ￢a  f ∧ a   S    ￢r 
T T T   F      T       T       F 
T T F   F      F       T       F 
T F T   F      T       F       T 
T F F   F      F       T       T 
F T T   T      F       T       F 
F T F   T      F       T       F 
F F T   T      F       T       T 
F F F   T      F       T       T 

Invalid argument : conclusion on 5th row  is false!  

‘if it is falling and directly 
above me then I’ll run ’ 

‘It is falling’  

‘it is not directly above me 

 ‘I will not run’ 

 

premises 

conclusion 

S=(f ∧ a → r);  
              f; 
        ￢a; 
      ￢r 

premises 

conclusion 

Fallacy 
A fallacy is an error in reasoning that results in an 
invalid argument. 

 
Fallacy 1: converse error.  

Example 

– If it is Christmas, then it is a holiday. 

– It is a holiday. Therefore, it is Christmas! 
 

 

      p → q; 

        q; 
     p  
 
 

Fallacy 2: inverse error.  

Example 

– If it is raining, then I will stay at home. 

– It is not raining. Therefore I would not stay at home! 

 
 

 

p → q ;         
¬p; 
  ¬ q  
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Thus the two critical rows that we need to consider are:

a r f ¬a f ∧ a S ¬r
F T T T F T F
F F T T F T T

and the first row gives a counter example!

Definition 18. A fallacy is an error in reasoning that results in an invalid
argument.

Here are examples of fallacies:
A converse error consists of

p→ q; q;∴ p.

This is not a valid argument because the row of

p q p→ q
F T T

gives a counter-example.
An inverse error consists of

p→ q;¬p;∴ ¬q.

This is not a valid argument because the row of

p q p→ q ¬p ¬q
F T T T F

gives a counter-example.
It is also possible that an argument is invalid, but still it may lead to a

correct conclusion, e.g. by coincidence...

Definition 19. A rule of inference is a logical construct which takes premises,
analyzses their synthax, and returns a conclusion.

We already saw

p→ q; p;∴ q; Modus Ponens

Similarly, we have

p→ q;¬q;∴ ¬p; Modus Tollens.
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Invalid Argument, Correct Conclusion 
• An argument may be invalid, but it may still draw a 

correct conclusion (e.g. by coincidence) 

• Example 

– If New York is a big city, then New York has tall buildings 

– New York has tall buildings 
• So New York is a big city 

• So what happened?  

– We have just made an invalid argument  
• Converse error! 

– But conclusion is true (a fact true by itself) 

 

Inference Rules 

We already saw 

 

 

      

 

A rule of inference is a logical construct which takes 
premises, analyzes their syntax and returns a conclusion. 

p → q; 
          p; 
       q 

 Modus ponens  
(method of affirming) 

p → q; 
       ¬q; 
     ¬p 

Modus tollens  
(method of denying) 
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Indeed, the premises are p→ q and ¬q, the conclusion is ¬p and

p q (p→ q) ¬q ¬p
T T T F
T F F T
F T T F
F F T T T

and the only critical row is the last one, for which the conclusion is true. We
did not fill up the first three rows on purpose, since they are not critical.

Here are some more inference rules:

p ∧ q;∴ q. (2.1)

In its truth table, we only care about the entry when p∧ q is true, for which
it must be that both p and q are true, thus q is true as well and the argument
is valid.

p; q;∴ p ∧ q.

In its truth table, we only care about the row where both p and q are true.
In this case, p ∧ q is true.

p;∴ p ∨ q.

If p is true, then p ∨ q is true (irrespectively of the truth value of q).

p ∨ q;¬p;∴ q.

Again, in its truth table, we care about the rows where p ∨ q is true. There
are three such rows (exclude the one where both p and q are false). Now the
row for which ¬p is true is the one where p is false, this means we have only
one critical row, and if p is false, q has to be true (for p∨ q to be true). Two
more such rules are found in Exercises 16 and 17.

The dilemma inference rule is:

p ∨ q; p→ r; q → r;∴ r.

For p ∨ q to be true, we exclude both p and q false. When p is true, then
r has to be true. When p is false, r may take any value since p → r is
automatically true.
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More Inference Rules 
Conjunctive 

Simplification 

(particularizing) 

 

Conjunctive 

Addition 

(specializing)  

 

Disjunctive  

addition 
(generalization)  

p ∧ q; 
 p 

p; 
q; 
 p ∧ q 

p; 
 p ∨ q 

Disjunctive 
Syllogism 
 (case 
elimination) 

p ∨ q; 
¬p; 
 q 

Rule of 
contradiction 

¬p → C; 
 p  

Alternative 
rule of 
contradiction 

¬p → F; 
 p 

Inference Rule: Dilemma 
Dilemma (case by 
case discussions)  

 

p ∨ q; 
p → r; 
q → r; 
 r 
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p q r (p→ r)
T T T T
T F T T
F T T T
F T F T

Among these rows, the 4rth one is not critical, since when q is true and r is
false, then q → r is false. The 3 first rows are all critical, and the conclusion
r takes the value true, thus the argument is valid.

The hypothetical syllogism rule is:

p→ q; q → r;∴ p→ r.

For a change, we will prove this rule using equivalences instead of a truth
table.

(p→ q) ∧ (q → r)

≡ (p→ q) ∧ (¬q ∨ r) conversion Theorem

≡ [(p→ q) ∧ ¬q)] ∨ [(p→ q) ∧ r] distributivity

≡ ([(p→ q) ∧ ¬q)] ∨ (p→ q)) ∧ ([(p→ q) ∧ ¬q)] ∨ r) distributivity

Let us simplify the first term ([(p→ q) ∧ ¬q) ∨ (p→ q)): we see that (p→ q)
appears twice, let us call give it a name, say a = (p→ q) to see better what
this statement looks like:

(a ∧ ¬q) ∨ a.
We see that whenever a is true, this expression is true (because of ∨a). Now
whenever a is false, then a ∧ ¬q is false, no matter what is ¬q. Thus

(a ∧ ¬q) ∨ a ≡ a

and
([(p→ q) ∧ ¬q)] ∨ (p→ q)) ≡ p→ q.

Thus we can go back to our computations, and find that

(p→ q) ∧ (q → r) ≡ (p→ q) ∧ ([(p→ q) ∧ ¬q)] ∨ r) .

We now look at the other term, namely

[(p→ q) ∧ ¬q)] ∨ r.
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Inference Rule: Hypothetical Syllogism 

Hypothetical syllogism: 

• Example 

If I do not wake up, then I cannot go to work.  

If I cannot go to work, then I will not get paid.  

Therefore, if I do not wake up, then I will not get paid. 

 

p → q;  
q → r; 
 p → r 

Proof of Hypothetical Syllogism 
 (p → q)  (q → r)                              (hypotheses; assumed true) 

 (p → q) ( q  r)             (Conversion Theorem) 

 [(p → q)   q ]  [(p → q)  r]                               (Distributive) 

 [((p → q)    q )  (p → q)]  [((p → q)   q ) r]    (Distributive) 

 (p → q)  [((p → q)   q )  r]    (Recall absorption law: a ∨ (a ∧ b) ≡ a,  

  hence [((p → q)   q )  (p → q)]  p → q) 

 (p → q)  [(( p  q)  q ) r]                                     (Conversion) 

 (p → q)  [(( p   q)  ( q  q) ) r]          (Distributive) 

 (p → q)  [(( p   q)  F)  r]                        (Negation) 

 (p → q)  [( p   q)  r]                     (Unity) 

 (p → q)   [( p  r)    ( q  r)]              (Distributive) 

 [(p → q)  ( q  r)]   ( p  r)       (Commutative; Associative) 

  ( p  r)  p → r        (Conjunctive simplification; conversion) 

p → q; q → r;  p → r 
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Using the conversion theorem, we have (p→ q) ≡ ¬p ∨ q, thus

[(p→ q) ∧ ¬q)] ∨ r
≡ [(¬p ∨ q) ∧ ¬q)] ∨ r
≡ [(¬p ∧ ¬q) ∨ (q ∧ ¬q)] ∨ r distributivity

We can now simplify (q∧¬q), since this expression is always false (a statement
and its contrary cannot be true at the same time). Then we have

(¬p ∧ ¬q) ∨ F,

which is true exactly when (¬p∧¬q) is true, and false exactly when (¬p∧¬q)
is false, thus we get

[(p→ q) ∧ ¬q)] ∨ r
≡ (¬p ∧ ¬q) ∨ r
≡ (¬p ∨ r) ∧ (¬q ∨ r) distributivity.

Let us now combine everything together:

(p→ q) ∧ (q → r)

≡ (p→ q) ∧ ([(p→ q) ∧ ¬q)] ∨ r)
≡ (p→ q) ∧ (¬p ∨ r) ∧ (¬q ∨ r)
≡ [(p→ q) ∧ (¬q ∨ r)] ∧ (¬p ∨ r)
∴ (¬p ∨ r)
≡ p→ r conversion theorem.

The second last “therefore” statement follows from the inference rule
(2.1):

p ∧ q;∴ q.
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Exercises for Chapter 2

Exercise 8. Decide whether the following statements are propositions. Jus-
tify your answer.

1. 2 + 2 = 5.

2. 2 + 2 = 4.

3. x = 3.

4. Every week has a Sunday.

5. Have you read “Catch 22”?

Exercise 9. Show that

¬(p ∨ q) ≡ ¬p ∧ ¬q.

This is the second law of De Morgan.

Exercise 10. Show that the second absorption law p ∧ (p ∨ q) ≡ p holds.

Exercise 11. These two laws are called distributivity laws. Show that they
hold:

1. Show that (p ∧ q) ∨ r ≡ (p ∨ r) ∧ (q ∨ r).

2. Show that (p ∨ q) ∧ r ≡ (p ∧ r) ∨ (q ∧ r).

Exercise 12. Verify ¬(p ∨ ¬q) ∨ (¬p ∧ ¬q) ≡ ¬p by

• constructing a truth table,

• developing a series of logical equivalences.

Exercise 13. Using a truth table, show that:

¬q → ¬p ≡ p→ q.

Exercise 14. Show that p ∨ q → r ≡ (p→ r) ∧ (q → r).

Exercise 15. Are (p→ q) ∨ (q → r) and p→ r equivalent statements?
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Exercise 16. Show that this argument is valid:

¬p→ F ;∴ p.

Exercise 17. Show that this argument is valid, where C denotes a contra-
diction.

¬p→ C;∴ p.

Exercise 18. Determine whether the following argument is valid:

¬p→ r ∧ ¬s
t→ s
u→ ¬p
¬w
u ∨ w
∴ t→ w.

Exercise 19. Determine whether the following argument is valid:

p
p ∨ q
q → (r → s)
t→ r
∴ ¬s→ ¬t.
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Examples for Chapter 2

To practice some of the logical concepts we have studied so far, we will
consider the well known puzzles of the island of knights and knaves.

The assumptions are that on this island:

• Knights always tell the truth.

• Knaves always lie.

As a visitor, you will be told some statements, and you have to decide whether
the islanders you are speaking with are knights or knaves.

The general method will be to rewrite the claims of the islanders using
propositional logic, and then to use truth tables to figure out the truth!

Example 16. You meet two islanders A and B. A says: “ I am a knave but
he is not”. You need to decide what are A and B.

To do so, we will use logic. Let us call p the statement “A is a knight”,
and q the statement “B is a knight”. With that, we rephrase the statement
of A.

A says: “¬p ∧ q”. The truth table of ¬p ∧ q is

p ¬p q ¬p ∧ q
T F T F
T F F F
F T T T
F T F F

Now either A is a knight, or A is a knave. If A is a knight, then the
statement p is true, and A must always tell the truth, thus ¬p ∧ q must be
true as well. This cannot be from the truth table.

If A is a knave, then the statement p is not true, and A must always lie,
thus ¬p ∧ q must be false as well. This happens in the last row of the table,
where p is false, q is false, and ¬p ∧ q is false, thus we conclude that A is a
knave, and B is a knave.
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Knights & Knaves I 

Art belongs to the artist 

s 
I am a knave 
but he is not. 

A 
B 

Knights & Knaves I 

s 

I am a knave 
but he is not. 

A 

• p=“A is a knight” 

• q=“B is a knight” 

 
¬p ∧ q   
 

p q ¬p ∧ q   

T T F 

T F F 

F T T 

F F F 

• If A is a knight, then p = true, and ¬p ∧ q  must be true. 
• If A is a knave, then p=false, and ¬p ∧ q  must false. 

 



70 CHAPTER 2. PROPOSITIONAL LOGIC

Example 17. You meet two islanders A and B. A says: “ If I am a knight
then so is he”. You need to decide what are A and B.

Again, let us call p the statement “A is a knight”, and q the statement
“B is a knight”. Then A says: “p→ q”, with truth table

p q p→ q
T T T
T F F
F T T
F F T

If A is a knight, then the statement p is true, and A must always tell the
truth, thus p→ q must be true as well. This is possible with the first row

If A is a knave, then the statement p is not true, and A must always lie,
thus p→ q must be false as well. This cannot happen. We conclude that A
is a knight, and B is a knight.

Example 18. You meet two islanders A and B. A says: “ I am a knave or
B is a knight”. You need to decide what are A and B.

As twice above, let us call p the statement “A is a knight”, and q the
statement “B is a knight”. Then A says: “¬p ∨ q”. Its truth table is

p ¬p q ¬p ∨ q
T F T T
T F F F
F T T T
F T F T

If A is a knight, then the statement p is true, and A must always tell the
truth, thus ¬p∨ q must be true as well. This happens in the first row of the
table.

If A is a knave, then the statement p is not true, and A must always lie,
thus ¬p∨q must be false as well. This cannot happen, thus we conclude that
A is a knight, and B is a knight.
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Knights & Knaves II 

s 

If I am a knight 
then so is he. 

A 

• p=“A is a knight” 

• q=“B is a knight” 

 
p → q   
 

p q p → q   

T T T 

T F F 

F T T 

F F T 

• If A is a knight, then p = true, and p → q  must be true. 
• If A is a knave, then p=false, and p → q  must false. 

 

Knights & Knaves III 

s 

I am a Knave 
or B is a Knight 

A 

• p=“A is a knight” 

• q=“B is a knight” 

 
¬p v q   
 

p q ¬p v q   

T T T 

T F F 

F T T 

F F T 

• If A is a knight, then p = true, and ¬p v q  must be true. 
• If A is a knave, then p=false, and ¬p v q  must false. 
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Example 19. You meet one islander A. A says: “ I am a knave”. You need
to decide what is A. This case is actually similar to the “liar’s paradox”.
You can write the truth table as above, and see that nothing can be decided
from it, which is the definition of a paradox! If A is knight, he tells the truth
and says that he is a knave, which is not possibe. So A must be a knave.
But if A is a knave, he lies, and so he must be a knight, which is not possible
either.

We next give another example of how to combine different statements
with inference rules to extract information:

Example 20. During a murder investigation, you have gathered the follow-
ing clues:

1. if the knife is in the store room, then we saw it when we cleared the
store room;

2. the murder was committed at the basement or inside the apartment;

3. if the murder was committed at the basement, then the knife is in the
yellow dust bin;

4. we did not see a knife when we cleared the store room;

5. if the murder was committed outside the building, then we are unable
to find the knife;

6. if the murder was committed inside the apartment, then the knife is in
the store room.

The question is: “where is the knife?”
First, we assigned symbols to the above clues:
s : the knife is in the store room;
c : we saw the knife when we clear the store room;
b : the murder was committed at the basement;
a : murder was committed inside the apartment;
y : the knife is in the yellow dust bin;
o : the murder was committed outside the building;
u : we are unable to find the knife;
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Knights & Knaves IV 

s 

A 

I am a Knave. 

• p=“A is a knight” 

 

 
p ¬p    

T F 

F T ¬p    
 

It’s a paradox! 

The Murder Clues 
1. if the knife is in the store room, then we saw it when we cleared the 

store room; 

2. the murder was committed at the basement or inside the apartment; 

3. if the murder was committed at the basement, then the knife is in the 
yellow dust bin; 

4. we did not see a knife when we cleared the store room; 

5. if the murder was committed outside the building, then we are unable 
to find the knife; 

6. if the murder was committed inside  the apartment, then the knife is in 
the store room. 

 Where is the 
knife? 
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Next we rewrite the clues inside these symbols, and logical operators:

1. s→ c

2. b ∨ a

3. b→ y

4. ¬c

5. o→ u

6. a→ s

From 1. and 4., we deduce that ¬s. From 6. and ¬s, we deduce ¬a.
Once we have ¬a, with 2., we deduce b. Once we have b, with 3., we deduce
y, that is, the knife is in the yellow bin!
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Statements 
1. if the knife is in the store room, then we saw it when we cleared the 

store room; 

2. the murder was committed at the basement or inside the apartment; 

3. if the murder was committed at the basement, then the knife is in the 
yellow dust bin; 

4. we did not see a knife when we cleared the store room; 

5. if the murder was committed outside the building, then we are unable 
to find the knife; 

6. if the murder was committed inside  the apartment, then the knife is in 
the store room. 

 Where is the 
knife? 

Applying Inference Rules 
1. if  s, then c; 

2.  b or a; 

3. if b, then y; 

4. not c; 

5. if  o, then u; 

6. if a, then s 

 

 

 

The knife is in 
the yellow bin! 

1. s → c 

2. b ∨ a 

3. b → y 

4. ¬c 

5. o → u 

6. a → s  

7. ¬s  

8. ¬a  

9.  b  

 y 

 
 

 

1, 4; modus tollens 

6, 7; modus tollens 

2, 8; case elimination 

3, 9; modus ponens 



76 CHAPTER 2. PROPOSITIONAL LOGIC


