
Chapter 3

Predicate Logic

“Logic will get you from A to B. Imagination will take you every-
where.” A. Einstein

In the previous chapter, we studied propositional logic. This chapter is
dedicated to another type of logic, called predicate logic.

Let us start with a motivating example.

Example 21. Consider the following two statements:

• Every SCE student must study discrete mathematics.

• Jackson is an SCE student.

It looks “logical” to deduce that therefore, Jackson must study discrete math-
ematics. However, this cannot be expressed by propositional logic...you may
try it, but you can already notice that none of the logical operators we have
learnt are applicable here.

We need new tools!

Definition 20. A predicate is a statement that contains variables (predicate
variables), and they may be true or false depending on the values of these
variables.

Example 22. P (x) = “x2 is greater than x” is a predicate. It contains one
predicate variable x. If we choose x = 1, P (1) is “1 is greater than 1”, which
is a proposition (always false).
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Limitation Of Propositional Logic 

• Every SCE student must study discrete mathematics 

• Jackson is a SCE student 

– So Jackson must study discrete mathematics 
• This idea can’t be expressed with propositional logic 

 
• What propositional logic allows to express:  

– If Jackson is a SCE student he must study discrete 
mathematics 

– Jackson is a SCE student 
• So Jackson must study discrete mathematics 

Predicates 
• Is the statement “x2 is greater than x” a proposition?  

 
 

• Define P(x) = ‘x2 is greater than x’. 
• Is P(1) a proposition? P(1)=“12 is greater than 1” (F)  

 

• P(x) is a predicate. 

 

 
 

A predicate is a statement that contains variables 
(predicate variables) and that may be true or false 
depending on the values of these variables. 
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Since a predicate takes value true or false once instantiated (that is, once
its variables are taking values), we may alternatively say that a predicate
instantiated becomes a proposition.

It is needed to explicit which are the values that a predicate variable can
possibly take.

Definition 21. The domain of a predicate variable is the collection of all
possible values that the variable may take.

Example 23. Consider the predicate P (x) = “x2 is greater than x”. Then
the domain of x could be for example the set Z of all integers. It could
alternatively be the set R of real numbers. Whether instantiations of a
predicate are true or false may depend on the domain considered.

When several predicate variables are involved, they may or not have dif-
ferent domains.

Example 24. Consider the predicate P (x, y) = “x > y”, in two predicate
variables. We have Z (the set of integers) as domain for both of them.

• Take x = 4, y = 3, then P (4, 3) = “4 > 3”, which is a proposition
taking the value true.

• Take x = 1, y = 2, then P (1, 2) = “1 > 2”, which is a proposition
taking the value false.

• Note that in general P (x, y) 6= P (y, x)!

We now introduce two quantifiers (describing “parts or quantities” from
a domain), the universal quantification and the existential quantification.

Definition 22. A universal quantification is a quantifier meaning “given
any” or “for all”. We use the following symbol:

∀ (universal quantification)

Example 25. Here is a formal way to say that for all values that a predicate
variable x can take in a domain D, the predicate is true:

∀x︸︷︷︸
for all x

∈ D︸︷︷︸
belonging to D

, P (x) (is true)

For example

∀x︸︷︷︸
for all x

∈ R︸︷︷︸
belonging to the real numbers

, x2 ≥ 0.
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Predicate Instantiated/Domain  

• A predicate instantiated (where variables are 
evaluated in specific values) is a proposition. 

 

 

 

 

The domain of a predicate variable is the collection of all 
possible values that the variable may take.  

 

A predicate is a statement that contains variables 
(predicate variables) and that may be true or false 
depending on the values of these variables. 

• Predicate logic extends (is more powerful than) 
propositional logic. 

 

 

 

 

o e.g. the domain of x in P(x): integer 
o Different variables may have different domains. 

4/12 

Example 
• Let P(x, y) =  “x > y”.   

Domain: integers, i.e. both x and y are integers. 

• P(4, 3) means “4 >3”,  so P(4, 3) is TRUE; 

 

• P(1, 2) means “1>2” , so P(1, 2) is FALSE; 

 

• P(3,4) is false (in general, P(x,y) and P(y,x) not 
equal).  
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Quantification 
• Statements like  

– Some birds are angry. 

– On the internet, no one knows who you are. 

– The square of any real number is nonnegative. 

 
 

© Rovio  

Universal Quantification 

• E.g.  “xD P(x) is true” iff “P(x) is true for every x in D”. 

•  universal quantifiers, “for all”, “for every” 

•  - “is a member (or) element of”, “belonging to” 

• D – domain  of predicate variable 

• The square of any real number is nonnegative. 

 

A universal quantification is a quantifier (something that tells 

the amount or quantity) meaning "given any" or "for all".  

Symbol: 

xR, x2 ≥ 0. 
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Existential Quantification 
An existential quantification is a quantifier (something that 

tells the amount or quantity) meaning “there exists“, “there is 
at least one“ or “for some”.  

Symbol:  

• E.g. “ xD, P(x) is true” iff “P(x) is true for at least one 
x in D”. 

•  existential quantifier, “there exists” 

• Some birds are angry. 

– D={birds}, P(x)=”x is angry”.  

 

 
 

8/12 

Nested Quantification (I) 
• A proposition may contain multiple quantifiers 

– “All rabbits are faster than all tortoises.” 

– Domains:  R={rabbits},  T={tortoises} 

– Predicate C(x, y): Rabbit x is faster than tortoise y 

• In symbols 

–  xR (yT, C(x, y)) or xR, yT, C(x, y)  

 

 

• In words 

– For any rabbit x, and  for any tortoise y, x is faster than y. 
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Definition 23. An existential quantification is a quantifier meaning “there
exists”, “there is at least one” or “for some”. We use the following symbol:

∃ (existential quantification)

Example 26. Here is a formal way to say that for some values that a pred-
icate variable x can take in a domain D, the predicate is true:

∃x︸︷︷︸
for some x

∈ D︸︷︷︸
belonging to D

, P (x) (is true)

For example, for D = { birds }, P (x) = “x is angry”,

∃x︸︷︷︸
Some

∈ D︸︷︷︸
birds

, P (x) (is true)︸ ︷︷ ︸
are angry

.

The term nested quantification refers to statements involving several
quantifiers. Here is a series of examples.

Example 27. All statements involve two predicate variables x and y, where
x has for domain R = { rabbits }, while y has for domain T = { tortoises }.
The predicate used is C(x, y) =“Rabbit x is faster than tortoise y”.

• In logic symbolism, we write “All rabbits are faster than all tortoises”:

∀x︸︷︷︸
For any

∈ R︸︷︷︸
rabbit x

, ∀y︸︷︷︸
for any

∈ T︸︷︷︸
tortoise y

C(x, y) (is true)︸ ︷︷ ︸
x is faster than y

.

• In logic symbolism, we write “Every rabbit is faster than some tortoise”:

∀x︸︷︷︸
For any

∈ R︸︷︷︸
rabbit x

, ∃y︸︷︷︸
there is

∈ T︸︷︷︸
a tortoise y

C(x, y) (is true)︸ ︷︷ ︸
such that x is faster than y

.

• In logic formalism, we write “There is a rabbit which is faster than all
tortoises”:

∃x︸︷︷︸
There exists

∈ R︸︷︷︸
a rabbit x such that

, ∀y︸︷︷︸
for any

∈ T︸︷︷︸
tortoise y

C(x, y) (is true)︸ ︷︷ ︸
x is faster than y

.
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Nested Quantification (II) 
• Another example 

– “Every rabbit is faster than some tortoise.” 

– Domains: R={rabbits},  T={tortoises}. 

– Predicate C(x, y): Rabbit x is faster than tortoise y 

• In symbols 

–  xR (yT, C(x, y)) or xR, yT, C(x, y) 

 

• In words: 

– For any rabbit x, there exists a (some) tortoise y, such 
that x is faster than y. 
 

Nested Quantification (III) 
• Another example 

– “There is a rabbit which is faster than all tortoises.” 

– Domains:  R={rabbits},  T={ tortoises}. 

– Predicate C(x, y): Rabbit x is faster than tortoise y. 

• In symbols (note the ordering in nesting) 

–   xR (yT, C(x, y)) 

 

 

• In words:  

– There exists a rabbit x, such that for any tortoise y, this 
rabbit x is faster than y. 
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The same way we assigned truth values to propositions, we may assign
truth values to quantified statements.

• (∀ x ∈ D, P (x)) is true exactly when P (x) is true for every x ∈ D.
Thus it is false whenever there is at least one x for which P (x) is false.
Formally, for D = {x1, . . . , xn}, we have the following equivalence:

(∀ x ∈ D, P (x)) ≡ (P (x1) ∧ P (x2) ∧ . . . ∧ P (xn)).

• (∃ x ∈ D, P (x)) is true exactly when P (x) is true for at least one
x ∈ D. Thus it is false when P (x) is false for all x ∈ D. Formally, for
D = {x1, . . . , xn}, we have the following equivalence:

(∃ x ∈ D, P (x)) ≡ (P (x1) ∨ P (x2) ∨ . . . ∨ P (xn)).

Since (∃ x ∈ D, P (x)) takes truth values, it can also be negated, that is

¬(∃ x ∈ D, P (x)) ≡ ∀x ∈ D, ¬P (x),

where the equivalence follows from the fact that (∃ x ∈ D, P (x)) is false
whenever for all x ∈ D P (x) is false. Similarly

¬(∀ x ∈ D, P (x)) ≡ ∃ x ∈ D, ¬P (x) (3.1)

since (∀ x ∈ D, P (x)) is false whenever there is one x ∈ D for which P (x) is
false. See Exercise 23 for negating a statement involving several quantifiers.

We can similarly assign truth values to combinations of predicates, or
negation of combinations of predicates. The equivalence

¬(∀ x ∈ D, P (x) ∧Q(x)) ≡ ∃ x ∈ D, ¬(P (x) ∧Q(x))

holds, setting P ′(x) = P (x) ∧ Q(x) and using (3.1) on P ′(x). Now (P (x) ∧
Q(x)) is a proposition for any instantiation of x, thus we can apply De
Morgan laws:

¬(∀ x ∈ D, P (x) ∧Q(x)) ≡ ∃ x ∈ D, ¬P (x) ∨ ¬Q(x).

Suppose now you are given a statement involving quantifies, whose truth
table has to be determined. There are several ways to do so: (1) Method of
Exhaustion, (2) Method of Case, and (3) Method of Logic Derivation.

Method of exhaustion: if the domain contains a small number of el-
ements, try them all! For example, if D = {5, 6, 7, 8, 9}, and P (x) = “x ∈
D, x2 = x”, then just compute x2 for all the values of x ∈ D to conclude
that this false.
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Truth Value of Quantified Statements 
Statement When true When false 

xD,P(x) P(x) is true for 
every x. 

There is one x for 
which P(x) is false. 

xD,P(x) There is one x 
for which P(x) 
is true. 

P(x) is false for 
every x. 

Assume that D consists of x1 , x2 , … , xn 
 
 xD, P(x)  P(x1)P(x2) … P(xn) 

 
  xD, P(x)  P(x1)P(x2)  … P(xn) 
 

Negation of Quantification 
• ‘Not all SCE students study hard’  = ‘There is at 

least one SCE student who does not study hard’ 

 

• Negation of a universal quantification becomes 
an existential quantification. 

 

 

¬ (xD, P(x))     xD, ¬P(x)  

• ‘It is not the case that some students in this class are 
from NUS.’= ‘All students in this class are not from NUS’ 

 

 

• Negation of an existential quantification becomes an 
universal  quantification. 

 

 

¬ ( xD, P(x))   xD, ¬P(x)  
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¬ (xD, P(x)Q(x))   

    xD ¬ (P(x)Q(x))     (negation of quantification) 

    xD (¬ P(x) ¬ Q(x))  (DeMorgan) 

 

Negation of Quantification 

• Example: Not all students in this class are 
using Facebook and (also) Google+ 

 There is some (at least one) student in this class 
who is not using Facebook or not using Google+ (or 
may be using neither)  

How To Determine Truth Value 

• Systematic approaches: 

– Method of exhaustion 

– Method of case 

– Method of logic derivation 
 

 

Statement When true When false 

xD,P(x) P(x) is true for every 
x. 

There is one x for which 
P(x) is false. 

xD,P(x) There is one x for 
which P(x) is true. 

P(x) is false for every x. 
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Method of Exhaustion 
• Let D={5,6,7,8,9}.  Is  xD, x2=x true or false? 

– 52=25≠5, 62=36≠6, 72=49≠7,82=64≠8, 92=81≠9 

– So, false! 

• Limitation? 

– Domain may be too large to try out all options 

• E.g., all integers 

 
 

 

Method of Case 
• Positive examples to prove existential quantification 

• Let Z denote all integers. Is  xZ, x2=x true or false? 
• Take x =0 or 1 and we have it. True. 

 
 

 

• Counterexample to disprove universal quantification 

• Let R denote all reals. Is x R, x2 > x true or false? 

• Take x=0.3 as a counterexample. False. 

 

 
 

 

Positive example is not a proof of universal quantification 

Negative example is not disproof of existential quantification 

May be hard to find suitable “cases” even if such cases do exist! 
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Method of Case. Suppose you want to show that the truth value of
(∃ x, P (x)) is true. For this, you just need to find one case, one instantiation
of x, for which P (x) is true.

Example 28. P (x) = “∃ x ∈ Z, x2 = x is true, take x = 1 for example.
Thus such an x exists.

Similarly, if you want to show that the truth value of (∀ x, P (x)) is false,
it is enough to find one counterexmaple.

Example 29. P (x) = “∀ x ∈ R, x2 > x is false, take x = 0.3 for example.
Thus P (x) cannot be true for all x.

However, you cannot show that (∃ x, P (x)) is false using some examples,
you need to prove that you cannot find a single x in your domain for which
P (x) is true! Vice-versa, you cannot show that (∀ x, P (x)) is true by giving
some examples, you need to show that this is always true, for every x in the
domain considered.

To do this, again, if the domain is small, one may use the exhaustion
method of trying all options, but if the domain is big (or infinite), like Z, we
need another method.

Method of Logic Derivation. This method consists of using logical
steps to transform one logical expression into another.

Example 30. Suppose you want to know the truth value of ∃ x, (P (x) ∨
Q(x)), x has for domain D = {x1, . . . , xn}. Then ∃ x, (P (x) ∨Q(x)) is true
if there is an xi ∈ D for which P (xi) ∨Q(xi) is true that is

(∃ x, (P (x) ∨Q(x))) ≡ (P (x1) ∨Q(x1)) ∨ . . . ∨ (P (xn) ∨Q(xn))

but now this new expression becomes true exactly when at least one P (xi)
or Q(xj) is true, that is

(∃ x, (P (x) ∨Q(x))) ≡ (∃ x, P (x)) ∨ (∃ x, Q(x)).

When trying to derive logic steps involving quantifiers, one should be
very careful with the ordering of the quantifiers...A typical example is that

∀ x, ∃ y, P (x, y) ≡ ∃ y, ∀ x, P (x, y)

does not hold in general!

Example 31. Consider the predicate P (x, y) = “x admires y”. Then ∀ x, ∃ y, P (x, y)
means that everyone admires someone, while ∃ y, ∀ x, P (x, y) means that
there exists one person who is admired by everyone!
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 [P(x1) …   P(xn)]    [Q(x1) …  Q(xn)] 

Method Of Logic Derivation 

Consider an (arbitrary) domain with n members. Is 
x(P(x)  Q(x)) logically equivalent to  xP(x)  xQ(x) ? 

 
 

   [P(x1)  Q(x1)]  …   [P(xn) Q(xn)]  

 xP(x)   xQ(x) 

x(P(x)   Q(x))  

Order Of Nesting Matters 
•  Is xy P(x,y)  yx P(x,y) in general? 

– LHS: y can vary with respect to x, y is fixed with respect to x 

– Let P(x, y) =“x admires y”. LHS = “Every person admires some 

people”,  RHS= “Some people are admired by everyone”  

 

 •  Consider x,y R+, and let P(x,y) be xy=1.  

– Is x y P(x,y)  yx P(x,y)? 

• Consider X={9, 10, 15}, Y={2,3}. Let Q(x,y): y divides x 

– Then, is x X yY Q(x,y)  yY x X Q(x,y)? 
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We have seen so far how quantified statements have truth values, how
they can be combined with an AND operator, or negated with a negation
operator. We next discuss how they can be combined with the “if then”
conditional operator:

∀x ∈ D, (P (x)→ Q(x))

which means, for all x in its domain D, if P (x) is true, then Q(x) is true.

Example 32. Take P (x) = “x > 1”, Q(x) = “x2 > 1”, and x has for domain
the real numbers R. Then

∀x ∈ R, (P (x)→ Q(x))

becomes for all x ∈ R, if x > 1 then x2 > 1.

Attached to the conditional operator were several of its variations, its
contrapositive, its inverse, and its negation. We can similarly define these
for quantified statements.

∀x ∈ D, (¬Q(x)→ ¬P (x)) contrapositive
∀x ∈ D, (Q(x)→ P (x)) converse
∀x ∈ D, (¬P (x)→ ¬Q(x)) inverse

See Exercise 25 for a proof that a conditional proposition is equivalent to its
contrapositive. See also Exercise 26 to compute the negation of a conditional
quantification, namely

¬(∀ x, P (x)→ Q(x)).
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Conditional Quantification (I) 
• For all real number x, if x>1 then  x2 >1 

– i.e., any real number greater than 1 has a square 
larger than 1 

• In symbolic form  

–  Let P(x) denote “x>1”  

–  Let Q(x) denote “x2 >1”  

–  Let R denote the domain, the collection of all real 
numbers 

•  x (P(x)  Q(x)) 
 

 

 
 

 Conditional Quantification (III) 
• Given a conditional quantification 

– Such as xA (P(x)  Q(x)) 

• Then we define 

– contrapositive       x A, ¬Q(x) ¬P(x) 

– converse                x A, Q(x)  P(x) 

– inverse                   x A, ¬P(x) ¬Q(x) 

• Note: A conditional proposition is logically 
equivalent to its contrapositive 
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Our motivating Example 21 to start predicate logic was:

Example 33. Consider the following two statements: (1) Every SCE student
must study discrete mathematics. (2) Jackson is an SCE student. It looks
“logical” to deduce that therefore, Jackson must study discrete mathematics.

We will now develop inference rules, that will allow us to express this
example (see Exercise 28).

Consider a predicate variable x taking value in the domain D. Then

∀x ∈ D, P (x);∴ P (c) for any c ∈ D .

As we did for propositional logic, we look at when the premises are true.
When ∀x, P (x) is true, P (x) is true for any choice of x in the domain D, in
particular it is true for any choice of c, therefore P (c) is true for any c ∈ D.
This rule says that if P (x) is true for any x in a domain, one is allowed to
instantiate P (x) in x = c for any choice of c ∈ D.

Example 34. Suppose we have the following premises: (1) No cat can catch
Jerry; (2) Tom is a cat. We want to deduce that therefore Tom cannot catch
Jerry. We define two predicates: Cat(x)=“x is a cat”, Catch(x)=“x can
catch Jerry”. The second premise, Tom is a cat, is the easiest to write, it
becomes: Cat(Tom)=“Tom is a cat”. Now for the first premise, suppose we
want to say “cats are catching Jerry”, this would be if x is a cat, then x
catches Jerry, that is

Cat(x)→ Catch(x),

keeping in mind that we have not yet assigned a quantifier to this statement.
To say that “cats are not catching Jerry”, then this would be if x is cat, then
x cannot catch Jerry, that is

Cat(x)→ ¬Catch(x),

and finally, to say that “no cat can catch Jerry”, we add a universal quantifier:

∀x(Cat(x)→ ¬Catch(x)).

We then have the following premises in predicate logic:

1. ∀x(Cat(x)→ ¬Catch(x));

2. Cat(Tom);

We can then instantiate the first premise with x =Tom, to get

(Cat(Tom)→ ¬Catch(Tom)).
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Universal Instantiation 

Example: 

– No cat can catch Jerry.  

– Tom is a cat. Therefore 
Tom cannot catch 
Jerry. 

 x P(x)   
  P(c) 
where c is any element of the domain. 

© William Hanna and Joseph Barbera 
  

 

Cat(x): x is Cat, Catch(x): x can catch Jerry 

 
1. x [Cat(x)  ¬ Catch(x)]  Hypothesis 
2. Cat(Tom)               Hypothesis  
3. Cat(Tom)  ¬ Catch(Tom)                        
Universal Instantiation on 1    
4. ¬ Catch(Tom)            
Modus ponens on 2 and 3 

 

Universal Generalization 

    Example  

–  P(x) =``x2 is non-negative” .   

–  P(c) for an arbitrary real c. 

– Therefore P(x) for all x. 

 P(c) for any arbitrary c from the domain. 
  x P(x)  



95

But since the second premise says that Cat(Tom); modus ponens (p→ q;
p; ∴ q) tells us that therefore ¬Catch(Tom).

Consider a predicate variable x taking value in the domain D. Then

P (c) for an arbitrary c ∈ D;∴ ∀x P (x) ∈ D .

This just means that if a predicate is true for an arbitrary element c ∈ D,
then it is true for all x ∈ D. Indeed, if whichever premise you look at is true,
then the conclusion is true. This rule allows us to infer P (x) for all x ∈ D
based on P (c) being true for an arbitrary instance c ∈ D.

Example 35. Consider the premise for an arbitrary real number x, x2 ≥ 0.
Therefore the square of any real number is non-negative. Set P (x) = “x2 ≥
0”. In predicate logic, we have for any arbitrary c ∈ R, P (c). Therefore
∀x P (x).

In fact, we have already used this rule implicitly...In Exercise 2, we showed
that if n2 is even, then n is even, for n an integer. The way we did it, is that
we showed the result for one arbitrary n, and concluded this is true for all of
them! See Exercise 29 for a more complicated example.

Consider a predicate variable x taking value in the domain D. Then

∃x ∈ D, P (x);∴ P (c) for some c ∈ D .

We look at when the premises are true. When ∃x, P (x) is true, P (c) is true
for at least one choice of c in the domain D. This rule allows to instantiate
P (x) in some values of c for which P (c) is true.

Example 36. The premises are: (1) if any student gets > 80 in the exam,
then (s)he gets an A, (2) there are students who get> 80 in the exam, (3) Sam
is such a student. We want to conclude that therefore Sam gets an A. Set the
predicates A(x) = “x gets an A”, M(x) = “x gets > 80 in the exam”, the
domain D is D = { students }. In predicate logic, (1) and (2) are respectively
given by

1. ∀x, M(x)→ A(x).

2. ∃x, M(x).

Now that Sam is such a student can be expressed using the above rule, to
obtain M(Sam). Then we can instantiate 1. with Sam, to get M(Sam) →
A(Sam), which combined with M(Sam) leads to therefore A(Sam).



96 CHAPTER 3. PREDICATE LOGIC

Existential Instantiation 

     Example  
– If any student gets >80 in 

the final exam, then (s)he  
gets an A. 

– There are students who 
get >80 in the final exam, 
Sam is such a student. 

– Therefore, Sam gets an A. 

 x P(x)  
 P(c) for some c in the domain.  

Domain={all students}; A(x)=“x gets an A” 
 M(x) = “x gets 80 in the final exam”    

 

   1. x [M(x)  A(x)]         Hypothesis  

    2. x M(x)          Hypothesis 

    3. M(Sam)            

    Hypothesis +Existential instantiation 

    4. M(Sam)  A(Sam)          

    Universal instantiation on 1  

    5. A(Sam)  Modus ponens on 4 and 3  

 

Existential Generalization 
    P(c)        

     x P(x)  
for c some specific  
element of domain. 

 
 

     Example  
• If everyone is selling 

stocks, then someone 
is selling stocks. 

© belongs to the cartoonist  

Domain={all people} ,  

Sell(x) =“x is selling stocks”.  

x Sell(x)  x Sell(x)  
1. x Sell(x)          Hypothesis  

2. Sell(c)       Universal instantiation  

3. x Sell(x)  Existential generalization  
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Consider a predicate variable x taking value in the domain D. Then

P (c) for some specific c ∈ D;∴ ∃x, P (x) .

We look at when the premises are true. When P (c) is true for some spe-
cific c ∈ D, ∃x for which P (x) is true. This rule allows to go from one
instantiation P (c) to deduce that there is at least one x for which P (x) is
true.

Example 37. Suppose we want to show formally that if everyone is sell-
ing stocks, there must be someone selling stocks. Consider the predicate
Sell(x)=“x is selling stocks”. Then we want to show that if ∀x Sell(x) is
true, then ∃x Sell(x) is true as well. From ∀x Sell(x) is true, we instantiate
it in one c in the domain (here the domain is { people }). This gives Sell(c).
Now using the above rule, we know there must exist at least an x for which
Sell(x) is true, as desired.

These 4 rules may look either “obvious” or “contrived”, but they are
needed to write down things formally, in particular whenever formal methods
are involved, e.g., if you need to program formal verifications!

We now come to the last part of predicate logic, namely, we will see how
to apply the logic rules we have seen to justify different proof techniques. We
will discuss three proof technique: direct proof, induction, proof by contra-
diction.

Direct Proof. As the name suggests, these are proofs that are perfomed
without particular techniques. Some claim has to be shown, and there is a
specific way to do so in this particular context.

Example 38. Suppose we want to show that
∑n

i=0 i = n(n+1)
2

, ∀n ∈ N.
Write down the following array:

1 2 3 . . . n− 1 n
n n− 1 n− 2 . . . 2 1

If you sum up the entries of the first row, you get
∑n

i=0 i, and if you sum up
the entries of the second row, you also get

∑n
i=0 i, Thus if you sum up all

entries in this array, you get 2
∑n

i=0 i. Now if we sum up the first column,
we get n + 1, if we sum up the second column we get n + 1, ..., and for the
nth column we also get n+ 1, so the total is n+ 1 times n columns.
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Proof Techniques 

A valid proof is a valid argument, i.e. the conclusion 
follows from the given assumptions. 
 
 

Three techniques: 
 Direct proof 
 Proof by induction 
 Proof by contradiction. 

Proof by example:  

The author gives only the case n = 2 and suggests that it contains 

most of the ideas of the general proof.  

 

Proof by intimidation: 'Trivial.'  

 

Proof by cumbersome notation: Best done with access to at least 

four alphabets and special symbols.  

 

Proof by exhaustion: An issue or two of a journal devoted to your 

proof is useful.  

 

Proof by omission: 'The reader may easily supply the details.' 'The 

other 253 cases are analogous.' '...‘ 

 

Proof by obfuscation: A long plotless sequence of true and/or 

meaningless syntactically related statements.  

 

Proof by wishful citation: The author cites the negation, converse, 

or generalization of a theorem from literature to support his 

claims.  

 
©  PROOF TECHNIQUES by A. H. Zemanian, The Physics Teacher, May 1994. 
   

Proof Technique: Direct Proof 
• Prove that 

 

• Define 

 

– Note: 

 

• Sum up:   
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Leonhard Euler 
(1707-1783) 



99

If we sum up the elements horizontally, we got 2
∑n

i=0 i, while if we sum
up the elements vertically, we got n(n + 1). But the sum does not change
when we count differently, thus:

n∑
i=0

i =
n(n+ 1)

2
.

The legend attributes this proof technique to young Euler, who apparently
was punished for not behaving in the classroom. His teacher would have
asked him to compute the sum of integers from 1 to 100, and Euler would
have, or so the legend says, came up with this technique so as to have to
compute all the additions!

Mathematical Induction. This is a proof technique to show statements
of the form ∀n, P (n). We first explain the technique, then give a proof of
why this proof technique is valid, and finally provide an example. A proof
by mathematical induction follows two steps:

1. Basis step: You need to show that P (1) is true.

2. Inductive step: You assume that P (k) is true, and have to prove that
P (k + 1) is then true.

When both steps are complete, we have proved that ∀n, P (n) is true. Why
is that the case? From the inductive step, we have that

P (k)→ P (k + 1)

for any k, therefore this is true for when we instantiate in k = 1, that is

P (1)→ P (2).

But from the basis step, we know that P (1) is true, thus combining (P (1)→
P (2));P (1); we get that therefore P (2) holds. We can repeat this process
with k = 2 to deduce that P (3) holds, and so on and so forth.
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Mathematical Induction  
• Prove propositions of the form: n P(n) 

• The proof consists of two steps:     

– Basis Step: The proposition P(1) is shown to be true 

– Inductive Step:  

• Assume P(k) is true (when n=k), then, prove 
P(k+1) is true (when n=k+1). 

 

• When both steps are complete, we have proved 
that "n P(n)” is true 

 

Why Does it Work? 
• From step 2: P(1)  P(2)  by Universal 

Instantiation. 

• From step 1:  P(1)  

• Applying modus ponen: P(2). 

• Repeat the process to get P(3),P(4), P(5), 
etc. So, all P(k) are true! i.e., k P(k)  

Analogy with 
climbing  
Ladders. 

[P(1)  k(P(k)P(k+1))]  nP(n)  

Basis 
Hypothesis 

Inductive step 

(valid argument) 
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Example 39. We want to prove

n∑
i=0

i =
n(n+ 1)

2
, ∀n N

using mathematical induction. Then set

P (n) = “
n∑
i=0

i =
n(n+ 1)

2

′′

, ∀n N.

• Basis step: P (1) = 1 = 1(1+1)
2

.

• Inductive step: suppose that P (k) is true, that is
∑k

i=0 i = k(k+1)
2

is
true for all k. Now we need to show that P (k + 1) holds.

k+1∑
i=0

i =
k∑
i=0

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2
.

There P (n) is true for all n.

Proof by Contradiction. We want to prove that P (n)→ Q(n) is true.
In a proof by contradiction, we assume by contradiction that P (n) → Q(n)
is false, that is, that ¬(P (n) → Q(n)) is true. The only way this might
happen, is if P (n) is true and Q(n) is false. Thus we start with P (n) true
and Q(n) false. If from there we deduce a contradiction, that is a statement
of the form C ∧ ¬C, which is always false, what we have proven is

¬(P (n)→ Q(n))→ C ∧ ¬C

is true. This is equivalent to P (n)→ Q(n). To see that, set S(n) = “P (n)→
Q(n)”, and look at the truth table:

S C ¬S C ∧ ¬C (¬S)→ (C ∧ ¬C)
T T F F T
T F F F T
F T T F F
F F T F F
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Therefore, to prove P (n)→ Q(n) (or any other statement), it suffices to
instead prove the conditional statement ¬(P (n)→ Q(n))→ C ∧ ¬C, which
is done by direct proof, by assuming ¬(P (n) → Q(n)) and deduce C ∧ ¬C.
One difficulty is to figure out what is C given the proof to effectuate.

Example 40. Suppose we want to prove that: if n2 is even, then n is even,
for n integer. Set P (n)=“n2 is even”, and Q(n)=“n is even”. We want to
prove that P (n)→ Q(n), which is equivalent to ¬(P (n)→ Q(n))→ C∧¬C.
Suppose ¬(P (n) → Q(n)), that means P (n) is true and Q(n) is false: n2 is
even, and n is not even (equivalently n is odd). Now if n is odd, then
n = 2k + 1, and n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, that is n2

is odd. Thus C = “n2 is even”, and we have just shown that n2 is odd, that
is C ∧ ¬C, a contradiction!

We may alternatively use that P (n) → Q(n) is equivalent to ¬Q(n) →
¬P (n). This would be a proof using contrapositive.

Example 41. Suppose we want to prove that: if n2 is even, then n is even,
for n integer. Set P (n)=“n2 is even”, and Q(n)=“n is even”. We want to
prove that P (n) → Q(n), which is equivalent to ¬Q(n) → ¬P (n). Suppose
that ¬Q(n), that is: n is not even, or n is odd. Now if n is odd, then
n = 2k + 1, and n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, that is n2

is odd, which is equivalent to ¬P (n), which concludes the proof.
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Example: Mathematical Induction  
• Prove that 

 

• Let P(n) denote 
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Basis step: P(1) is true 
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• Inductive step. Assume P(k) true, k>0: 

    Prove P(k+1) true : 
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So, P(n) is true for 
n=k+1 and thus 
true for all n: 
n P(n) is true 

 
 

Proof Technique: Contradiction 
• Prove that: If n2 is even, then n is even, for n integer. 

• Lets assume: n2 is even but n is not even (assume the 
negation of the statement is true). 

• n is not even  n is odd, i.e., n = 2k+1, k integer. 

– Then n2 = (2k+1)2  

                      = 4k2 + 4k + 1  
               = 2 (2k2 + 2k ) + 1 (odd)   

• This is in contradiction with the assumption. 

• Hence, the assumption is false, thus the negation of 
the assumption is true. 

 



104 CHAPTER 3. PREDICATE LOGIC

Exercises for Chapter 3

Exercise 20. Consider the predicates M(x, y) = “x has sent an email to y”,
and T (x, y) = “x has called y”. The predicate variables x, y take values in
the domain D = {students in the class}. Express these statements using
symbolic logic.

1. There are at least two students in the class such that one student has
sent the other an email, and the second student has called the first
student.

2. There are some students in the class who have emailed everyone.

Exercise 21. Consider the predicate C(x, y) = “x is enrolled in the class y”,
where x takes values in the domain S = {students}, and y takes values in
the domain D = {courses}. Express each statement by an English sentence.

1. ∃ x ∈ S, C(x,MH1812).

2. ∃ y ∈ D, C(Carol, y).

3. ∃ x ∈ S, (C(x,MH1812) ∧ C(x,CZ2002)).

4. ∃ x ∈ S, ∃ x′ ∈ S, ∀y ∈ D, ((x 6= x′) ∧ (C(x, y)↔ C(x′, y))).

Exercise 22. Consider the predicate P (x, y, z) = “xyz = 1”, for x, y, z ∈ R,
x, y, z > 0. What are the truth values of these statements? Justify your
answer.

1. ∀ x, ∀ y, ∀ z, P (x, y, z).

2. ∃ x, ∃ y, ∃ z, P (x, y, z).

3. ∀ x, ∀ y, ∃ z, P (x, y, z).

4. ∃ x, ∀ y, ∀ z, P (x, y, z).

Exercise 23. 1. Express

¬(∀ x, ∀ y, P (x, y))

in terms of existential quantification.
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2. Express
¬(∃ x, ∃ y, P (x, y))

in terms of universal quantification.

Exercise 24. Consider the predicate C(x, y) = “x is enrolled in the class y”,
where x takes values in the domain S = {students}, and y takes values in
the domain C = {courses}. Form the negation of these statements:

1. ∃ x, (C(x,MH1812) ∧ C(x,CZ2002)).

2. ∃ x ∃ y, ∀z, ((x 6= y) ∧ (C(x, z)↔ C(y, z))).

Exercise 25. Show that ∀x ∈ D, P (x) → Q(x) is equivalent to its contra-
positive.

Exercise 26. Show that

¬(∀ x, P (x)→ Q(x)) ≡ ∃x, P (x) ∧ ¬Q(x).

Exercise 27. Let y, z be positive integers. What is the truth value of
“∃y, ∃z, (y = 2z ∧ (y is prime))”.

Exercise 28. Write in symbolic logic “Every SCE student studies discrete
mathematics. Jackson is an SCE student. Therefore Jackson studies discrete
mathematics”.

Exercise 29. Here is an optional exercise about universal generalization.
Consider the following two premises: (1) for any number x, if x > 1 then
x− 1 > 0, (2) every number in D is greated than 1. Show that therefore, for
every number x in D, x− 1 > 0.

Exercise 30. Let q be a positive real number. Prove or disprove the following
statement: if q is irrational, then

√
q is irrational.

Exercise 31. Prove using mathematical induction that the sum of the first
n odd positive integers is n2.

Exercise 32. Prove using mathematical induction that n3 − n is divisible
by 3 whenever n is a positive integer.



106 CHAPTER 3. PREDICATE LOGIC


