
Chapter 5

Combinatorics

“I think you’re begging the question,” said Haydock, “and I can
see looming ahead one of those terrible exercises in probability
where six men have white hats and six men have black hats and
you have to work it out by mathematics how likely it is that the
hats will get mixed up and in what proportion. If you start think-
ing about things like that, you would go round the bend. Let me
assure you of that!” (Agatha Christie, The Mirror Crackd)

This chapter is dedicated to combinatorics, which refers broadly to dif-
ferent ways of counting objects.

Suppose for example that you have two slots to be filled, and for the first
slot, there are n1 choices, while there are n2 choices for the second slot. How
many ways are there to fill up both slots? Well, for the first slot, we have
n1 choices, now for each of these, we still have n2 choices, for a total of n1n2

choices.

Example 51. Suppose you have 3 choices for the main course, and 2 choices
for the dessert. How many choices of menus do you have? Well, you can pick
any of the 3 main courses, so 3 choices here. Next, for main course 1, you
can choose 2 desserts, then for main course 2, you can choose 2 desserts, and
finally for main course 3, you can still choose 2 desserts, which makes it a
total of 6 menus.

More generally, if there are k slots, and n1 choices for the 1st slot, n2

choices for the second slot, until nk choices for the kth slot, we get a total of
n1 · n2 · · ·nk choices.
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Principle Of Counting 
• There are two slots to be filled, there are n1 choices for 

slot 1 and n2 choices for slot 2. 

– E.g., you have 3 choices for the main course and 2 choices for 
dessert. 

• The total number of unique choices to fill the slots is n1n2 

• In general: n1, n2, … nk choices for k-slots 

•  n1 * n2*…* nk ways 

–  (cardinality of the cartesian product of sets) 
 

© image from http://key-boxes.com/page/2 
 

Cardinality Of Power Set 

• Consider a set A with n elements. 

• Each of these n elements are either in a subset of A 
or not: 2 choices 

– Such a choice needs to be made for each of the n elements 

• Thus 2*2*…*2=2n choices. 

– We saw another derivation using the Binomial theorem. 
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Now n1 ·n2 · · ·nk is also the cardinality of the cartesian product of k sets,
where the set i has ni elements.

Example 52. Suppose you have 3 choices for the main course, and 2 choices
for the dessert. How many choices of menus do you have? An alternative
way to view this question is to explicitly list all the choices:

main course 1, dessert 1 main course 1, dessert 2
main course 2, dessert 1 main course 2, dessert 2
main course 3, dessert 1 main course 3, dessert 2

This makes a total of 6 menus. You notice that when we list all the options,
we get a cartesian product of two sets, the set { main course 1, main course
2, main course 3 }, and the set { dessert 1, dessert 2 }.

We recall that given a set A, its power set P (A) is the set of all subsets
of A. We already saw in the previous chapter that the cardinality of P (A)
is 2n. Here is another way of proving it. Write A = {a1, . . . , an}. Now list
all subsets of A, and to each subset, associate a binary vector of length n,
where every coefficient is either 0 or 1: the first coefficient is 1 if a1 is in the
subset, and 0 otherwise, similarly, the second coefficient is 1 if a2 is in the
subset, and 0 otherwise, and so on and so forth. Since every element is in a
given subset or not, we do obtain all possible binary vectors of length n, and
there are 2n of them.

Example 53. Consider the set A = {1, 2}.

∅ 00
{1} 10
{2} 01
A 11

Now suppose that there are n elements, to be put in r slots. If elements
can be repeated, we are in the scenario we have just seen, and there are nr

choices. Now if elements cannot be repeated, then, we have n choices for
the first slot, n− 1 choices for the second slot, and so on and so forth, until
n− (r − 1) choices for the last slot. We thus get

n(n− 1)(n− 2) · · · (n− r + 1). (5.1)

This is for example what happens when picking cards from a deck of cards,
once the cards are not put back in the deck.
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Filling r Slots With n Choices  
• There are n elements, with which to fill r slots. 

• When elements can be repeated: 

– Using the principle of counting: n*n*…*n = nr choices  
 

• When elements cannot be repeated: 

– n choices for first slot,  

– n-1 choices for second slot,… 

– n-(r-1) choices for last slot 

– In total: n(n-1)(n-2)…(n-r+1) choices 

 
• E.g., sequence of choice of cards from a deck of cards 

 
© to the artist 
 

Permutation: P(n,r) 
A permutation is an arrangement of all or part of a set of 
objects, with regard to the order of the arrangement.  

 

 

Number of permutations of n objects taken r at a time: 
 

            P(n,r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)! 
 
 

where n!=n*(n-1)*(n-2)*…*2*1 (called n factorial).  
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If r = n, we notice that all the n elements are attributed to the n slots,
which gives a permutation of the n elements. This also shows that the number
of permutations of n elements is

n(n− 1)(n− 2) · · · 2 · 1 = n!.

The above scenario, when there are n elements but only r slots, and elements
cannot be repeated, is called permutations of n objects taken r at a time, that
is an arrangement where ordering matters, and the number P (n, r) of such
permutations is

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.

Permutations can be defined also if some of the objects are repeated, that
is, we still have n elements, but n = k1 + k2 + · · · + kr, that is, there are k1
elements of type 1, k2 elements of type 2, until kr elements of type r. How
many permutations do we have in this case? To count this, we can proceed
as follows: place k1 elements out of n places, then place k2 elements in n−k1
places, etc until you place kr elements in the remaining places. This means
that we have (

n

k1

)(
n− k1
k2

)
· · ·
(
kr
kr

)
(5.2)

where we recall that
(
n
k

)
counts the number of ways of choosing k elements

out of n.
We also call

(
n
r

)
a combination, that is a say of selecting objectings without

considering the order of the selection. We have that(
n

r

)
= C(n, r) =

n!

r!(n− r)!
.

Indeed, recall that when we had r slots and n objects, we have P (n, r) ways
of placing the objects, where

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.

Now we still have r slots, n objects to choose from, but this time, we do not
care about the ordering, and there are r! possible ordering for each combi-
nation:

r!C(n, r) = P (n, r).
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Permutation 
In general: The number of distinguishable permutations 
from a collection of objects, where first object appears 
(repeats) k1 times, second object k2 times, … for r 
distinct objects: 

                                  n!/(k1! k2!... kr!) 

Combination: C(n,r) or  

Number of combinations of n objects taken r at a time 

                                     = C(n,r) = n!/r!(n-r)! 
 

 

– There are r! possible orderings within each combination 

– So r! C(n,r) = P(n,r) by definition of permutation  

A combination is a selection of all or part of a set of objects, 
without regard to the order in which objects are selected. 

E.g. Team of 4 people from a group of 10 
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Example 54. From a committee of 8 people, in how many ways can
you choose

• a chair and a vice-chair (one person cannot hold more than one posi-
tion): it is P (8, 2) = 8!

6!
= 8 · 7. Indeed, once the chair is chosen (8

choices), we have 7 choices for the vice chair.

• a subcommittee of 2 people: it is C(8, 2) = 8!
2!6!

= 28. Indeed, in this
case, any 2 persons among the 8 people will do, irrespectively of the
ordering. This means that we choose person 1 with person 2, person 1
with person 3, etc until person 1 with person 8 (7 possibilities),or person
2 with person 3, etc until person 2 with person 8 (6 possibilities), or
person 3 with person 4, ..., person 3 with person 8 (5 possibilities), and
by continuing the list, we get 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28.

This example also illustrates that r!C(n, r) = P (n, r). Indeed, we know
that P (8, 2) takes into account the ordering, therefore, if say person 1 is chair
and person 2 is vice chair, it counts for 1 choice, while it counts for 2 choices
for the subcommittee, since person 1 and person 2, and person 2 and person
1, represent the same subcommittee.

We now finish the computations of (5.2):(
n

k1

)(
n− k1
k2

)
· · ·
(
kr
kr

)
=

n!

k1!(n− k1)!
(n− k1)!

k2!(n− k1 − k2)!
· · · (n− k1 − · · · kr−1)!

kr!

where we notice that we can cancel out numerator and denominator to finally
obtain

n!

k1!k2! · · · kr!
.

Some experiments may not have a deterministic outcome, e.g., tossing a
coin, or throwing a dice, in which case, different techniques are needed.

Definition 34. The set of possible outcomes of random trial is called a
sample space.

For example, if you toss a coin, the set of possible outcomes is { head, tail
}. If you toss a coin twice, you may be interested in the number of heads, for
which the set of possible outcomes is {0,1,2 }, or in the actually sequence of
heads/tails, for which the set of possible outcomes is { head head, head tail,
tail head, tail tail }, or in whether the two twosses matched, for an outcome
which belongs to { yes, no }.
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Example 
From a committee of 8 people, in how many ways can you 
choose:  

• a chair and vice-chair (one person cannot hold more 
than one position?) 

• P(8,2) 

• a subcommittee of 2 people? 

• C(8,2) 

 

Sample Space 
• Some experiments may not have a deterministic 

outcome, e.g., tossing of a coin, throwing a dice. 

 

The set of possible outcomes of a random trial is called 
the sample space. 

 

• E.g, for coin toss,  the sample space is {Head, Tail} 

• Two coins tossed 

– Record the number of heads {0,1,2} 

– Record sequence of heads/tails {HH, HT, TH, TT} 

– Record if the two tosses matched {Yes, No} 
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Definition 35. An event is a set of outcomes of a random trial, or in other
words, a subset of the sample space.

There are different types of events.

• An impossible event refers to an outcome which is actually not possible,
that is, which does not belong to the sample space. For example, if you
roll a dice, the number that you will get belongs to the sample space
{1, 2, 3, 4, 5, 6}, therefore, roll a dice and obtain 7 is an impossible event.

• A certain event is on the contrary an event which always happens,
which corresponds to the whole sample space, such as: roll a dice, and
get a number which is less than 10. Any number in the sample space
{1, 2, 3, 4, 5, 6} is less than 10.

• Two events are said to be mutuall exclusive when they cannot happen
at the same time. For example, you roll a dice, the events “get an even
number” and “get a number divisible by 5” are mutually exclusive,
they cannot happen both at the same time.

We now want to define the notion of probability of an event. Informally,
this represents the likelihood that an event will occur, or the ratio of the
number of wanted outcomes, by the number of possible outcomes. For ex-
ample, if you toss a fair coin, the probability of a head (that is, the likelihood
that a head happens), is 1/2. This comes from the fact that you have two
possible outcomes, head and tail, and both of them are equally likely (so
2 at the denominator). On the numerator, you want a head (so 1 at the
numerator).

You may also want to repeat a given random experiment, say n times.
When you look at a particular event E, over the n times, it will appear nE
times. Therefore the frequency of occurence of E over these n trials is

fE =
nE
n
.

The notion of frequency is different from that of probability of an event,
but it is also related. For example, if you toss a coin 10 times, and you
are interested in counting the number of occurences of the event E = head,
maybe you get nE = 6, therefore fE = 6/10.
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Events 

• Impossible event : event not in the sample space. 

– E.g Roll a dice, get more than 6 on top. 
 

• Certain event: event  which is the whole sample space. 

–  E.g. Roll a dice, get a number less than 10. 

 

• Mutually exclusive events: events which cannot happen at the 
same time. 

–  E.g. Roll a dice, get an even number which is divisible by 5.  

An event is a set of outcomes of a random  trial 
(a subset of the sample space). 

Probability Of Events 
• The likelihood that an event will occur 

– When tossing a fair coin, the probability of a head is 0.5.  

© to the artist 
 

• Empirical interpretation 

– Repeat an experiment is n times 

– An event E occurs nE times  

– Then fE= nE /n is the frequency of 
occurrence of E in n trials 
• such a frequency measure is not 

necessarily a proof of the probability 
of event E, but can be an “indicator”  
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The frequency is then slightly different that what you may have expected,
since with a probability of 1/2 and 10 trials, you may have expected the
number of heads ot be 5. Therefore the frequency is an “indicator”.

We next introduce a formal definition of probability.

Definition 36. A probability space is a sample space A, with some events
Ei ∈ A, and probability measure P , satisfying 3 axioms:

1. 0 ≤ P (Ei) ≤ 1 for every event Ei ∈ A.

2. P (A) = 1 and P (∅) = 0.

3. P (E1∪E2∪ . . .∪Ek) = P (E1)+P (E2)+ . . .+P (Ek) when Ei∩Ej = ∅,
i 6= j.

Example 55. Suppose that the random trial is tossing a fair coin: The
sample space is { head, tail }. Because the coin is fair (unbiased), head
and tail are equally likely events (P (head)=P (tail)), and they are mutually
exclusive (P (head)+P (tail)=1). Therefore, we obtain formally what our
intuition told us, namely, that P (head)=P (tail)=1/2.

More generally, if there are n equally likely mutually exclusive (and span-
ning the sample space) events E1, . . . , En, then we get: P (E1) = · · · = P (En)
and P (E1) + . . .+ P (En) = 1 therefore P (Ei) = 1/n for all every event Ei.

Example 56. Suppose that you choose 4 cards from a deck of 52 cards. What
is the probability of getting 4 kings? There are C(52, 4) ways of choosing 4
cards. Now all are equally likely, but only one of these choices has all four
kings. Therefore the probaiblity of getting all 4 kings is

1

C(52, 4)
.
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Axioms For A Probability Space 

• Axiom 1: 

 

• Axiom 2: 
(Event A must happen everytime the experiment is done since every event belongs to A) 

• Axiom 3: 

                                     when 
(i.e., Ei and Ej are mutually exclusive)  

For a sample space  A , and some event EiA:  

Equally Likely Outcomes: Symmetry 
• Example: Tossing an unbiased coin 

– Sample space is {H,T} (H=head, T=tail) 

– No reason for H T to occur more often than T: P(H)=P(T) 

– H and T are mutually exclusive events: P(H)+P(T)=1 

– Thus P(H)=P(T)=0.5 

• In general: if there are n equally likely mutually exclusive 
(and spanning the sample space) events, then the 
elementary probability of each such event is 1/n  
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Exercises for Chapter 5

Exercise 46. A set menu proposes 2 choices of starters, 3 choices of main
dishes, and 2 choices of desserts. How many possible set menus are available?

Exercise 47. Consider the set A = {1, 2, 3}, P (A) =power set of A.

• Compute the cardinality of P (A) using the binomial theorem approach.

• Compute the cardinality of P (A) using the counting approach.

Exercise 48. • If you toss two coins, what is the probability of getting
2 heads?

• If you toss three coins, what is the probability of getting exactly 2
heads?

Exercise 49. Ten fair coins are tossed together. What is the probability
that there were at least seven heads?

Exercise 50. Snow white is going to a party with the seven dwarves. Each
of the eight of them owns a red dress and a a blue dress. If each of them
is likely to choose either colored dress randomly and independently of the
other’s choices, what is the chance that all of them go to the pary wearing
the same colored dress?
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Examples for Chapter 5

Let us recall one storage application, given in Example 8.

Example 57. Suppose you want to store 200GB of data, and the shop is
selling disks of 100 GB each. Then you can buy 4 disks, store half of your
data (let us call it D1) on disk 1, the other half (say D2) on disk 2, then copy
the content of disk 1 to disk 3, and the content of disk 2 to disk 4. We get
thus the following data allocation:

disk 1 : D1, disk 2 : D2, disk 3 : D1, disk 4 : D2.

This strategy does tolerate any one disk failure. It does not tolerate any
two disks failures, as we already know. However, what is the probability of
actually losing the data in case of two disks failures? The number of patterns
with 2 failures is C(4, 2) = 6, while the number of patterns creating a data
loss is 2, therefore the probability is

2

6
=

1

3
.

Our next example is a famous puzzle, the Hat Problem. It is famous
because it made the news!

http://www.nytimes.com/2001/04/10/science/

why-mathematicians-now-care-about-their-hat-color.html

Here is how the puzzle goes: N players enter a room. A red or blue hat is
placed on each person’s head. The color of each hat is determined by a fair
coin toss, that is P (blue)=P (red), with the outcome of one coin toss having
no effect on the others. Each person can see the other players’ hats but not
his own.

• The players must simultaneously guess the color of their own hats or
pass.

• The group shares a prize if at least one player guesses correctly, and no
player guesses incorrectly.

• No communication of any sort is allowed, exepct for any initial strategy
session before the game begins. For a strategy to be acceptable, it must
always result in at least one prisoner making a guess.
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Example (II) 
D = (D1, D2) 

D1 D2 D1 D2 

• If one hard disk fails, your data is safe. 

• What is the probability of losing your data in case 
two hard disks fail? 

 2

𝐶(4,2)
=

2

6
=

1

3
 

The Hat Problem 
N players enter a room  

• A red or blue hat is placed on each person's head.  

– P(red)=P(blue)=1/2, independently.  

• Each player sees the other hats but not his own. 

– The players must simultaneously guess the color of their 
own hats or pass.  

• Win if at least one player guesses correctly and no 
players guess incorrectly. 

–  No communication is allowed, except for any initial strategy 
session before the game begins.  



142 CHAPTER 5. COMBINATORICS

Example 58. If N = 1, there is only one player, thus all he can do is make
a guess, the probability of winning is simply 1/2.

Example 59. If N = 2, there are two players. If both players guess ran-
domly, their chance of winning is only 1/4, because they try to guess one
combination of colors among 4 possible combinations. A single player only
making a guess is better, the probability of winning is then 1/2.

Suppose now that N = 3. Let us assign the number 0 to a hat of blue
color, and 1 to a hat of red color. There are 8 possible hat assignements:

000, 100, 010, 110, 001, 101, 011, 111.

Therefore, if a player sees two hats of the same color, he guesses the opposite
color (this is an acceptable strategy, there must always be two hats of the
same color). Otherwise he passes. This corresponds to

100, 010, 110, 001, 101, 011,

where only one player will see two hats of the same color, will guess his color
to be the other one, and will be right with probability 6/8 = 3/4. The game
will be won with probability 3/4 > 1/2.

In fact, we can prove that this strategy is optimal!
(1) First, we need to note that the number of correct guesses and the

number of incorrect guesses are the same. The reason is because the proba-
bility of making a correct/incorrect guess is 1/2. For example, when N = 2,
when both players are making a guess, there is one chance of winning (2
correct guesses), and three chances of losing (2 wrong guesses, 1 wrong guess
and 1 correct guess, twice). Thus the total number of correct guesses is 4,
and the number of incorrect guesses is 4 as well! For another example, when
N = 3, the proposed strategy comprises 6 correct guesses (one for each of
the 6 wins), and 6 wrong guesses (3 incorrect guesses per each loss, and there
are two losses). More precisely, for the correct guesses 100, 010, 001, corre-
spond the 3 incorrect guesses 000, and for the correct guesses 011,101,110,
correspond the 3 incorrect guesses 111.

(2) Suppose we could get a better strategy, where we get 7 wins instead
of 6, and thus 1 loss. For a winning strategy, no incorrect guess can be made,
therefore we need at least 7 right guesses, which means in turn, using the
above argument, 7 wrong guesses. But this is not possible to have 7 wrong
guesses in one loss, and only 3 players.
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The Hat Problem 

Strategy: If the other two guys have the same hat color, 
“guess the opposite”, if they have different colors, stay 
silent! 

–  Chance of winning with this strategy: 3/8+3/8=0.75  

0                     1 

000    100    010    110    001    101    011    111 

The Hat Problem 
• Optimal strategy? 

• Number of correct guesses = 
number of incorrect guesses 

• Better strategy: 7 wins & 1 
loss 

• At least 7 correct guesses, 
impossible to have 7 
incorrect guesses in one loss 
and 3 players 
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