
Chapter 7

Complex Numbers

“I tell you, with complex numbers you can do anything.” (J. Der-
byshire, Prime Obsession: Bernhard Riemann and the Greatest
Unsolved Problem in Mathematics)

So far, the largest set of numbers we have seen is that of real numbers.
This will change in this chapter, with the introduction of complex num-
bers. They were introduced around 1545 by the mathematician Gerolamo
Cardano, in order to obtain closed form expressions for roots of cubic poly-
nomial equations, which need square roots of negative numbers, which do
not exist (meaning do no exist if only real numbers are considered).

Recall that there is no real number z such that z2 = −1 (the square of a
real number is always positive).

Definition 38. Define an imaginary unit i such that

i2 = −1.

More general, we define an imaginary number z to be of the form

z = iy, y ∈ RR

therefore
z2 = (iy)2 = i2y2 = −y2.

We may often use the notation i =
√
−1 to emphasize that i is not an

index and is instead the imaginary unit, however, it is really best to avoid
writing negative roots to avoid confusion in the computations...

Example 65. We have (4i)2 = 16i2 = −16.
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Definition of i 
• There is no real number z such that 

𝑧2 = −1. 

Define an imaginary unit i (denoted also j) such that 

𝑖2 = −1 𝑡ℎ𝑎𝑡 𝑖𝑠  𝑖 = −1. 

Define an imaginary number z to be of the form 

𝑧 = 𝑖𝑦 = 𝑦 −1 

for y any real number. 

• Then the imaginary number z is such that 
𝑧2 = −𝑦2. 

 

Computations with i 

Powers of i:  𝑖0 = 1, 𝑖1 = 𝑖, 𝑖2 = −1, 𝑖3 = −𝑖, 𝑖4 = 1. 

 

Inverse of i:  𝑖 𝑧 = 1 𝑡ℎ𝑢𝑠 𝑧 = 𝑖−1 = −𝑖.        

                              

Powers of z=iy, y real: 𝑧2 = 𝑖2𝑦2 = −𝑦2, 𝑧3 = −𝑖𝑦3 

 

Example: (4𝑖)2= −16.  

To avoid confusion, write i instead of a negative root!!  
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Let us compute some powers of i:

i0 = 1, i1 = i, i2 = −1, i3 = i(i2) = −i, i4 = (i2)2 = (−1)2 = 1.

To compute the inverse of i, we need to find an imaginary number z such
that

iz = 1→ z = i−1 = −i.

Correspondingly we get powers of imaginary numbers of the form z = iy,
y ∈ R:

z0 = 1, z1 = z, z2 = (iy)2 = −y2, z3 = iy(−y2) = −iy3, z4 = (z2)2 = (−y2)2 = y4.

Definition 39. We define a complex number z to be of the form

z = a+ ib, a, b ∈ R.

We call a, and write <(z) the real part of z. We call b, and write =(z) the
imaginary part of z.

Example 66. Take z = 3+5i, then its real part is <(z) = 3 and its imaginary
part is =(z) = 5.

Definition 40. We define the conjugate of a complex number z = a + ib,
a, b ∈ R, to be

z̄ = a− ib, a, b ∈ R.

Note that for z = a+ ib, a, b ∈ R:

z̄ = a− ib = a+ ib = z.

Also

zz̄ = (a+ ib)(a− ib) = (a− ib)(a+ ib) = a2 + iab− iab− (i2)b2 = a2 + b2.

Example 67. Take z = 3+5i, then its conjugate is z̄ = 3−5i and zz̄ = 9+25.

We discuss next how to visualize a complex number geometrically. To
do so, we associate to a complex number z = a + ib a pair comprising its
real part and its imaginary part, namely (a, b). Now we see (a, b) in the
two-dimensional real plane, where the real part corresponds to the x-axis,
while the imaginary part corresponds to the y-axis.



164 CHAPTER 7. COMPLEX NUMBERS

Complex Numbers 
A complex number z is of the form 

𝑧 = 𝑎 + 𝑏𝑖, 𝑎, 𝑏 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

We call a =Re(z) the real part of z, and b = Im(z) the 
imaginary part of z. 

Example: 3+5i, Re(3+5i)=3, Im(3+5i)=5. 

Conjugate  
For z=a+ib a complex number, its conjugate 𝑧  is  

𝑧 = 𝑎 − 𝑖𝑏. 

• We have 𝑧 =z. 
 
 

• We have 𝑧𝑧 = 𝑧 z = 𝑎2 + 𝑏2. 

Example: 3 + 5𝑖 =3-5i, (3 + 5𝑖)(3+5i)=9+25. 
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We next define operations on complex numbers.
Addition. Take two complex numbers a + ib, c + id, their sum is given

by
(a+ ib) + (c+ id) = (a+ bc) + i(b+ d).

Multiplication. Take two complex numbers a+ ib, c+ id, their product
is given by

(a+ ib)(c+ id) = ac+ aid+ ibc− bd = (ac− bd) + i(ad+ bc).

Division. Take two complex numbers a + ib, c + id, their ratio is given
by

a+ ib

c+ id
.

To be able to handle this case, the technique is to multiply both the numer-
ator and denominator by the conjugate of the denominator, namely c− id:

a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)
=

(a+ ib)(c− id)

c2 + d2
.

Now we are in familiar territories since the denominator is a real number:

a+ ib

c+ id
=

(ac− iad+ ibc+ db)

c2 + d2
=
ac+ db

c2 + d2
+ i

bc− ad
c2 + d2

.

We saw above that a complex number z = a + ib can be represented as
the point (a, b) in the 2-dimensional real plane. Recall that a point on a
circle of radius one centered around the origin can be written as (cos θ, sin θ),
where θ is the angle from the x-axis counter clockwise. Now to be able to
write similarly an arbitrary point in the 2-dimensional real plane, note that
this point will be on a circle of radius r, where r is the length of the vector
(a, b). Therefore, this point can be written as

(a, b) = (r cos θ, r sin θ),

which are called polar coordinates. Alternatively, we may write

z = a+ ib = r cos θ + i sin θ.

We call r the modulus of z, and θ the argument of z.
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Complex Plane 
Geometrically: 

a+ib, or (a,b)  

 

 

 

Also 
(𝑎 + 𝑖𝑏) 𝑎 + 𝑖𝑏 = 𝑎2 + 𝑏2. 

(a,b) 

Re 

Im 

Complex Numbers Operations 
Addition: 𝑎 + 𝑖𝑏 + 𝑐 + 𝑖𝑑 = 𝑎 + 𝑐 + 𝑖(𝑏 + 𝑑) 

 

Multiplication: 𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑 = 𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐) 

 

 

Division: 
𝑎+𝑖𝑏

𝑐+𝑖𝑑
=

(𝑎+𝑖𝑏)(𝑐−𝑖𝑑)

(𝑐+𝑖𝑑)(𝑐+𝑖𝑑)
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Once we have a complex number written in polar coordinates, we may
use Euler formula to write the complex number in exponential form.

Euler formula says that

eiθ = cos θ + i sin θ

for θ any real number (in radians).

Proof. The proof that is provided now is the most classical one, and it relies
on Taylor series for the different quantities involved:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
+ . . .

cosx =
∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
+ . . .

Recall that a Taylor series for a function f(x) is

f(x) = f(a) +
f ′(a)

1
(x− a) +

f ′′(a)

2!
(x− a)2 + . . .

where a is taken to be zero in our case.
Thus

eix =
∞∑
n=0

(ix)n

n!

=
∞∑
n=0

(ix)2n

(2n)!
+
∞∑
n=0

(ix)2n+1

(2n+ 1)!

=
∞∑
n=0

(i2)n

(2n)!
x2n +

∞∑
n=0

i(i2)n

(2n+ 1)!
x2n+1

= cos x+ i sinx

as needed.
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Polar Coordinates 

(cos θ ,sin θ) 

(r cos θ ,r sin θ) 

θ 

𝑧 = 𝑎 + 𝑖𝑏 = 𝑟 (cos θ  +𝑖 𝑠𝑖𝑛 θ) 

r is called the modulus of z  
θ is called the argument of z 

Euler Formula 
For θ any real number (in radians) 

𝑒𝑖θ = cos θ+ 𝑖 𝑠𝑖𝑛θ. 

 

(Recall that 2π radians =360 degrees) 

 

Euler identity:  𝑒𝑖π + 1 = 0. 

Image from wikipedia 
 

Leonhard Euler 
(1707-1783) 
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As a corollary, we get Euler identity:

eiπ + 1 = 0.

Indeed choose θ to be π (=180 degrees), then

eiπ = cosπ + i sin π = −1,

since cos π = −1 and sinπ = 0.
Thanks to Euler Formula, we can rewrite a complex number z as:

z = a+ ib = r(cos θ + i sin θ) = reiθ.

Notice now that if we compute zz̄, we get

zz̄ = (a+ ib)(a− ib) = reiθre−iθ

that is
zz̄ = a2 + b2 = r2

therefore the modulus of z, denoted by |z|, satisfies

|z| =
√
zz̄ =

√
a2 + b2 = r.

The argument (or phase) of z is θ, let us try to express it as a function of a, b.
For that, remember that given a right triangle (drawn on the x-axis) with
angle θ that goes from the x-axis counter clockwise, we have that tan θ = b

a

(the ratio of the opposite side and the adjacent one). Therefore θ = tan−1 b
a

where the range of tan−1 is (−π, π], and one has to be careful that there are
special cases depending on the sign of a, b:

arg(z) =



tan−1 b
a

a > 0
tan−1 b

a
+ π a < 0, b ≥ 0

tan−1 b
a
− π a < 0, b < 0

π
2

a = 0, b > 0
−π
2

a = 0, b < 0
indeterminate a = 0, b = 0.

Example 68. Take z = 3 + 3
√

3i, then its modulus |z| is

|z| =
√

32 + (3
√

3)2 =
√

9 + 27 = 6.

Then for the phase

arg z = tan−1
√

3 =
π

3
.



170 CHAPTER 7. COMPLEX NUMBERS

Converting among Forms 
𝑧 = 𝑎 + 𝑖𝑏 = 𝑟 cos θ  +𝑖 𝑠𝑖𝑛 θ = 𝑟𝑒𝑖θ 

 

The modulus |z| of  z is  

𝑧 = 𝑧𝑧 = 𝑎2 + 𝑏2
 
=r.  

 

 

The argument (or phase) of z is 

arg 𝑧 = θ= tan−1
𝑏

𝑎
. 

θ 

Example 
    z=3+3 3 𝑖 

• |z|= 9 + 27 = 6. 

• arg 𝑧 = tan−1
3 3

3
= tan−1 3 =

π

3
 

Thus the exponential form of  z=3+3 3 𝑖 is 6𝑒𝑖
π

3  

 

while its polar form is:  6 cos
π

3
+ 𝑖 sin

π

3
 . 
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Thus in exponential form, we get:

z = 3 + 3
√

3i = 6ei
π
3

while the polar form is:

z = 3 + 3
√

3i = 6ei
π
3 = 6

(
cos

π

3
+ i sin

π

3

)
Definition 41. A root of unity is a complex number z such that zn = 1.

Suppose we want to compute the 2nd roots of unity, we are looking for
complex numbers z satisfying

z2 = 1 ⇐⇒ z2 − 1 = 0 ⇐⇒ (z − 1)(z + 1) = 0

and therefore there are two 2nd roots of unity: 1 and −1. Next we want to
compute the 3rd roots of unity, we look at the equation

z3 = 1 ⇐⇒ z3 − 1 = (z − 1)(z2 + z + 1) = 0.

Thus 1 is a root, and we need to identify the other two (it is a polynomial of
degree 3, therefore we expect three roots). Consider z = e2πi/3, then

z3 = (e2πi/3)3 = e2πi = 1

and z is indeed a 3rd root of unity. So is (e2πi/3)2 since

[(e2πi/3)2]3 = (e2πi)2 = 1.

Note that apart 1, the other 2 roots are complex, which means that they do
not exist in R! (so one says that there are no roots in the case of real roots).
In general, the n roots of zn = 1 are

(e2πi/n)k, k = 1, . . . , n.

This is because
[(e2πi/n)k]n = (e2πi)k = 1

thus we have n distinct solutions, and so we got all of them!
We may ask the same question with another real number than 1, namely,

what are the roots of zn = a, for a a real number. The roots are

n
√
a(e2πi/n)k, k = 1, . . . , n.

To check it, it is enough to compute the nth power, and see that we get
indeed a:

( n
√
a(e2πi/n)k)n = a(e2πi)k = a,

and we have found the n distinct roots.
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Nth Roots of Unity 
• What are the  roots of 𝑧2 = 1?    

    1 and –1. 

• What are the roots of 𝑧3 = 1?    

    𝑒
2π𝑖

3 , 𝑒
2π𝑖

3

2

, 1 

• What are the roots of 𝑧𝑛 = 1? 

     𝑒
2π𝑖

𝑛

𝑘

, 𝑘 = 1,… , 𝑛. 

 

 

 

 

Nth Roots  
• What are the  roots of 𝑧2 = 2?    

    2 and – 2. 

• What are the roots of 𝑧3 = 2?    

    2
3

𝑒
2π𝑖

3 , 2
3

𝑒
2π𝑖

3

2

, 2
3

 

• What are the roots of 𝑧𝑛 = 𝑎, for a real? 

     𝑎𝑛 𝑒
2π𝑖

𝑛

𝑘

, 𝑘 = 1,… , 𝑛. 
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Exercises for Chapter 7

Exercise 54. Set i =
√
−1. Compute

i5,
1

i2
,

1

i3
.

Exercise 55. Set i =
√
−1. Compute the real part and the imaginary part

of
(1 + 2i)− (2 + i)

(2− i)(3 + i)
.

Exercise 56. Set i =
√
−1. Compute d, e ∈ R such that

4− 6i+ d =
7

i
+ ei.

Exercise 57. For z1, z2 ∈ C, prove that

• z1 + z2 = z̄1 + z̄2.

• z1 · z2 = z̄1 · z̄2.

Exercise 58. Consider the complex number z in polar form: z = reiθ.
Express re−iθ as a function of z.

Exercise 59. Prove that

(cosx+ i sinx)n = cosnx+ i sinnx,

for n an integer.

Exercise 60. Compute |eiθ|, θ ∈ R.

Exercise 61. Prove the so-called triangle inequality:

|a+ b| ≤ |a|+ |b|, a, b ∈ C.

Exercise 62. Compute the two roots of 4i, that is

√
4i.
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