
Chapter 8

Linear Algebra

“Algebra is generous; she often gives more than is asked of her.”
(Jean D’Alembert)

This chapter is called linear algebra, but what we will really see is the
definition of a matrix, a few basic properties of matrices, and how to compute
(reduced) row echelon form, with its applications. There is much more to
linear algebra!

Let us start by defining a matrix.

Definition 42. A matrix is a rectangular array containing numbers, also
called coefficients. We say that the matrix is an m×n matrix to specify that
the array comprises m rows and n columns. If the matrix is called A, we
usually write its coefficients as aij, where i tells us that this coefficient is on
the ith row, and j that it is on the jth column:

A =


a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn


Once the shape of the matrix is given, we need to specify where the coeffi-
cients belong to, namely whether they are real numbers, complex numbers,
integer numbers. They could also be integers modulo n.

Definition 43. A 1 × n matrix is called a row vector. An m × 1 matrix is
called a column vector.
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Matrices 
An m x n (real) matrix is a rectangular array whose 
coefficients are (real) numbers.   

                                  A=

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

. 

 

Example:   

 A=
1 7
5 2

 is a 2x2 real matrix, 2 3  is a 1x2 row vector.  

 

If m=1 or if n =1, we call  a 1 x n matrix a row vector,  
and an m x 1 matrix a column vector.  

Matrix Addition  
Addition of  m x n matrices is done componentwise:  

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

+
𝑏11 ⋯ 𝑏1𝑛
⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑛

=
𝑎11 + 𝑏11 ⋯ 𝑎1𝑛 + 𝑏1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛

 

Example:   

         A=
1 7
5 2

, 𝐵 =
1 −2
0 3

  then A + 𝐵 =
2 5
5 5
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Example 69. The matrix

A =

(
1 7
5 2

)
is a 2× 2 matrix with real coefficients, while (2, 3) is a 1× 2 row vector.

We are of course interested in performing operations on matrices. The
easiest one is probably matrix addition. For this, we need two matrices A
and B both with the same number of rows and columns, say, both of them
are n×m matrices:

A =


a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn

 , B =


b11 . . . b1n
b21 . . . b2n

...
bm1 . . . bmn

 .

Then A+B is computed componentwise, namely

A+B =


a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn

+


b11 . . . b1n
b21 . . . b2n

...
bm1 . . . bmn

 =


a11 + b11 . . . a1n + b1n
a21 + b21 . . . a2n + b2n

...
am1 + bm1 . . . amn + bmn


Example 70. Consider the following two matrices:

A =

(
1 7
5 2

)
, B =

(
1 −2
0 3

)
Then

A+B =

(
1 7
5 2

)
+

(
1 −2
0 3

)
=

(
1 + 1 7− 2

5 2 + 3

)
=

(
2 5
5 5

)
.

Definition 44. Given an m × n matrix A its transpose matrix AT is an
n×m matrix obtaining by interchanging the rows and columns of A:

A =


a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn

 , AT =


a11 . . . am1

a12 . . . am2
...

a1n . . . amn


Example 71.

A =

(
1 7
5 2

)
, AT =

(
1 5
7 2

)
.
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Transpose 
The transpose 𝐴𝑇of an m x n matrix A is the n x m matrix 
obtained by interchanging the rows and columns of A: 

A=

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

, then 𝐴𝑇 =

𝑎11 ⋯ 𝑎𝑚1
⋮ ⋱ ⋮
𝑎1𝑛 ⋯ 𝑎𝑚𝑛

 

Example:   

                A=
1 7
5 2

 , then 𝐴𝑇 =
1 5
7 2

  

 

Scalar Multiplication 

A=

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

then s*A=A*s=

𝑠𝑎11 ⋯ 𝑠𝑎1𝑛
⋮ ⋱ ⋮

𝑠𝑎𝑚1 ⋯ 𝑠𝑎𝑚𝑛
 

for s a (real) scalar. 

Example:   

                A=
1 7
5 2

 , then 2𝐴 =
2 14
10 4
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The next matrix operation is scalar multiplication. The term scalar
refers to a 1 × 1 matrix. We have that an n ×m matrix A multiplied by a
scalar s is defined componentwise, namely:

A =


a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn

 ⇒ sA =


sa11 . . . sa1n
sa21 . . . sa2n

...
sam1 . . . samn

 .

Example 72.

A =

(
1 7
5 2

)
, 2A =

(
2 10
14 4

)
.

We next recall the definition of scalar product, which will be needed to
defined matrix multiplication. The term ”scalar product” reflects the fact
that we perform a “product”, and that the result is a ”scalar”, so it is an
operation that takes two vectors, and results in a 1× 1 matrix.

Definition 45. The scalar product of a 1×n vector v with an n× 1 column
vector w is

v · w = (v1, . . . , vn)


w1

w2
...
wn

 =
n∑
i=1

viwi.

Sometimes, we may say the scalar product of v and w without specifying
whether v and w are row or columns vectors, but for the scalar product to
be valid, one need to be row and the other column. Note that v · w = w · v.

Example 73. The scalar product of (2, 3) and (2,−1) is

(2, 3)

(
2
−1

)
= 2 · 2− 3 = 1.

We are now ready to define the multiplication of two matrices A and
B, where A is an m× n matrix, and B is an n× r matrix. Then for

A =


a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn

 , B =


b11 . . . b1r
b21 . . . b2r

...
bn1 . . . bnr


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Scalar Product 
The scalar product of a 1xn row vector v with a nx1 
column vector w is defined to be 

𝑣. 𝑤 = (𝑣1, … , 𝑣𝑛)

𝑤1
⋮
𝑤𝑛

 

                                 =  𝑣𝑖𝑤𝑖
𝑛
𝑖=1  

Example:  the scalar product of 2 3  and (2 -1) is 

2 3
2
−1

= 4 − 3 = 1. 

 

Matrix Multiplication 
The product of an m x n matrix A with a n x r matrix B is 

𝐴𝐵 =

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

𝑏11 ⋯ 𝑏1𝑟
⋮ ⋱ ⋮
𝑏𝑛1 ⋯ 𝑏𝑛𝑟

= 𝐶 

 

where 𝑐𝑖𝑗  is the scalar product of the row i of A and the 

column j of B. 

Example:   

 A=
1 7
5 2

 , 𝐵 =
2 0
−1 −1

, AB =
−5 −7
8 −2
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we have AB = C, where cij is the scalar product of the row i of A and
the column j of B. Note that typically AB 6= BA, therefore the ordering
of the multiplication is very important! Furthermore, dimensions must be
compatible for multiplication, namely to compute AB, we need the number
of columns of A to be equal to the number of rows of B.

Example 74.

A =

(
1 7
5 2

)
, B =

(
2 0
−1 −1

)
.

Then
AB = C

where

c11 = (1, 7)

(
2
−1

)
= −5, c12 = (1, 7)

(
0
−1

)
= −7,

and

c21 = (5, 2)

(
2
−1

)
= 8, c22 = (5, 2)

(
0
−1

)
= −2.

Some matrices have a special shape, this is the case of diagonal matrices.

Definition 46. An n × n matrix A is said to be diagonal if its coefficients
aij are 0 whenever i 6= j.

Example 75. The matrix 2 0 0
0 1 0
0 0 −3


is diagonal.

The matrix identity is a special type of diagonal matrix.

Definition 47. The n-dimensional identity matrix In is a diagonal matrix
whose diagonal coefficients are all 1.

Example 76. The identity matrix I3 is

I3 =

1 0 0
0 1 0
0 0 1

 .
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Diagonal Matrices and Identity 
An nxn (square) matrix A is called diagonal if all its 
coefficients 𝑎𝑖𝑗  are 0 whenever 𝑖 ≠ 𝑗: 

𝑎11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑛𝑛

 

The nxn (square) identity matrix I is a diagonal matrix 
with  𝑎𝑖𝑖 = 1 for all 𝑖: 

𝐼𝑛 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

 

Square Matrices and Inverse 
An nxn (square) matrix A is invertible (has an inverse) if 
there exists an nxn matrix  𝐴−1 such that 

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛. 

 
Example 1:   

 A=
3 1
5 2

 , 𝐴−1
 
=

2 −1
−5 3

, A𝐴−1 =
1 0
0 1

  

 Example 2:   

 A=
3 1
0 0

 , 𝐵 =
𝑏11 𝑏12
𝑏21 𝑏22

, AB =
∗ ∗
0 0
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Thanks to the definition of identity matrix, we may introduce that of
inverse of a matrix. For a real scalar, we say that the inverse of x when
x 6= 0 is x−1, and x−1 is such that xx−1 = 1. The identity matrix plays the
role of 1 for matrices.

Definition 48. An n× n matrix A is invertible if there exists a matrix A−1

such that AA−1 = A−1A = In. The matrix A−1 is called the inverse of A.

The definition mentions that multiplication of A by its inverse both on
the right and on the left must give In. In practice, we will typically show
only one of the two, the reason being that it can be proven that for a square
matrix (square means that the number of rows is the same at the number of
columns), the existence of an inverse on one side actually implies that of an
inverse on the other side, and both of them are the same.

For real numbers x, as recalled above, only when x = 0 it is not possible
to compute x−1. For matrices, many of them are not invertible!

Example 77. The matrix

A =

(
3 1
5 2

)
is invertible, because its inverse A−1 is

A−1 =

(
2 −1
−5 3

)
.

Indeed, one may check that AA−1 = I2, or A−1A = I2. On the other hand

A =

(
3 1
0 0

)
has no inverse. No matter which matrix B one takes, AB will always have a
row of zeroes, and cannot possibly be equal to the identity matrix.

In the above example, A−1 is given and one can just check that AA1− is
indeed I2. We next see a general technique, which among other things allows
to compute the inverse of a matrix.

Definition 49. An m× n matrix A is in row echelon form if

1. The nonzero rows (if any) in A lie above all zero rows.

2. The first nonzero entry (in a nonzero row) lies to the right of the first
nonzero entry in the row immediately above it.



184 CHAPTER 8. LINEAR ALGEBRA

Row Echelon Form 
An m x n matrix A is in row echelon form if 

1. The nonzero rows (if any) in A lie above all zero rows. 

2. The first nonzero entry (in a nonzero row) lies to the 
right of the first nonzero entry in the row immediately 
above it. 

Example:   

 A=
3 1
0 2

 , 𝐵 =
2 9
0 3
0 0

 

 

Elementary Row Operations 
1. Row switching: Switch row i with row j. 

2. Row multiplication: Multiply each element in row i 
by a nonzero k. 

3. Row addition: Replace row i by the sum of row i and 
a nonzero multiple k of row j. 

Any m x n matrix can be transformed into a row echelon 
form (not uniquely) using elementary row operations. 



185

Example 78. The matrices

A =

(
3 1
0 2

)
, B =

2 9
0 3
0 0


are in row echelon form.

Now a matrix is not necessarily in row echelon form. However, there is a
series of operations which we are allowed to do on a matrix, to bring it into
such a form. These operations are called elementary row operations, and
comprise:

1. Row switching: switch row i with row j.

2. Row multiplication: multiply each element in row i by a nonzero
k. Note that k can be of the form 1/k′, k′ 6= 0, therefore division is
allowed as well.

3. Row addition: replace row i by the sum of row i and a nonzero
multiple k of row j.

Note that it is always possible to bring a matrix into a row echelon form.
Roughly, this is because either a column contains only zeroes, or only zeroes
and one non-zero entry, in which case it is fine. If it contains two non-zero
entries, then one can be used to cancel out the other one using elementary
row operations.

Example 79. Consider the matrix1 2 3
1 1 −4
7 0 2

 .

To obtain its row echelon form, we first take care of the first column. For
this we replace (row 2) by (row 2)- (row 1), and then we replace (row 3) by
(row 3) -7 (row 1), to get 1 2 3

0 −1 −7
0 −14 −19

 .
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Example 
1 2 3
1 1 −4
7 0 2

→
1 2 3
0 −1 −7
0 −14 −19

→
1 2 3
0 −1 −7
0 0 79

 

Reduced Row Echelon Form 
An m x n matrix A is in reduced row echelon form if 

1. A is in echelon form. 

2. The first nonzero entry (in a nonzero row) is 1, and all 
other entries in the column are zero. 

Picture from wikipedia 

Example:   

 A=
1 0
0 1

 , 𝐵 =
1 0 3
0 1 2

 

 

``Gaussian Elimination” 
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The only step missing now is to change the second column, which is done
by replacing (row 3) by (row 3)-14(row 2):1 2 3

0 −1 −7
0 0 79

 .

The row echelon form of a matrix is not unique, this can be seen by
the fact that one is allowed to multiply a row by a non-zero constant. For
example, the above matrix has last row (0, 0, 79), any multiple of this row
would also give a row echelon form.

One may however further reduce a matrix into what is a called a reduced
echelon form, in which case it becomes unique. This procedure is also called
Gaussian elimination.

Definition 50. An m× n matrix A is in reduced row echelon form if

1. A is in echelon form.

2. The first nonzero entry (in a nonzero row) is 1, and all other entries in
the column are zero.

Example 80. We continue Example 79, with the matrix1 2 3
1 1 −4
7 0 2


which has row echelon form 1 2 3

0 −1 −7
0 0 79

 .

We first divide the last row by 79, and add 2(row 2) to the first row:1 0 −11
0 −1 −7
0 0 1

 .

We are left to add 11(row 3) to the first row, 7(row 3) to the second row,
and multiply the second row by -1, to get I3.

It may look surprising to find the identity matrix at the end, but this
happens in fact whenever the matrix A we started with is invertible.
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Example 
1 2 3
1 1 −4
7 0 2

→
1 2 3
0 −1 −7
0 −14 −19

→
1 2 3
0 −1 −7
0 0 79

 

Any m x n matrix can be transformed into a unique reduced 
row echelon form using elementary row operations. 

1 2 3
0 −1 −7
0 0 1

→
1 0 −11
0 −1 −7
0 0 1

→
1 0 0
0 1 0
0 0 1

 

Elementary Matrices 
Elementary row operation = Multiplication by elementary matrix 

1. Switch row i with row j 

2. Multiply each element in row i by a nonzero k: 

3. Replace row i by the sum of row i and a nonzero multiple k of row j. 

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

 Row i 
and j 
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Let us try to understand why, which will also give us an algorithm to find
the inverse of a matrix. First of all, we notice that all the elementary oper-
ations used for obtaining a row echelon form can be expressed by matrices,
which are called elementary matrices.

1. Row switching: row i with row j are switched if the matrix is mul-
tiplied by a matrix obtained from the identity matrix by switching its
row i with its row j.

2. Row multiplication: multiply each element in row i by a nonzero k.
This is done by multiplication by a diagonal matrix, where all diagonal
coefficients are 1 but for the ith row which contains a k.

3. Row addition: replace row i by the sum of row i and a nonzero
multiple k of row j. This is done by using a matrix which has 1 on the
diagonal, except for the row i, which further contains a k in the jth
column.

Now take a matrix A, and suppose that it is invertible, in particular it
is square, that is A is an n × n matrix. Once the matrix is in row echelon
form, only two things can happen: either all the diagonal coefficients are
non-zero, in which case the reduced form will give the identity matrix, or at
least one row is a whole zero row. This really results from the fact the the
number of rows and columns are the same. Next form an augmented matrix,
which contains A and In, namely (A|In). Multiply the matrix on the left
with elementary matrices, say M1, . . . ,Ml, to get a reduced row echelon form
of A:

MlMl−1 · · ·M2M1(A|In).

Now ifA is invertibleMlMl−1 · · ·M2M1·A = In, thereforeMlMl−1 · · ·M2M1 =
A−1 and

MlMl−1 · · ·M2M1(A|In) = (In|A−1).
If multiplication by elementary matrices result in a matrix with at least one
row which is zero, then it is imposssible to obtain the identity matrix on the
left hand side of (A|In) and the matrix cannot be invertible.

Recipe to compute the inverse of a matrix A.

1. Write the augmented matrix (A|In).

2. Compute its reduced row echelon form, to obtain (In|A−1)
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Gauss-Jordan Elimination 
 (Elementary Matrices)  A = A in Reduced Echelon Form.     

 If A invertible, then  A in Reduced Echelon Form = identity     

 (Elementary Matrices)  (A 𝐼𝑛) = 𝐼𝑛 𝐴−1  

Recipe to compute  𝐴−1 
1. Write the matrix (A 𝐼𝑛) 
2. Compute its reduced echelon form. 

Example 
Example 1:   

 A=
3 1
5 2

 , 
3 1  
5 2

1 0
  0 1

, 
3 1  
0 1

1 0
  −5 3

, 

3 0  
0 1

6 −3
  −5 3

, 
1 0 
0 1

2 −1
  −5 3

,  

 𝐴−1
 
=

2 −1
−5 3

. 

 
Example 2:   

 A=
3 1
0 0
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Example 81. Consider the matrix

A =

(
3 1
5 2

)
To compute its inverse, create the augmented matrix:

A =

(
3 1 1 0
5 2 0 1

)
To obtain a row echelon form, replace (row 2) by -5(row 1)+3(row 2), which
in matrix form is given by(

1 0
−5 3

)(
3 1 1 0
5 2 0 1

)
=

(
3 1 1 0
0 1 −5 3

)
and we can tell that the matrix is invertible. Then replace (row 1) by (row
1)-(row 2):(

1 −1
0 1

)(
1 0
−5 3

)(
3 1 1 0
5 2 0 1

)
=

(
1 −1
0 1

)(
3 1 1 0
0 1 −5 3

)
=

(
3 0 −6 −3
0 1 −5 3

)
and we are left by dividing the first row by 3:(

1/3 0
0 1

)(
1 −1
0 1

)(
1 0
−5 3

)(
3 1 1 0
5 2 0 1

)
=

(
1 0 −2 −1
0 1 −5 3

)
.

Another application of the (reduced) row echelon form is solving systems
of linear equations.

Definition 51. A system of m linear equations in n unknowns is of the form:

a11x1 + . . .+ a1nxn = b1
...

ai1x1 + . . .+ ainxn = bi
...

am1x1 + . . .+ amnxn = bm

It is said to be homogeneous when b1 = . . . = bm = 0.
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Systems of Linear Equations 
A system of m linear equations in n unknowns: 

 

𝑎11𝑥1 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎𝑖1𝑥1 +⋯+ 𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖
𝑎𝑚1𝑥1 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

Alternatively: 
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

𝑥1
⋮
𝑥𝑛

=
𝑏1
⋮
𝑏𝑛

 

If 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑚 = 0 then the system is homogeneous. 

Solutions to Linear Equations 
𝑥 =

𝑥1
⋮
𝑥𝑛

 𝐴 𝑥 = 𝑏 𝐴 = 𝑚𝑥𝑛 matrix. Find 

 (Elementary Matrices)  A = A in Reduced Echelon Form.     

 (Elementary Matrices)  (A 𝑏 ) ↔ (Elementary Matrices) 
𝐴𝑥 = (Elementary Matrices)𝑏  

Recipe to solve 𝐴𝑥 = 𝑏  
1. Write the matrix (A 𝑏) 
2. Compute its reduced echelon form. 

 A system of linear equations is consistent  if it has at least 
one solution.     
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In matrix form, such a system of linear equations can be rewritten as:
a11 . . . a1n

...
ai1 . . . ain

...
am1 . . . amn


︸ ︷︷ ︸

A


x1
...
xi
...
xn


︸ ︷︷ ︸

x

=


b1
...
bi
...
bm


︸ ︷︷ ︸

b

We now form an augmented matrix, similarly to what was done for the
inverse computation, which contains A and b, namely (A|b), and we multiply
the matrix (A|b) on the left with elementary matrices, say M1, . . . ,Ml, to get
a reduced row echelon form of A:

MlMl−1 · · ·M2M1(A|b).

If A is invertible MlMl−1 · · ·M2M1 · A = In, and as before

MlMl−1 · · ·M2M1(A|In) = (In|A−1b).

This means that

Ax = b ⇐⇒ MlMl−1 · · ·M2M1Ax = MlMl−1 · · ·M2M1b

which becomes
x = A−1b

when A is invertible. If A is not invertible, the reduced echelon form still
allows us to write the system Ax = b in such a form that it is easy to read
the solution x from it.

Recipe to solve a system Ax = b of linear equations.

1. Write the augmented matrix (A|b).

2. Compute its reduced row echelon form.

Let us first discuss the solutions when the system is homogeneous, that is
Ax = 0. First note that x = 0 is always a solution. If m < n, namely there
are less equations than unknowns, there will be infinitely many solutions.
Some unknowns will be unconstrained, they can take any value.
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Homogenous Systems of Equations I 

  𝑥 = 0 is always a solution!  

𝑥 =

𝑥1
⋮
𝑥𝑛

 𝐴 𝑥 = 0 𝐴 = 𝑚𝑥𝑛 matrix. Find 

Example: 1 2
𝑥1
𝑥2

= 0.       

If m equations < n unknowns: infinity of solutions 
𝑎11 ⋯ 𝑎1𝑛
𝑎𝑚1 … 𝑎𝑚𝑛

0 ⋯ 0

𝑥1
⋮
𝑥𝑛

=
𝑏1
⋮
𝑏𝑛

 

Homogenous Systems of Equations II 
𝑥 =

𝑥1
⋮
𝑥𝑛

 𝐴 𝑥 = 0 𝐴 = 𝑚𝑥𝑛 matrix. Find 

 If A invertible, then  A in Reduced Echelon Form = identity.     

If m equations = n unknowns:  if A not invertible 
𝑎11 ⋯ 𝑎1𝑛
𝑎𝑚1 … 𝑎𝑚𝑛

0 ⋯ 0

𝑥1
⋮
𝑥𝑛

=
𝑏1
⋮
𝑏𝑛

 

Thus 𝑥 = 0 is the only solution!  

  if m equations > n unknowns : 𝑥 = 0 is always a solution!  
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Example 82. The system

(1, 2)

(
x1
x2

)
= 0

has infinitely many solutions, no matter what is the value of x1, there is a
corresponding value for x2 which satisfies this equation.

If m = n, we have the same number of equations as unknowns, two
things can happen: if A is invertible, then x = 0 is the only solution, if
A is not invertible, this means that when computing its row echelon form,
rows of zeros will appear, and in fact, some of the equations were redundant.
Therefore we will have as before infinitely many solutions.

The situation is similar when m > n. We still have x = 0 has a solution.
Then when we compute the row echelon form of A, it could be that we
still end up with many redundant equations, in which case infinitely many
solutions still could happen, but if the number of non-zero rows is still bigger
than n, then x = 0 is the only solution.

Let us now see what happens when the system is not homogeneous. The
key thing, as noted for the homogeneous case, is to see the number of equa-
tions left once the matrix A is in reduced form.

Definition 52. The rank of a matrix A is the number of non-zero rows in
an echelon form of A.

For a system Ax = b of linear questions, we thus get:

• If rank(A) < rank(A|b), then the system has no solution. This is be-
cause when we compute the row echelon form of (A|b), the part in A
will have rows of zeroes, which are non-zero for (A|b), corresponding to
an equation of the form 0 is equal to something non-zero, which is not
possible.

• If rank(A) = rank(A|b) < n, then the system has infinitely many so-
lutions. The fact that both ranks are the same means that there are
solutions. Now less than n means less equations than unknowns.

• If rank(A) = rank(A|b) = n, there is a unique solution. This corre-
sponds to the case where A is invertible.
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Non-Homogenous Systems 
The rank of a matrix A is the number of nonzero rows in 
an echelon form of A. 

• If rank(A) < rank(A|b) then the system has no solution. 
 

• If rank(A) = rank(A|b) < n then the system is consistent and 
has infinitely many solutions. 
 

• If rank(A) = rank(A|b) = n then the system is consistent and 
has a unique solution. This is when 𝐴−1. 

𝐴 𝑥 = 𝑏 

Examples 
𝐴 =

1 1
2 2

, 𝑏 =
1
3

 

𝐴 =
1 1
2 2

, 𝑏 =
1
2

 

𝐴 =
1 1
1 2

, 𝑏 =
1
3

 



197

Note that rank(A) is always less or equal rank(A|b), this is because re-
moving columns from (A|b) cannot increase the number of non-zero rows,
thus all cases have been considered.

Example 83. Consider the system Ax = b with

A =

(
1 1
2 2

)
, b =

(
1
3

)
.

The rank of A is 1, that of (A|b) is 2, thus no solution. Now with

A =

(
1 1
2 2

)
, b =

(
1
2

)
the rank of A stays 1, but that of (A|b) is 1 as well, so we have infinitely
many solutions. Finally, with

A =

(
1 1
1 2

)
, b =

(
1
3

)
the matrix A is invertible, so there is a unique solution, given by A−1b.
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Exercises for Chapter 8

Exercise 63. Compute the sum A + B of the matrices A and B, where A
and B are as follows:

1.

A =

(
2
√

2
−1 3

)
, B =

(
0
√

2
4 2

)
where A,B are matrices with coefficients in R.

2.

A =

(
2 + i −1
−1 + i 3

)
, B =

(
−i 1
−1 2

)
where A,B are matrices with coefficients in C, and i =

√
−1.

3.

A =

(
0 1 2
2 0 2

)
, B =

(
1 0 2
0 1 1

)
where A,B are matrices with coefficients that are integers mod 3.

What are the dimensions of the matrices involved?

Exercise 64. 1. Compute the transpose AT of A for

A =

(
1 0 2
0 1 1

)
.

2. Show that (A+B)T = AT +BT .

Exercise 65. Compute

2A+BC +B2 + AD

where

A =

(
2 0
−1 1

)
, B =

(
1 −1
0 2

)
, C =

(
−1 0
2 1

)
are real matrices and D = I2 is the 2-dimensional identity matrix.
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Exercise 66. Consider the complex matrix

A =

(
0 i
−1 0

)
,

where i =
√
−1. What is Al, for l ≥ 1.

Exercise 67. 1. Let S be the set of 3 × 3 diagonal real matrices. Is S
closed under matrix addition?

2. Consider the real matrix

A =

(
2 3
−1 1

)
.

Compute a matrix B such that A+B is diagonal, and a matrix C such
that AC is diagonal.

Exercise 68. Let A and B be n× n matrices which satisfy

A2 + AB + A− In = 0,

where In means the n×n identity matrix, and 0 the n×n zero matrix. Show
that A is invertible.

Exercise 69. Compute, if it exists, the inverse A−1 of the matrix A, where
A is given by

•

A =

 2 3 −2
−1 1 2
3 7 2


for A a real matrix.

•
A =

(
1 1 + i

1− i 1

)
for A a complex matrix and i =

√
−1.

•
A =

(
2 3
1 1

)
for A a matrix with coefficients modulo 5.
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Exercise 70. Write the following system of linear equations in a matrix form
and solve it. 

x1 + x2 − 2x3 = 1
2x1 − 3x2 + x3 = −8
3x1 + x2 + 4x3 = 7

Exercise 71. Write the following system of linear equations in a matrix form
and solve it. 

x1 − x2 + x3 − x4 = 2
x1 − x2 + x3 + x4 = 0
4x1 − 4x2 + 4x3 = 4
−2x1 + 2x2 − 2x3 + x4 = −3
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Exercises for Chapter 8

We will provide some applications of matrices to cryptography. We start by
explaning the notion of cipher and give some examples.

It is said that the roman general Caesar used to communicate secretly
with his army commanders using the following cipher:

eK : x→ eK(x) = x+K mod 26, K = 3.

What it means is the following thing: one can map letters from A to Z to the
integers 0 to 25. Then to say A, which is 0, encrypt it eK(0) = K = 3, which
is D. Therefore to say A, Caesar would write in his message D, and similarly
all his messages would be encrypted. We call eK an encryption function, and
K a secret key. If the key is known, it is easy to recover the original message.

A B C D E F G H I J K L M N O P Q
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R S T U V W X Y Z
17 18 19 20 21 22 23 24 25

To recover a message, one uses a decryption function dK . In this case

dK(y) = y −K mod 26, K = 3.

Indeed
dK(eK(x)) = eK(x)−K = x+K −K = x mod 26.

Suppose Caesar wrote Y HQL, Y LGL, Y LFL. In numbers, it becomes
24, 7, 16, 11, 24, 11, 6, 11, 24, 11, 5, 11 now we apply the decryption function on
this, to find 21, 4, 13, 8, 21, 8, 3, 8, 21, 8, 2, 8 that is VENI, VIDI, VICI. (This
is a famous quote by Caesar, in latin, it means “I came, I saw, I conquered”).

Caesar’s cipher described above may look too simple to break. After all,
one could just try all possible K, there are only 26 of them, and figure out
which one works out. A variation of this cipher is called affine cipher. Now
the encryption looks like this

eK : x→ eK(x) = k1x+ k2 mod 26, K = (k1, k2).

The question is then, how to choose K = (k1, k2)? Well, the first important
thing is that decryption must be possible, which is not possible for any choice
of keys! For example, pick the key K = (13, 7). Then

eK : x→ eK(x) = 13x+ 7 mod 26, K = (13, 7).
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Caesar’s Cipher 
To send secrete messages to his generals, Caesar is 
said to have used the following cipher. 

eK: x → eK(x)=x+K mod 26, K=3 

Map A to 0,…,Z to 25 and decipher this 
message from Caesar:  YHQL YLGL YLFL 

Caesar belongs to Goscinny and Uderzo. 
 

Affine Cipher 

Alice belongs to Disney, Sponge Bob to Hillenburg 

Caesar’s cipher is a well-defined cipher because there is a 
function dK   such that dK(eK (x))=x for every x integer mod 26.                                  

eK: x → eK(x)=𝑘1x+𝑘2 mod 26, 
K=(𝑘1, 𝑘2) 

Choose the best key (if any): 
K=(7,13) or K=(13,7) 
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To decrypt, let us try dK(y) = ay + b, then

dK(eK(x)) = a(eK(x)) + b = a(13x+ 7) + b.

To be able to find x, we need to be able to solve a(13x+ 7) + b = x, that is
13ax+ 7a+ b = x, 7a+ b = 0, and 13a = 1. But there is no such a mod 26!

Let us try instead the key K = (7, 13). Then

eK : x→ eK(x) = 7x+ 13 mod 26, K = (7, 13).

To decrypt, let us try dK(y) = ay + b, then

dK(eK(x)) = a(eK(x)) + b = a(7x+ 13) + b.

To be able to find x, we need to be able to solve a(7x+ 13) + b = x, that is
7ax + 13a + b = x, 13a + b = 0, and 7a = 1. But now this is possible: take
a = 15, then 105 = 104 + 1 ≡ 1 mod 26. Then 13 · 15 = −b ≡ 13 mod 26
and

dK(y) = 15y + 13.

Let us now move to an encryption scheme which uses matrices:

eK : x→ eK(x) = K1x+K2 mod 26, K = (K1, K2),

with

x =

(
x1
x2

)
, K1 =

(
5 4
4 2

)
, K2 =

(
4
2

)
.

We encounter the same problem as before, namely, we need to make sure that
dK exists. Above, the trouble happened when the encryption was 13x + k2,
because 13 is not invertible mod 26. Here similarly we need to make sure
that K1 is invertible. Let us try to compute the inverse of K1:(

5 4 1 0
4 2 0 1

)
Replace (row 2) by -5(row 2)+4(row 1):(

5 4 1 0
0 6 0 −5

)
and the matrix is not invertible, because 6 is not invertible mod 26, namely,
it is not possible to find an element x mod 26 such that 6x ≡ 1 mod 26.
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Matrix Encryption 
eK: x → eK(x)=𝐾1x+𝐾2 mod 26, K=(𝐾1, 𝐾2) 

𝑥 =
𝑥1

𝑥2
, 𝐾1 =

5 4
4 2

, 𝐾2 =
4
2

 

𝑥 =
𝑥1

𝑥2
, 𝐾1 =

5 4
4 1

, 𝐾2 =
4
1

 

Map A to 0,…,Z to 25 and decipher this 
message using the right key:  OJJMGI 

Data Storage (II) 

D1+D2 

 

D = (D1, D2 , D3) 

D1+D3 

 
D2+D3 

 

D1 D2 D3 

To tolerate two failures, we need each Di to be 
present at least 3 times. 

Write the data 
stored in matrix 
form as a 
function of the 
data (D1, D2 , D3) 
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Let us try another encryption scheme which uses matrices:

eK : x→ eK(x) = K1x+K2 mod 26, K = (K1, K2),

with

x =

(
x1
x2

)
, K1 =

(
5 4
4 1

)
, K2 =

(
4
1

)
.

Let us try to compute the inverse of K1:(
5 4 1 0
4 1 0 1

)
Replace (row 2) by -5(row 2)+4(row 1):(

5 4 1 0
0 11 0 −5

)
and this time, 11 is invertible mod 26, namely 11 · (−7) ≡ 1 mod 26. We
then multiply the second row by -7:(

5 4 1 0
0 1 −2 9

)
We then replace (row 1) by -4(row 2):(

5 0 9 −10
0 1 −2 9

)
Finally 5 is invertible, 5 · 21 = 5 · (−5) ≡ 1 mod 26. This gives(

1 0 7 −2
0 1 −2 9

)
and

K−11 =

(
7 −2
−2 9

)
To decipher for example OJ , we map it to integers, namely 14, 9, then(

14
9

)
−
(

4
1

)
=

(
10
8

)
and we apply K−11 to get(

7 −2
−2 9

)(
10
8

)
=

(
2
0

)
that is the message CA. In a similar way, we find that OJJMGI gives
CANLAH.
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Data Storage (III) 

𝐷1 𝐷2 𝐷3  
1 0 0
0 1 0
0 0 1

    
1 1 0
0 1 1
1 0 1

 

 

 

 

 

Suppose now you can choose any strategy, where the 
first 3 disks do not have to be the data itself: 
 

𝐷1 𝐷2 𝐷3  
𝑎11

𝑎31

    
𝑎16

𝑎36

 

Data Storage (IV) 
Show that you cannot do better using a matrix of a 
more general form. 

• Compute the reduced row echelon form of the 
generic matrix 

– Either the first 3x3 block is the identity matrix: this is the 
case where the data is stored in the first disks  

– Or  there are zero columns: this is worse, this means that 
some disks store “useless” data.    
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We finally come back once more to our example of data storage. Suppose
that you have some data D, split into 3 parts D = (D1, D2, D3). We saw
that to tolerate 2 failures, we need at least 6 disks, assuming that the first
3 disks are storing D1, D2, D3 respectively. For example, one way of storing
the data could be

disk 1: D1 disk 4: D1 +D2

disk 2: D2 disk 5: D1 +D3

disk 3: D3 disk 6: D2 +D3

This way of storing data can be represented using matrices:

(D1, D2, D3)

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


Now we want to check that any arbitrary strategy where we could have chosen
any way of combining the data, not necessarily storing D1, D2, D3 in the first
3 disks, cannot improve the one we already got. Write

(D1, D2, D3)

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36


︸ ︷︷ ︸

A

To see this, visualize that whatever is stored in our 6 disks is obtained by
combining the three rows of this matrix A. We can then try to combine them
in any way we want using elementary operations (swap rows, add one row to
another). Since every operation can be reversed, we can always go back and
forth from one form to another. Then we compute the reduced row echelon
form of this matrix, and two things can happen: either the first 3 columns
are I3, in which case we are back to the strategy we already know, or one
column becomes zero, which is worse, since this corresponds to a disk storing
no data.
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