
Chapter 9

Relations

“” ()

The topic of our next chapter is relations, it is about having 2 sets, and
connecting related elements from one set to another.

Definition 53. Let A and B be two sets. A binary relation R from A to B
is a subset of the cartesian product A×B. Given x, y ∈ A×B, we say that
x is related to y by R, also written (xRy)↔ (x, y) ∈ R.

Example 84. Suppose that you have two sets A = {1, 2} and B = {1, 2, 3},
and the relation is given by (x, y) ∈ R↔ x− y is even. Since the relation is
a subset of A×B, we start by computing the cartesian product A×B:

A×B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

Then in this list of pairs, we select those which satisfy the relation R. For
example, for (1, 2), we have x = 1 and y = 2, we compute x−y = 1−2 = −1,
which is odd, thus it does not belong to R. We try out similarly all the pairs
in A×B to get

R = {(1, 1), (1, 3), (2, 2)}.

This may be visualized using a diagram: draw a circle to represent the set
A, and this circle contains two points, one for 1 and one for 2. Similarly,
draw a circle to represent B, and points of 1, 2, 3. Then an arrow from A to
B connects x in A with y in B if x− y is even.
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Binary Relations between Two Sets 
Let A and B be sets. A binary relation R from A to B 
is a subset of     . Given (x,y) in  , x is 
related to y by R (x R y ) ↔ (x,y) R. 

 

BA BA

Example.   A={1,2}, B={1,2,3},  𝑥, 𝑦 ∈ 𝑅 ↔ (𝑥 − 𝑦) is even.  
•  𝐴 × 𝐵 = 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3  
• 1,1 ∈ 𝑅, 1,3 ∈ 𝑅, 2,2 ∈ 𝑅. 
 

Examples.  x > y, x owes y, x divides y  

Graphically 
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B 
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• Example.   A={1,2}, B={1,2,3},  𝑥, 𝑦 ∈ 𝑅 ↔ (𝑥 − 𝑦) 
is even.  

•  𝐴 × 𝐵 = 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3  

• 1,1 ∈ 𝑅, 1,3 ∈ 𝑅, 2,2 ∈ 𝑅. 

 

3/15 
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Definition 54. Let R be a relation from the set A to the set B.The inverse
relation R−1 from B to A is defined as

R−1 = {(y, x) ∈ B × A, (x, y) ∈ R}.
What it says is that for every pair (x, y) in R, you take it, flip the role of

x and y to get (y, x), which then belongs to R−1.

Example 85. Consider the setsA = {2, 3, 4}, B = {2, 6, 8}, with the relation
(x, y) ∈ R ↔ x divides y. Let us look at it step by step. First we compute
the cartesian product A×B:

A×B = {(2, 2), (2, 6), (2, 8), (3, 2), (3, 6), (3, 8), (4, 2), (4, 6), (4, 8)}.
Then we check for which pair (x, y) it is true that x | y. For example, if
(x, y) = (2, 2), then 2 | 2 and (2, 2) ∈ R, but for (x, y) = (3, 2), 3 does not
divide 2, and (3, 2) is not in R. Trying out all the pairs, we get

R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}.
Now for every pair (x, y) ∈ R, we flip the role of x and y to get

R−1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)}.
In this case, there is a nice interpretation of what R−1 means: (x, y) ∈
R ↔ x|y, but x|y ⇐⇒ y is a multiple of x and R−1 describes the relation
(y, x) ∈ R−1 ↔ y is a multiple of x. If one draws a diagram, then to go from
R to R−1, all is needed is to change the direction of the arrows!

Apart diagrams, another convenient way to represent a relation is to
use a matrix representation. Take a binary relation R from the set A =
{a1, . . . , am} to the set B = {b1, b2, . . . , bn}. Create a matrix whose rows are
indexed by the elements of A (thus m rows) and whose columns are indexed
by the elements of B (thus n columns). Now the entry (i, j) of the matrix,
corresponding to the ith row and jth column, contains aiRbj, that is, a truth
value (True or False), depending on whether it is true or not that aiRbj (that
is, ai is related to bj).

Example 86. Take A = {2, 3, 4}, B = {2, 6, 8} and the relation R defined
by (x, y) ∈ R ↔ x divides y. Then the rows of the matrix are indexed by
2, 3, 4, and the columns by 2, 6, 8. We thus get2R2 2R6 2R8

3R2 3R6 3R8
4R2 4R6 4R8

 =

T T T
F T F
F F T

 .
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Inverse of a Binary Relation 
Let R be a relation from A  to B . The inverse relation R

-1
 

from B to A is defined as:  R
-1

 ={(y,x)  𝐵 × 𝐴 |(x,y) R}. 

 
Example.  A={2,3,4}, B={2,6,8}, 𝑥, 𝑦 ∈ 𝑅 ↔ 𝑥  divides 𝑦. 

• 𝐴 × 𝐵 = 2,2 , 2,6 , 2,8 , 3,2 , (3,6 , 3,8 , 4,2 , 4,6 , (4,8)} 

• 2,2 ∈ 𝑅, 2,6 ∈ 𝑅, 2,8 ∈ 𝑅, 3,6 ∈ 𝑅, (4,8) ∈ 𝑅 

 

• 2,2 ∈ 𝑅−1, 6,2 ∈ 𝑅−1, 8,2 ∈ 𝑅−1, 6,3 ∈ 𝑅−1, 8,4 ∈ 𝑅−1 

• (𝑦, 𝑥) ∈ 𝑅−1 ↔ 𝑦 is a multiple of 𝑥. 

 

Graphically 
Example.  A={2,3,4}, B={2,6,8}, 𝑥, 𝑦 ∈ 𝑅 ↔ 𝑥  divides 𝑦. 

• 2,2 ∈ 𝑅, 2,6 ∈ 𝑅, 2,8 ∈ 𝑅, 3,6 ∈ 𝑅, (4,8) ∈ 𝑅 

• 2,2 ∈ 𝑅−1, 6,2 ∈ 𝑅−1, 8,2 ∈ 𝑅−1, 6,3 ∈ 𝑅−1, 8,4 ∈ 𝑅−1 
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Matrix Representation (I) 
𝐴 = (𝑎1, 𝑎2, 𝑎3), 𝐵 = (𝑏1, 𝑏2, 𝑏3, 𝑏4,), 
𝑅 = { 𝑎1, 𝑏2 , 𝑎2, 𝑏1 , 𝑎3, 𝑏1 , (𝑎3, 𝑏4)} 

𝑎𝑖𝑅𝑏𝑗  is represented by true, false else:
𝐹 𝑇 𝐹
𝑇 𝐹 𝐹
𝑇 𝐹 𝐹

   𝐹
  𝐹
  𝑇

 

 

 Example.  A={2,3,4}, B={2,6,8}, 
𝑥, 𝑦 ∈ 𝑅 ↔ 𝑥  divides 𝑦. 

𝑇 𝑇 𝑇
𝐹 𝑇 𝐹
𝐹 𝐹 𝑇

 

6/15 

Matrix Representation (II) 

𝐴 = (𝑎1, 𝑎2, 𝑎3), 𝐵 = (𝑏1, 𝑏2, 𝑏3, 𝑏4,), 

𝑅 = 𝑎1, 𝑏2 , 𝑎2, 𝑏1 , 𝑎3, 𝑏1 , 𝑎3, 𝑏4  
𝑅−1 = { 𝑏2, 𝑎1 , 𝑏1, 𝑎2 , 𝑏1, 𝑎3 , (𝑏4, 𝑎3)} 

𝑎𝑖𝑅𝑏𝑗 =true 
𝐹 𝑇 𝐹
𝑇 𝐹 𝐹
𝑇 𝐹 𝐹

   𝐹
  𝐹
  𝑇

 

 

 The matrix of 𝑅−1is the transpose of the matrix of R.  

R relation from A  to B:  R
-1

 ={(y,x)  𝐵 × 𝐴 |(x,y) R}. 

 

𝑏𝑖𝑅−1𝑎𝑗=true  

𝐹 𝑇 𝑇
𝑇 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝑇

 

 



214 CHAPTER 9. RELATIONS

Composition of Relations 
Given 𝑅 in 𝐴 × 𝐵, and 𝑆 in 𝐵 × 𝐶, the composition of R 
and S is a relation on 𝐴 × 𝐶 defined by 

𝑅 ○  𝑆 = 𝑎, 𝑐 ∈ 𝐴 × 𝐶 ∃ 𝑏 ∈ 𝐵, 𝑎𝑅𝑏 𝑎𝑛𝑑 𝑏𝑆𝑐 .  

Example.  𝐴 = 𝑎1, 𝑎2 , 𝐵 = 𝑏1, 𝑏2 , 𝐶 = {𝑐1, 𝑐2, 𝑐3} 
• 𝑅 = { 𝑎1, 𝑏1 , (𝑎1, 𝑏2)} 
• 𝑆 = 𝑏1, 𝑐1 , 𝑏2, 𝑐1 , 𝑏1, 𝑐3 , 𝑏2, 𝑐2  
• What is 𝑅 ○ 𝑆 ? 

 
• 𝑅 ○ 𝑆 = { 𝑎1, 𝑐1 , 𝑎1, 𝑐3 , (𝑎1, 𝑐2)} 

Graphically 

𝑏1 

𝑏2 

B 

𝑎1 

𝑎2 

A R 

• Example.  𝐴 = 𝑎1, 𝑎2 , 𝐵 = 𝑏1, 𝑏2 , 𝐶 = {𝑐1, 𝑐2, 𝑐3} 

• 𝑅 = { 𝑎1, 𝑏1 , (𝑎1, 𝑏2)} 

• 𝑆 = 𝑏1, 𝑐1 , 𝑏2, 𝑐1 , 𝑏1, 𝑐3 , 𝑏2, 𝑐2  

• 𝑅 ○ 𝑆 = { 𝑎1, 𝑐1 , 𝑎1, 𝑐3 , (𝑎1, 𝑐2)} 

𝑐1 

𝑐2 

𝑐3 

C S 

9/15 
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We may ask next how to interpret the inverse relation R−1 on its matrix.
First of all, if R goes from A = {a1, . . . , am} to B = {b1, b2, . . . , bn}, then
R−1 goes from B to A. This means that the rows of the matrix of R−1

will be indexed by the set B = {b1, b2, . . . , bn}, while its columns by the set
A = {a1, . . . , am}. Then, by definition of R−1, whenever there was a T (true)
in row i and column j, this meant that (ai, bj) ∈ R, thus (bj, ai) ∈ R−1, and
this becomes a T (true) in row j and column i. If you take the first row of
the matrix of R, whenever (a1, bj) ∈ R, for the column j, (bj, a1) ∈ R−1, and
a true in the first row of R becomes a true in the first column of R−1, and the
other entries which are false in the first row of R similarly become false in
the first column of R−1. This shows that the matrix of R−1 is the transpose
of R! (recall that the transpose of a matrix is obtained by switching rows
and columns).

Example 87. We continue the above example with A = {2, 3, 4}, B =
{2, 6, 8} and the relation R defined by (x, y) ∈ R↔ x divides y. We have that
R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)} thusR−1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)}.
Then the matrix of R and R−1 are respectively given byT T T

F T F
F F T

 ,

T F F
T T F
T F T

 .

We continue to explore properties of relations.

Definition 55. Given two relations R ∈ A×B and S ∈ B ×C, the compo-
sition of R and S is a relation on A× C defined by

R ◦ S = {(a, c) ∈ A× C, ∃b ∈ B, aRb, bSc}.

What it says is that for (a, c) to be part of your relation R◦S, we need to
find an element b ∈ B, with the property that a is in relation with b, and b is
in relation with c. It is probably best visualize on a diagram: draw 3 circles
for A,B,C, and arrows from A to B using the relation R, and arrows from
B to C using the relation S. If you can find a path following those arrows
from a to c, then (a, c) is in R ◦ S.

Example 88. Consider the sets A = {a1, a2}, B = {b1, b2}, C = {c1, c2, c3},
with relations defined by

R = {(a1, b1), (a1, b2)}, S = {(b1, c1), (b2, c1), (b1, c3), (b2, c2)}.
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Reflexivity 
A relation R on a set A is reflexive if every element of A 
is related to itself:  ∀𝑥 ∈ 𝐴, 𝑥𝑅𝑥 

Examples. 
1.  A=Z, xRy ↔ x=y : reflexive 

 
2. A=Z,  xRy ↔ x>y : not reflexive 

 
3. Reflexivity on the matrix 

representing R? 

Graphically 
A= {3,4,5,6,7}, xRy ↔ (x-y) is even 

• R reflexive  
3 

4 

5 

6 

7 
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To compute R ◦ S, start with (a1, b1) and look for pairs starting with b1
in S: (b1, c1) and (b1, c3). Therefore, (a1, b1) combined with (b1, c1) gives the
pair (a1, c1) and the pair (a1, b1) combined with (b1, c3) gives (a1, c3). We do
the same with (a1, b2) and pairs starting with b2 in S to find (a1, c2), and

R ◦ S = {(a1, c1), (a1, c2), (a1, c3)}.

So far, we were looking at binary relations from A to B. Next we focus
on relations where A = B, that is we have relations from a set into itself.

Definition 56. A relation R on a set A is reflexive if every element of A is
related to itself: ∀x ∈ A, xRx.

Example 89. If A is the set Z of integers, and the relation R is defined
by xRy ↔ x = y, then this relation is reflexive, because it is true that x is
always in relation with itself (xRx↔ x = x is always true).

But xRy ↔ x > y is not reflexive, because it is never true that xRx (we
never have x > x).

On the matrix representation of R, reflexivity is shown by having T (true)
on the diagonal of the matrix. If one represents a relation on itself with a
diagram, reflexivity will be seen by having arrows looping on every element
of the diagram!

Definition 57. A relation R on a set A is symmetric if (x, y) ∈ R implies
(y, x) ∈ R: ∀x∀y ∈ A, xRy → yRx.

On a diagram, this is visualized with having a second arrow between 2
elements of A in the other direction whenever you have one arrow in one
direction.

Example 90. If A is the set Z of integers, and the relation R is defined
by xRy ↔ x = y, then this relation is symmetric, because it is true that if
x is in relation with y then y is in relation with x (xRy ↔ x = y implies
y = x↔ yRx).

But xRy ↔ x > y is not symmetric, because it is never true that xRy
implies yRx (we never have x > y that implies y > x).

Definition 58. A relation R on a set A is transitive if (x, y) ∈ R and
(y, z) ∈ R implies (x, z) ∈ R: ∀x∀y∀z ∈ A, xRy ∧ yRz → xRz.
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Symmetry 
A relation R on a set A is symmetric if 𝑥, 𝑦 ∈ 𝑅 implies 
(𝑦, 𝑥) ∈ 𝑅:  ∀𝑥 ∀𝑦 𝑥𝑅𝑦 → 𝑦𝑅𝑥 

http://bokardo.com/archives/relationship-symmetry-in-social-networks-why-facebook-will-go-fully-
asymmetric/ 

Examples. 
1.  A=Z, xRy ↔ x=y : symmetric 

 
2. A=Z,  xRy ↔ x>y : not symmetric 

Graphically 
A= {3,4,5,6,7}, xRy ↔ (x-y) is even 

• R reflexive  

• R symmetric 
3 

4 

5 

6 

7 

13/15 



219

Example 91. If A is the set Z of integers, and the relation R is defined
by xRy ↔ x = y, this relation is transitive, because it is true that if x
is in relation with y and y is in relation with z then x is in relation with
z (xRy ↔ x = y and y = z ↔ yRz implies that x = y = z that is
x = z ↔ xRz).

Also xRy ↔ x > y is transitive, because if xRy ↔ x > y and yRz ↔ y >
z, then we have x > y > z that is x > z ↔ xRz.

If a relation R on a set A turns out to satisfy the 3 properties we have
just seen: reflexivity, symmetry, and transitivity, then this relation is special,
and thus gets a special name:

Definition 59. A relation R on a set A is an equivalence relation if R is
reflexive, symmetric and transitive. The equivalence class of a in A is

[a] = {x ∈ A, aRx}.

There is a reason for this name: an equivalence relation is so strong, it
so strongly ties together elements that are in relation with each other, that
instead of looking at elements one by one, we can just consider all those
elements in relation with each other as one entity, called equivalence class.

Example 92. Consider the set A = {3, 4, 5, 6, 7} with the relation xRy ↔
(x − y) is even. Then R is reflexive: indeed, xRx is always true, since
(x − x) = 0 which is even. Also R is symmetric: indeed, xRy ↔ (x − y) is
even implies that −(x − y) = y − x is also even, and then (y − x) is even
↔ yRx. Finally it is transitive: if xRy ↔ (x−y) is even, and yRz ↔ (y−z)
is even, then (x − z) = (x − y) + (y − z) which is even (sum of two even
numbers is even), thus (x − z) is even ↔ xRz. The equivalence class of
[3] is the set of elements in relation with 3, that is [3] = {3, 5, 7}, similarly
[4] = {4, 6}.

It turns out that equivalence classes partition A (for A a set with R a
relation which is an equivalence relation). See Exercise 83.

The above example does form an equivalence relation, but it probably
does not explain well the concept of equivalence relation, so let us try to get
a better feeling using something that we already know (even though we do
not know yet that these are equivalence classes!) namely, integers modulo n.
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Transitivity 
A relation R on a set A is transitive if 𝑥, 𝑦 ∈ 𝑅 and 𝑦, 𝑧 ∈ 𝑅 
implies (𝑥, 𝑧) ∈ 𝑅:  ∀𝑥 ∀𝑦 ∀𝑧 𝑥𝑅𝑦 Λ yRz → 𝑥𝑅𝑧 

http://www.apkdad.com/tag/atrium-for-facebook-apk/ 

Examples.  
1. A=Z, xRy ↔ x=y : transitive 

 
2.   A=Z,  xRy ↔ x>y : transitive 

? 

Equivalence Relation 
A relation R on a set A is an equivalence relation if 

1. R is reflexive: ∀𝑥 ∈ 𝐴, 𝑥𝑅𝑥 

2. R is symmetric:  ∀𝑥 ∀𝑦 𝑥𝑅𝑦 → 𝑦𝑅𝑥 

3. R is transitive: ∀𝑥 ∀𝑦 ∀𝑧 𝑥𝑅𝑦 Λ yRz → 𝑥𝑅𝑧 

 

Equivalence class of a in A: [a] ={x ∈ 𝐴 | 𝑎𝑅𝑥}  
for R an equivalence relation. 
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Example  
A= {3,4,5,6,7}, xRy ↔ (x-y) is even 

• R reflexive  

• R symmetric 

• R transitive 

• [3]={3,5,7},[4]={4,6} 

3 

4 

5 

6 

7 

Partition of a set A: 

 ji AA whenever  ji 

AAAAAAA  654321

A1 

A2 

A3 

A4 

A5 

A6 

Equivalence Classes 

Equivalence classes of A form a partition of A. 

4/14 
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Integers mod n (I) 
 a ≡ b (mod n) ↔ a=qn+b 

 ≡ (mod n) is an equivalence relation: 

1. ≡ (mod n) is reflexive: ∀𝑥 ∈ 𝐴, 𝑥≡ 𝑥 𝑚𝑜𝑑 𝑛 

2. ≡ (mod n) is symmetric:  ∀𝑥 ∀𝑦 𝑥≡𝑦 (𝑚𝑜𝑑 𝑛) →
𝑦≡ 𝑥 (𝑚𝑜𝑑 𝑛) 

3. ≡ (mod n) is transitive: ∀𝑥 ∀𝑦 ∀𝑧 𝑥≡ y (mod n)Λ y≡z 
(mod n) → 𝑥≡z (mod n). 

 

• Integers mod n can be represented as elements 
between 0 and n-1: {0,1,2,…,n-1} 

 

 

Integers mod n (II) 
Equivalence class of [0]={0,n,2n,3n,…,-n,-2n,-3n…} 
Equivalence class of [1]={1,n+1,2n+1,3n+1,…,-n+1,-2n+1…} 

Example. Integers mod 4 
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Example 93. The relation ≡ (mod n) is an equivalence relation on Z.

• It is reflexive: x ≡ x (mod n) is always true.

• It is symmetric: x ≡ y (mod n) means that x = qn+y for some integer
q, thus y = −qn+ x and y ≡ x (mod n).

• It is transitive: if x ≡ y (mod n) and y ≡ z (mod n) then we have
x = qn+y and y = rn+z thus x = qn+y = qn+ rn+z = n(q+ r)+z
and x ≡ z (mod n).

Now what is the equivalence class of 0? it is formed by all multiples of n:

[0] = {. . . ,−2n,−n, 0, n, 2n, . . .},

and similarly the equivalence class of 1 is all multiples of n, plus 1, and we
see that there are exactly n equivalence classes, which partition Z:

[0], [1], [2], . . . , [n− 1].

This is why when we do operations modulo n, we are allowed to pick one
element per equivalence class, namely 0, 1, . . . , n− 1 and work with them!!

We add one more property to those we know: reflexivity, symmetry, and
transitivity.

Definition 60. A relation R on a set A is antisymmetric if (x, y) ∈ R and
(y, x) ∈ R implies x = y: ∀x∀y, xRy ∧ yRx→ x = y.

Note that symmetry and antisymmetric are not related, despite their
name, see Exercise 80.

Example 94. If A is the set Z of integers, and the relation R is defined by
xRy ↔ x = y, this relation is antisymmetric, because it is true that if x is
in relation with y and y is in relation with x then x = y (xRy ↔ x = y and
y = x↔ yRx implies that x = y).

Also xRy ↔ x > y is antisymmetric, because we have a statement which
is vacuously true!! if xRy ↔ x > y and yRx ↔ y > x, well, this statement
is always false...when we have a p → q where p is false then p → q is true
(apply here with p = ”xRy ∧ yRx” and q = ”x = y”).

Consider two sets B and C and the relation B is in relation with C ←
B ⊆ C. Then B ⊆ C and C ⊆ B implies that B = C! this is what we used
to show set equality (double inclusion), and this shows that this relation is
antisymmetric!
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Antisymmetry 
A relation R on a set A is antisymmetric if 𝑥, 𝑦 ∈ 𝑅 
and (𝑦, 𝑥) ∈ 𝑅 implies x=y:  ∀𝑥 ∀𝑦 𝑥𝑅𝑦Λ𝑦𝑅𝑥 → 𝑥 = 𝑦 

Examples. 
1.  A=Z, xRy ↔ x=y : antisymmetric  

 
2. A=Z,  xRy ↔ x>y : vacuously true 

 
3. BRC ↔              : antisymmetric CB 

Reflexive? 

Symmetric? 

Antisymmetric? 

Transitive? 

  
  
 

 

Y Y Y 

Y N N 

N N N 

Y N Y 

Examples 

8/14 
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Definition 61. A relation R on a set A is a partial order if R is reflexive,
antisymmetric and transitive.

The word partial order can be explained by the antisymmetry property.
It is not possible to have ”a loop” between two elements, namely a relation
from one element to another, and back.

Example 95. If A is the set Z of integers, and the relation R is defined by
xRy ↔ x ≤ y, this relation is a partial order:

• It is reflexive: x ≤ x always.

• It is antisymmetric: x ≤ y and y ≤ x implies that x = y.

• It is transitive: if x ≤ y and y ≤ z then x ≤ y ≤ z and thus x ≤ z as
needed.

A set with a relation R may not satisfy the transitivity property, but
then, one may wonder whether it is possible to ”complete” the set with more
elements to obtain the transitivity property. This gives rise to the notion of
transitive closure:

Definition 62. Consider a relation R on a set A. The transitive closure of
R is the binary relation Rt, that satisfies the properties:

• Rt is transitive,

• R ⊆ Rt,

• If S is any other transitive relation that contains R, then Rt ⊂ S.

The first property says the property of transitivity is satisfied, the second
one that R is contained in Rt and the third one says Rt is minimal with this
property!
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Partial Order 
A relation R on a set A is a partial order if R is reflexive, 
antisymmetric and transitive.  

Example. A=Z, xRy ↔ x≤y  

Notion of partial order useful for scheduling problems across 
possibly different domains. 

1. R
t
 is Transitive 

2. R  R
t 

3. If S is any other transitive relation that contains R,  
then R

t 
 S 

Transitive Closure 

Let A be a set and R a binary relation on A. 
The transitive closure of R is the binary relation R

t 
on A 

that satisfies the following three properties: 
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0 1 

2 3 

R on A 

R
t 
= {(0,1),(1,2),(2,3),(0,2),(0,3),(1,3)} 

0 1 

2 3 

S on A 

S is transitive and R  S  

Thus, R
t
  S  

Example 
Let A = {0,1,2,3} 
Consider a relation R = {(0,1),(1,2),(2,3)} on A. 

0 1 

2 3 

R
t 
on A 

Non-binary Relations 
Let 𝐴1, … , 𝐴𝑛be sets. A n-ary relation R  is a subset of 
𝐴1 × ⋯ × 𝐴𝑛. 𝑎1, … , 𝑎𝑛 are related if (𝑎1, … , 𝑎𝑛) ∈ 𝑅. 
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Exercises for Chapter 9

Exercise 72. Consider the sets A = {1, 2}, B = {1, 2, 3} and the relation
(x, y) ∈ R ⇐⇒ (x−y) is even. Compute the inverse relation R−1. Compute
its matrix representation.

Exercise 73. Consider the sets A = {2, 3, 4}, B = {2, 6, 8} and the relation
(x, y) ∈ R ⇐⇒ x | y. Compute the matrix of the inverse relation R−1.

Exercise 74. Let R be a relation from Z to Z defined by xRy ↔ 2|(x− y).
Show that if n is odd, then n is related to 1.

Exercise 75. This exercise is about composing relations.

1. Consider the sets A = {a1, a2}, B = {b1, b2}, C = {c1, c2, c3} with the
following relations R from A to B, and S from B to C:

R = {(a1, b1), (a1, b2)}, S = {(b1, c1), (b2, c1), (b1, c3), (b2, c2)}.

What is the matrix of R ◦ S?

2. In general, what is the matrix of R ◦ S?

Exercise 76. Consider the relation R on Z, given by aRb ⇐⇒ a − b
divisible by n. Is it symmetric?

Exercise 77. Consider a relation R on any set A. Show that R symmetric
if and only if R = R−1.

Exercise 78. Consider the set A = {a, b, c, d} and the relation

R = {(a, a), (a, b), (a, d), (b, a), (b, b), (c, c), (d, a), (d, d)}.

Is this relation reflexive? symmetric? transitive?

Exercise 79. Consider the setA = {0, 1, 2} and the relationR = {(0, 2), (1, 2), (2, 0)}.
Is R antisymmetric?

Exercise 80. Are symmetry and antisymmetry mutually exclusive?

Exercise 81. Consider the relation R given by divisibility on positive inte-
gers, that is xRy ↔ x|y. Is this relation reflexive? symmetric? antisymmet-
ric? transitive? What if the relation R is now defined over non-zero integers
instead?
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Exercise 82. Consider the set A = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Show that the
relation xRy ↔ 2|(x− y) is an equivalence relation.

Exercise 83. Show that given a set A and an equivalence relation R on A,
then the equivalence classes of R partition A.

Exercise 84. Consider the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10} and the relation

xRy ↔ ∃c ∈ Z, y = cx.

Is R an equivalence relation? is R a partial order?
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