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Chapter 1

Isometries of the Plane

“For geometry, you know, is the gate of science, and the gate is
so low and small that one can only enter it as a little child.” (W.
K. Clifford)

The focus of this first chapter is the 2-dimensional real plane R?, in which
a point P can be described by its coordinates:

PeR? P=(z,y), r€R, y€R.
Alternatively, we can describe P as a complex number by writing
P=(z,y)=x+1iy € C.

The plane R? comes with a usual distance. If P = (x1,91), P» = (29,92) €
R? are two points in the plane, then

d(Py, P,) = \/(352 —21)% + (Y2 — )%

Note that this is consistent with the complex notation. For P = x + iy € C,
recall that |P| = /22 +y2 = VPP, thus for two complex points P, =
x1 + 1y, Po = x5+ iy, € C, we have

A(PLP) = |P— P =/ (P— P)(P, — P)
= (e —21) +i(ye — )| = \/(xz —x1)% + (y2 — y1)?,

where () denotes the complex conjugation, i.e. x + iy = x — 1y.
We are now interested in planar transformations (that is, maps from R?
to R?) that preserve distances.




CHAPTER 1. ISOMETRIES OF THE PLANE

Pointy invthe Plane

* A point Pinthe plane is a pair of real numbers P=(x,y).
d(0,P)? = x2+y2.
* A point P=(x,y) in the plane can be seen as a complex number
X+Hiy.
[ x+iy | 2= x2+y2. ¢

Planow Lsometries

An isometry of the plane is a transformation f of the plane
that keeps distances unchanged, namely

d(f(P,),f(P,)) = d(P,,P,)
for any pair of points P,,P,.

- An isometry can be defined more generally than on a plane!




Definition 1. A map ¢ from R? to R? which preserves the distance between
points is called a planar isometry. We write that

d(p(P1), p(P2)) = d(P1, P,)
for any two points P, and P, in R2.
What are examples of such planar isometries?

1. Of course, the most simple example is the identity map! Formally, we
write

(z,y) = (z,y)
for every point P = (z,y) in the plane.

2. We have the reflection with respect to the z-axis:
(z,y) = (=2,9).

3. Similarly, the reflection can be done with respect to the y-axis:
(2, y) = (2, —y).

4. Another example that easily comes to mind is a rotation.

Let us recall how a rotation is defined. A rotation counterclockwise
through an angle 6 about the origin (0,0) € R? is given by

(x,y) — (zcosh —ysinf, xsinf + ycosb).

This can be seen using complex numbers. We have that |e?| = 1, for § € R,
thus ‘
|(z +iy)e”| = |z + iy]

and multiplying by ¢ does not change the length of (z,y). Now

(x +iy)e” = (z+1iy)(cosf +isinb)
= (rcosf —ysinf) + i(zrsinh + ycosb)

which is exactly the point (z cos — ysinf, zsinf + y cos6).
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Examples of Isometries

* The identity map: (x,y) = (x,y)
* Mirror reflection w/r to the x-axis: (x,y) = (x,-y)
* Mirror reflection w/r to the y-axis : (x,y) = (-x,y)

A a5

Rotation

* We also have a counterclockwise rotation of angle ©:
(x,y) = (x cosB-y sinB, x sinB+y cosb)




In matrix notation, a rotation counterclockwise through an angle 6 about
the origin (0,0) € R? maps a point P = (z,y) to P’ = (2/,y'), where P’ =

(2',y') is given by
x cosf) —sinf x
[y’] - [sin@ cos } {y} (1.1)

We denote the rotation matrix by Ry:

Ry = {0056’ —sin } '

sinff cosf

Intuitively, we know that a rotation preserve distances. However, as a
warm-up, let us prove that formally. We will give two proofs: one in the
2-dimensional real plane, and one using the complex plane.

First proof. Suppose we have two points P, = (z1,y1), Py = (72,72) € R%
Let d(Py, P2) be the distance from Py to P, so that the square distance
d(Py, P»)? can be written as

d(P, Py)? = (z2—a1)* 4 (yo — 1)’
To — 1
Y2 — Y1

S (HEHIEEER]

where ()7 denotes the transpose of a matrix.
Now we map two points P;, P, to P| and Pj via (1.1), i.e.

x; | | cosd —sind x| 2 .
[yg}_{SiHQ cos&}{yi}—Re[yi],Z—l,z.

Hence we have
yé yll Yo n ’

= (332 — X1,Y2 —ZI1) [

and
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Rotations in Matrix Formw

* If (x,y) is rotated counter-clockwise to get (x’,y’), then

[ X' ] [ cosB -sinB ] [x ] Note: rotation around
y' 4 7 L sin® cosb y the origin!

where the rotation is written in matrix form.

s sn 90| | @,
-sin 0" s N[ | @

Matrix transformation by xkcd

Rotationy ave Isometiies : malvix proof

P, P, f"\ P/ —— P/
[ 1 ] [
(x1,¥4) (X2,Y,) rotate (x,y1') (%;,Y7')
?
d(P,,P,)? —— identity N d(Py’,P,')?
1] matrix

I
X, =%, |" RTR [ x,—x, X' -x' N % - %/
Y~ Y1 Y2 Y1 = VJ_’ 'Vl’ sz - Vl’

R = rotation matrix we saw on the previous slide
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But

RépRo:{ cosf sind {cos@ —sm@]:{l 0]

—sinf@ cosf sinff cosf 01

which establishes that d(P;, Py) = d(Py, P»).

Second proof. Let P, = x1 + iy, P» = x5 + iy2 be two points in C, with
distance

d(Pl,PQ):‘PQ—Pllz \/(PQ—Pl)(PQ—Pl)
Since a rotation of angle # about the origin is represented by a multiplication
by €, we have
d(P[,Py) = |Py—P||= "R, —e"P| = |e”(P,— P)
= || |P = Pi| = |P2— P1| = d(Py, P»).

An arbitrary planar transformation maps P = (z,y) to P’ = (p(x,y), ¥(z,y)),
or in complex notation, P = x + iy to P’ = p(x,y) + iyp(z,y) = H(P).

We are interested in special planar transformations, those which preserve
distances, called isometries. We gave a few examples of planar isometries,
we will next completely classify them.

To do so, we will work with the complex plane, and write an isometry as
H(z), z € C, such that

|21 — 20| = |H(21) — H(z2)] .
We shall show that

Theorem 1. If |H(z1) — H(z2)| = |21 — 22|, for all z1, 25 € C, then H(z) =
az+ B or H(z) = az + B with |z| =1, i.e. a = e for some 0.

The theorem says that any function that preserves distances in R? must
be of the form
' | | cosf® —sind T ty |
y | | sinf cosf Y ty |

2 | | cosf® —sinf 1 0 x —l--tx
y | | sinf cos@ 0 —1 y ty |-

or
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Rotations ave Isomelries: complex proof

Pl PZ Pl' D PZ'
1l 1l r\ 1l 1l
X +iy, X,Hiy, rotate X, +iy,’ X, +iy,’
d(P,,P,) = d(P,’,P,’)
M 1
PPy - |€9P,-e5P,|
I}
| €] [P,-Py|

Classification of Isometiies of the plane

Consider an arbitrary planar transformation map H, which
maps a point P=x+iy to H(P).

We are interested in classifying the maps H which are
isometries, that is maps H satisfying |H(z,)-H(z,)|=]z,-2, .
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Notice what we recognize the reflections with respect to both the z- and
y-axis, rotations around the origin, as well as translations.
In order to prove the theorem, we need the following cute lemma.

Lemma 1. An isometry which maps (0,0) to (0,0), (1,0) to (1,0), and (0,1)
to (0,1), i.e. (0to0€C, 1tole€C, andi toi € C) must be the identity
map (,y) = (2,y).

Proof. The proof is done by identifying R? with the complex plane. Let h(z)
be a planar isometry satisfying the assumptions of the lemma, in particular,
h(z) satisfies

|h(z1) — h(2z2)| = |21 — 22| V21,22 € C.

We then have
|h(2) = h(0)] = |z — 0],

also
[h(z) = h(0)] = |r(2) — 0]

by assumption that h(0) = 0, thus
[7(2) = h(0)] = [h(2) = 0] = [z = O].

Using the fact that

we similarly get

>
—~
N
~—
|
=2
I
=
—~
N
=
I
)
|
=
I
=

This shows that

h(z)h(z) = 2z
(h(z) =D)((z) = 1) = (z = 1)(z — 1)
(h(z) =) (h(z) = 1) = (z = i)(z =)
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A Lemmav (1)

Lemma An isometry which maps 0to 0, 1 to 1 and i to i must be
the identity map.

Proof

Let H be an isometry: |H(z,)-H(z,) | %=|z,-z,|? for every z,, z,.
By assumption H(0)=0, H(1)=1, H(i)=i.

1) zz= |z|2=|H(2)-H(0)|? = |H(z)|* =H(DH(2)
_ ’.
2) (z=1(z=D = |z-1]|%=[H(2)-H(1) |>=[H(2)-1|?= (H(2) -D)(H(2) 1)

3) (z-i)(z-) = |z-i[?=[H(2)-H() |>=[H(2)-i|* = (H(@) -)(H@ i)

A Lemwmov (I1)

Proof (next)
From 2) : H(2H(2) -H(z)-H(2) +1=2z-z- z+1 > H(z)+H(9=2+z

From 3): H(2H(2) +iH(2)-iA(2) +1= 2z +zi-i 2+1 > H(z)- H(2) =z-2

We sum the last two equations to get H(z)=z.

QED

A point P which is fixed by a transformation f of the plane,
that is a point such that f(P)=P is called a fixed point.
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which can be simplified using that h(z)h(z) = zZ, and similarly multiply-
ing out (h(z) —i)(h(z) —i) = (2 — i)(z — ©), we obtain

h(z)+h(z) = z+7Z
h(z) —h(z) = z-—2Z.
By summing both equations, we conclude that h(z) = z. O

In words, we have shown that if h(z) has the same distances to 0,1, as
z then h(z) and z must be the same. This technique of looking at points
which are fixed by a given planar transformation is useful and we will see it
again later. It is thus worth giving a name to these special fixed points.

Definition 2. Let ¢ be a planar transformation. Then a point P in the
plane such that ¢(P) = P is called a fixed point of .

We are now ready to classify planar isometries, that is to prove Theorem 1.

Proof. Given H(z), an isometry H : C — C, define

B = H(0),
a = H(1)— H(0)
(lof = [H(1)=H(0)]=[1-0[=1).
Now consider a new function
KG) = ) = (HG) = 5)

Note the denominator is non-zero! Claim: K(z) is also an isometry. Indeed,
for every z,w € C, we have

O R
[ ) ) )
a |a]
— |H(:) -~ Hw)| = |zl
Now
_HO) - H()
KO = Hm—ae) "
H(1) — H(0)
U= mm—ae "
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Main Result (1)

Proof Given H an isometry, define

- B=H(O) Theorem statement claims
= a=H(1)-H(0) |a|=1, needs a check!

Note that |a|=|H(1)-H(0)[=11-0]|=1 as stated.

Main Result (II)

* Consider a new function K(z)=(H(z)-H(0))/(H(1)-H(0))

B=H(0), a=H(1)-H(0)

* We have K(z)=a1 (H(z)-B)

. . H isometry
* K(z) is an isometry:

|K(z)-K(w)| = | a* | [(H(z)-B)-(H(w)-B)| = |H(z)-H(w)|=]|z-w].
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Then

K@) = [i]=1
K@) —1] = |i—1] =2

These two equations tell us that K (i) is either ¢ or —i. This can be seen from
a geometric point of view, by noticing that K (i) is both on the unit circle
around the origin 0 and on a circle of radius v/2 around 1. Alternatively,
multiplying out (K(i) — 1)(K (i) — 1) = 2 and simplifying the expression
obtained with K (i) K (i) = 1 leads to the same conclusion.

If K(i) =1, then by Lemma 1, we have that

K(z)=z= H(z)=az+p.

If instead K (i) = —i, then K(z) is an isometry that fixes 0, 1,4 hence

K(z)=2z= K(z) =%, Vz €C,

and in this case
H(z)=az+p.

]

Let us stare at the statement of the theorem we just proved for a little bit.
It says that every planar isometry has a particular form, and we can recognize
some of the planar isometries that come to our mind (rotations around the
origin, reflections around either the z- and y-axis, translations,...). But then,
since we cannot think of other transformations, does it mean that no other
exists? One can in fact prove the following:

Theorem 2. Any planar isometry is either
1. a pure translation,
2. a pure rotation about some center zy,
3. a reflection about a general line,
4. a glide reflection (that is, a reflection followed by a translation).

We will come back to this theorem later! (in Chapter 6.)
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Main Resudt (II1)

K(0)=a* (H(0)-B) =0
B=H(0), a=H(1)-H(0)
K(1)=a*(H(1)-B) =1

Ki) =2

Why are we computing
that? Remember the
lemma...

We know: |K(i)|=]i|=1
Kisometry
We also know |K(i)-1|=]i-1]|=V2
K(i)=i or -i.

Main Result (IV)

If K(i)=i, then by the previous lemma, we know that K(z)=z.
K(z)=al(H(z)-B) =z == H(z) =az+B

If K(i)=-i, then K(@)=i, K@Q=1K(0)=0

Also |K(2)-K(W) HK(2)-K(w) H z—w]|

Again by the previous lemma, we know that K(z)=z
Equivalently : K(z)= z

K(z)= a* (H(2)-B) = z

= H(z)= az +B.

QED
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Next we shall show an easy consequence.
Theorem 3. Any planar isometry is invertible.

Proof. We check by direct computation that both possible formulas for isome-
tries, namely

Hiz)=az+fand H(z)=az+ 3, a=e"Y e C
are invertible. If 2’ = H(z) = az + 3, then

r_ .
z=H )= : - b =e " - B).
If instead 2’ = H(z) = az + f3, then
= _ Z/_B =0
Z=—_——=c (z' = B)

and

]

Remark. 1t is important to note that we have shown that a planar isometry
is a bijective map. In general, one can define an isometry, but if it is not
planar (that is, not from R? to R?), then the definition of isometry usually
includes the requirement that the map is bijective by definition. Namely a
general isometry is a bijective map which preserves distances.

We now show that we can compose isometries, i.e. apply them one after
the other, and that the result of this combination will yield another isometry,
i.e., if H; and Hy are two isometries then so is HyoH.

Here are two ways of doing so.

First proof. We can use the definition of planar isometry. We want show
that HyH; is an isometry. We know that

|Hy(H1(2)) — Ha(Hi(w))| = [Hi(z) — Hi(w)],
because H, is an isometry, and furthermore
|Hy(2) — Hi(w)] = |z — wl,
this time because H; is an isometry. Thus
|Hy(Hy(2)) — Hy(Hy(w))] = |2 — wl,

for any z,w € C which completes the proof.
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Covollowy

Corollary Any planar isometry is invertible.

Proof We know by the theorem: every isometry H is of the form
* H(z)=az+p, or
* H(z)=a Z+ B.

Let us compute H in the first case.

Define H(y)=(y-B)a?

Check! H(H(y))=H((y-B)a*)=y.

Other case is done similarly!

QED

Combining Isometries

* The composition of two isometries is again an isometry!

* Let Hand F be two isometries, then F(H(z)) is the composition
of Fand H.

* We have |F(H(z))-F(H(w))|=|H(z)-H(w)|=]|z-w].

F isometry Hisometry
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Second proof. Alternatively, since H;, Hy both have two types (we know
that thanks to Theorem 1), there are 4 cases to be verified.

L. Hy(Hi(2)) = az(onz + B1) + B2 = (aeon)z + (o281 + f2),
2. Hy(Hi(2)) = az(a1Z + f1) + B2 = (a201)Z + (21 + B2),
3. Hy(Hi(2)) = as(@iz + Br) + P2 = (207)Z + (21 + B2),
4. Hy(Hy(2)) = an(@rz + Br) + f2 = (agan)z + (aafy + Ba).

In every case, we notice that Hy H; is either of the form o’z+ ', or of the form

o'z + (', which shows that H;Hs is an isometry. Indeed, if H(z) = o’z + [,

then |H(z)— H(y)| = |/||z—y| = |z—y| (and similarly for H(z) = o/z+ ).
Note that isometries do not commute in general, that is

Hy(Hy(2)) # Hi(Ha(z))

since for example a1 + B2 # 152 + F1.
But we do have associativity, i.e.

Hs(Hy(Hi(2))) = (HsH3)(H:(2)) = Hs(H2H1(2)).
We also see that the identity map 1: z — 1(z) = z is an isometry, and when
any planar isometry H is composed with its inverse, we obtain as a result
the identity map 1:
H(H'(z)) = 1(2)
H ' (H(z) = 1(2).
What we have proved in fact is that planar isometries form a set of maps

which, together with the natural composition of maps, have the following
properties:

1. associativity,

2. existence of an identity map (that is a map 1 such that when combined
with any other planar isometry H does not change H: H(1(z)) =
1(H(z)) = 2),

3. inverse for each map.

As we shall see later, this proves that the set of isometries together with
the associative binary operation of composition of isometries is a group.
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Exercises for Chapter 1

Exercise 1. Let X be a metric space equipped with a distance d. Show that
an isometry of X (with respect to the distance d) is always an injective map.

Exercise 2. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H has only one fixed point which is 1+,
and H sends 1 — i to 3+ i, then H(z) =

Guided version.

1. Recall the general formula that describes isometries H of the complex
plane. We saw that an isometry of the complex plane can take two
forms, either H(z) =...,or H(z) = ...

2. You should have managed to find the two formulas, because they are
in the lecture notes! Now you need to use the assumptions given. First
of all, we know that H has only one fixed point, which is 1 + 7. Write
in formulas what it means that 1+ i is a fixed point of H (write it for
both formulas).

3. Now you must have got one equation from the previous step. Use the
next assumption, namely write in formulas what it means that H sends
1 — 1 to 3 + 4, this should give you a second equation.

4. If all went fine so far, you must be having two equations, with two
unknowns, so you are left to solve this system!

5. Once the system is solved, do not forget to check with the original
question to make sure your answer is right!

Exercise 3. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H fixes the line y = x+1 (identifying the
complex plane with the 2-dimensional real plane), then H(z) =

Exercise 4. Show that an isometry of the complex plane that fixes three
non-colinear points must be the identity map.

Exercise 5. In this exercise, we study the fixed points of planar isometries.
Recall that a planar isometry is of the form H(z) = az+ 3, H(z) = az + [,
|a| = 1. Determine the fixed points of these transformations in the different
cases that arise:



Cif H(z

it H(z

(

(
Cif H(z
Cif H(z

)
)
)
)

az+ fand a =1,
az+ [ and o # 1
az + f and a = 1, further distinguish § = 0 and 5 # 0,

az + f and a # 1, further distinguish § = 0 and 5 # 0.

23
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Chapter 2

Symmetries of Shapes

“Symmetries delight, please and tease !” (A.M. Bruckstein)

In the previous chapter, we studied planar isometries, that is maps from
R? to R? that are preserving distances. In this chapter, we will focus on
different sets of points in the real plane, and see which planar isometries are
preserving them.

We are motivated by trying to get a mathematical formulation of what
is a “nice” regular geometric structure. Intuitively we know of course! We
will see throughout this lecture that symmetries explain mathematically the
geometric properties of figures that we like.

Definition 3. A symmetry of a set of points S in the plane is a planar
isometry that preserves S (that is, that maps S to itself).

Note that “symmetries” also appear with letters and numbers! For ex-
ample, the phrase

NEVER ODD OR EVEN

reads the same backwards! It is called a palindrome.

The same holds for the number 11311 which happens to be a prime num-
ber, called a palindromic prime.

Palindromes can be seen as a conceptual mirror reflection with respect to
the vertical axis, which sends a word to itself.

25
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What is structure?

One intuitively knows ...
that this is structured... and this is random.

e ¥

Symumetiy

A symmetry of a set of points S is a planar isometry that
preserves the set S (that is, that maps S to itself).

Among planar isometries, which can be symmetries of finite sets?
* Translations—
* Rotations
* Reflections
* The identity map!
* Combinations of the above
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Recall from Theorem 2 that we know all the possible planar isometries,
and we know the composition of planar isometries is another planar isometry!
All the sets of points that we will consider are finite sets of points centered
around the origin, thus we obtain the following list of possible symmetries:

e the trivial identity map 1: (z,y) — (z,v),
e the mirror reflections m, : (x,y) — (—z,y), my : (z,y) — (—x,y)

with respect to the y-axis, respectively z-axis, and in fact any reflection
around a line passing through the origin,

e the rotation r,, about 0 counterclockwise by an angle w

v (2y) [Cosw —Sinw} {x}

sinw cosw Y

= (xcosw —ysinw,rsinw + ycosw) .

Translations are never possible! Consider first the set of points
S = {((l, 0)7 (_a7 0)}
(shown below) and let us ask what are the symmetries of S.

Yy

(—a,0) E (a,0)

Clearly the identity map is one, it is a planar isometry and 15 = S.
The mirror reflection m, with respect to the y-axis is one as well, since
m, is a planar isometry, and

my(a,0) = (—a,0), my(—a,0) = (a,0) = m,(S) =9,

that is S, is invariant under m. Now choosing w = 7, we have

ro(z,y) = (rcosm — ysinm, rsinm + ycosw) = (—x, —y),
and
r=(a,0) = (—a,0), r:(—a,0) = (a,0) = r(P) = m,(P)
for both points P € S, which shows formally that rotating counterclockwise

these two points by 7 about 0 is the same thing as flipping them around the
y-axis.
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Symumetries of Two-Aligned Pointy (1)

Consider the set of points
Sz{(alo)l(_alo)}‘
What are its symmetries?

—O0—t—0—
(a,0) (@0) 1. The identity map 1 is a
trivial symmetry of S!
2. Reflection m, with respect
to the y-axis
(alo)9(_310)1(_310)9(310)
Symumetvies of Two-Aligned Pointy (II)
Have we found all its symmetries?
YES!
Combining these symmetries does not give
(2,0) (30) a new symmetry! We summarize these
symmetries using a multiplication table.
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We have identified that the set S = {(a,0),(—a,0)} has 2 symmetries.
These are 1 and m,, or 1 and r,. We know that planar isometries can be
composed, which yields another planar isometry. Then symmetries of S can
be composed as well, and here we might wonder what happens if we were to
compose m, with itself:

mv(mv(x,y)) = mv(—x,y) = (‘Tay)

which shows that m,(m,(z,y)) = 1(z,y). We summarize the symmetries of
S ={(a,0),(—a,0)} using a multiplication table:

L me
1 1 My
my, || m, | 1 =m?

The multiplication table is read from left (elements in the column) to right
(elements in the row) using as operation the composition of maps.

Let us collect what we have done so far. We defined a set of points
S = {(a,0),(—a,0)} and we looked at three transformations 1, m, and 7,
which leave the set of points of S € R? invariant:

15=9
m,S =S (2.1)
r.5 =S5

We saw that for this particular choice of S, we have that r.(P) = m,(P) for
both points P € S.
The transformations are however different if we look at a “test point”
(x0> yO) ¢ S
Lz, y0) —* (0 Yo)
m(zo,Yo) — (—Zo, o)
rx(%0, Yo) = (=0, —Yo)

In fact, one may wonder what happens if we choose for S other sets of
points, for example, different polygons. As our next example, we will look
at a rectangle S. We write the rectangle S as

S ={(a,b),(—a,b),(—a,—b),(a,=b)}, a#b, a,b#0. (2.2)

(It is important that a # b! see (2.3 if a = b).)
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Symmetries of different shapes:..

Let us start with geometric objects:

0%

Symumetries of the Rectangle (1)

Let m be the vertical mirror reflection.
Let r be a rotation of 1 0 degrees.
Let 1 be the do-nothing symmetry.

What is rm?
b b a c d
:> |:> Thisis the
horizontal
mirror
d d C a

reflection!




Let us apply m, on S:
my(a,b) = (—a,b), m,(—a,b) = (a,b),
my(—a,—b) = (a, —b), my(a, —b) = (—a, —b)

as well as r:

7“77((1, b) = (_a7
re(—a,—b) = (a,b), r(a,

_b)7 Tﬂ(_a> b) = (CL,
“b) = (—a,b).
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—b),

These two maps are different and have different effects on S since r,(a,b) =
(—a,—b) # (—a,b) = my(a,b). We now try to compose them. We already
have m,(m,(x,y)) = 1(x,y), and

T'r (Tﬁ(may)) = TW(_‘I7 _y) = (ZL’,y) = 1(1’7y)

We continue with

T'r (mv(x,y)) = Tﬂ'(_xay) = (.Z',

=y); my (rr(x,y)) = my(=, —y) = (2, —y)

which both give a horizontal mirror reflection m;, also showing that

TaMy = Myl = M,

i.e., the transformations r, and m, commute. In turn, we immediately have

(rwmv)2 = reMyTaMy = TeMyMyTe = Telry = rr = 1.

The rules for combining elements from {1, m,, r, m,r.}

my,l =m, = 1m,

rol =r; =1r;
m2 =1
r2=1

MyTr = Ty

show that no new transformations will ever be obtained since we have

() __ ,.; mod 2 (Bi)
TTC - Tﬂ' ) mv

a1 102, B2
77T m’l)/rﬂ'm’l}

— r7(rZo¢i) mod ngz,é’b) mod 2.

Hence we have obtained a complete set of transformations for the shape S
summarized in its multiplication table (we write m = m,, for short):

L[t [m e [
1 1 m Ty mry
m m 1 mry | T'x
Tx Tr mry | 1 m
mry | mry | vz m 1




32

CHAPTER 2. SYMMETRIES OF SHAPES

Symumetries of the Rectangle (II)

We thus have identified 4 symmetries:
* 1=theidentity map

* m=vertical mirror reflection

* r=rotation of 1 O degrees

* rm=horizontal mirror reflection

Note that
e m2=1
e r2=1
* (rm)%=1
* rm=mr

Symwmetries of the Rectongle (III)

1 r m rm
1 1 r m rm
r r 1 rm m
m m rm 1 r

rm rm m r 1
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We next study the symmetries of a square, that is we consider the set

Sy {(a,a),(—a,a),(a,—a)(—a,—a)} (2.3)

(this is the case where a = b in (2.2)).

As for the two previous examples, we first need to see what are all the
planar isometries we need to consider. There are four mirror reflections that
map Sy to itself:

my =m,: (z,y) — (—x,y) with respect to the y-axis
me:  (z,y)— (y,x)  with respect to the line y = x
ms=my: (x,y)— (z,—y) with respect to the z-axis

my: (x,y) — (—y,—x) with respect to the line y = —z

Note that
ml(ml(x7y)) = 1(1’7?,/), 1= 1727374'

There are also three (counterclockwise) rotations (about the origin 0=(0,0)):

Tr)2 : (x,y) — (zcosm/2 —ysinm /2, xsinm/2 + ycosm/2) = (—y, x)
T (x,y) — (zcosm —ysinm, zsinm + ycosm) = (—x, —y)

T3e/2 0 (2,y) = (xcos3m/2 — ysin3n /2, xsin37/2 + y cos 3n/2) = (y, —x)
and 79, = 1. Rotations are easy to combine among each others! For example

Tn = Tr/2Tr/2

T3x/2 = Tr/2Tn/2T7/2

and we can give the part of the multiplication table which involves only
rotations. We summarize all the rotations by picking one rotation r» whose
powers contain the 4 rotations 72,7, 735/2, 1. We can choose 7 = ./, and
T = T3x/2, though in what follows we will focus on r = rs; /s = r_; /s, the
rotation of 90 degrees clockwise, or 270 degrees counterclockwise:
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Symwunetries of the Square (I)

What are the symmetries of the square?
There is the trivial symmetry 1.
There are mirror reflections:

m3 . . .
1. Reflection in mirror m1
2. Reflection in mirror m2
m 3. Reflection in mirror m3

ml

There are rotations:
1. Rotation of 90 degrees
2. Rotation of 180 degrees
3. Rotation of 270 degrees

Symmetries of the Squawe (1I)

* Letr = rotation of 90 degrees (clockwise), 270 degrees
(counterclockwise)

* Let m denote the horizontal mirror reflection (m=m.,).
* Let 1 be the identity map.

Let us first look at rotations:

r? = rotation of 180 degrees

r3= rotation of 270 degrees

ré= rotation of 360 degrees = 1.

We now look at the mirror reflection m:
m?2=1.
(this is true for every mirror reflection!)
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Let us try to compose mirror reflections with rotations. For that, we pick
first

m=my . (x7y> = (l’, _y)7 r="T3r/2: (Iay) = (yv _‘7;)7
and compute what is rm and mr (you can choose to do the computations

with another reflection instead of my, or with 7 = 7/, instead of r = 73 /5.)
We get

r(m(az,y)) = T’(l’, _y> = (_y7 —LE), m(r(x,y)) = m(y7 —SL’) = (y>x>
and since Sy = {(a,a), (—a,a), (a, —a)(—a, —a)}, we see that for example
r(m(a,a)) = (—a,—a), m(r(a,a)) = (a,a)

and these two transformations are different! We also notice something else
which is interesting:

rm = my = reflection with respect to the line y = —x
and
mr = my = reflection with respect to the line y = x.

Since rm # mr and we want to classify all the symmetries of the square Sy,
we need to fix an ordering to write the symmetries in a systematic manner.
We choose to first write a mirror reflection, and second a rotation (you could
choose to first write a rotation and second a mirror reflection, what matters
is that both ways allow you to describe all the symmetries, as we will see
now!) This implies that we will look at all the possible following symmetries,
written in the chosen ordering:

rm, r*m, rm.

We have just computed rm, so next we have

r*m(z,y) = r*(z, —y) = r(—y, —z) = (—2,y) (2.4)

and by applying r once more on (2.4) we get
rPm(z,y) = r(—z,y) = (y,7)
showing that
r?m = reflection with respect to the y—awis

and

r3m = mr = reflection with respect to the line y = z.
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Symumetries of the Squowe (II1)

* The composition of two symmetries = another symmetry!

* r=rotation of 90 deg (CW) or 270 deg (CCW), m=horizontal

reflection
a b c d a c

=rm
c d a b b d
a b c a d

=mr
c d d b a

Symumetries of the Squawe (IV)

* We saw that mr is not equal to rm.
* Thus we need to decide an ordering to write the symmetries.
* We choose rm,r?m,r3m.

a b d b

‘ So what is mr?
c d C a
a b c d d b
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It is a good time to start summarizing all what we have been doing!
Step 1. We recognize that among all the planar isometries, there are 8 of
them that are symmetries of the square S, namely:

1.
2.

vk W

® N e

my= reflection with respect to the y-axis,

mo= reflection with respect to the line y = x,

mgz= reflection with respect to the z-axis,
my= reflection with respect to the line y = —x,
the rotation ry /s,

the rotation .,
the rotation rs; s,

and of course the identity map 1!

Step 2. We fixed m = mg3 and = 73,2 and computed all the combinations
of the form r'm/?, i = 1,2,3,4, j = 1,2, and we found that

rmo o= My
r?m = m
rPm = me

which means that we can express all the above 8 symmetries of the square
as r'm/, and furthermore, combining them does not give new symmetries!
We can thus summarize all the computations in the following multiplica-

tion table.
’ Hl ‘m ‘7‘ ‘7”2 ‘7"3 ‘rm‘rzm‘r:‘m‘
1 1 m T r? r3 rm | r’m | r’m
m m 1 “m | rPm|rm |3 r? T
r r rm | r? rs 1 r’m | r’m | m
r? r? r’m | r3 1 r »m|m | rm
rs rs rm | 1 r r? m | rm | r’m
rm || rm |7 m | rm|r*m]|1 rs r?
r’m || r*m | r? rm |m | rm|r 1 rs
rm || m | r3 r’m | rm r? T 1
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Symumetries of the Squawe (V)
1 rm r’m rm
1 1 m r r? r rm r’m rm
m m 1 rm r’m rm r r? r
r r rm r? r 1 r’m rm m
r’ r? r’m r 1 r rm m rm
r r rm 1 r r? m rm r’m
rm rm r m rm r’m 1 r r’
r’m r’m r? rm m rm r 1 r3
rm rm r r’m rm m r? r 1
Symumetries aond Structure

A figure with many symmetries looks more structured!

e ¥
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In the first chapter, we defined and classified planar isometries. Once
we know what are all the possible isometries of plane, in this chapter, we
focus on a subset of them: given a set of points S, what is the subset of
planar isometries that preserves S. We computed three examples: (1) the
symmetries of two points, (2) the symmetries of the rectangle, and (3) that
of the square. We observed that the square has more symmetries (8 of them!)
than the rectangle (4 of them). In fact, the more “regular” the set of points
is, the more symmetries it has, and somehow, the “nicer” this set of points
look to us!
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Exercises for Chapter 2

Exercise 6. Determine the symmetries of an isosceles triangle, and compute
the multiplication table of all its symmetries.

Exercise 7. Determine the symmetries of an equilateral triangle, and com-
pute the multiplication table of all its symmetries.

Exercise 8. Determine the symmetries of the following shape, and compute
the multiplication table of all its symmetries.

Exercise 9. Let z = ¢27/3,

1. Show that 23 = 1.
2. Compute the multiplication table of the set {1, z, z?}.

3. Compare your multiplication table with that of Exercise 8. What can
you observe? How would you interpret what you can see?

Exercise 10. In the notes, we computed the multiplication table for the
symmetries of the square. We used as convention that entries in the table
are of the form r'm?. Adopt the reverse convention, that is, write all entries
as m’r® and recompute the multiplication table. This is a good exercise if
you are not yet comfortable with these multiplication tables!



Chapter 3

Introducing Groups

“We need a super-mathematics in which the operations are as un-
known as the quantities they operate on, and a super-mathematician
who does not know what he is doing when he performs these oper-
ations. Such a super-mathematics is the Theory of Groups.” (Sir
Arthur Stanley Eddington, physicist)

The first two chapters dealt with planar geometry. We identified what
are the possible planar isometries, and then, given a set S of points in the
plane, we focused on the subset of planar isometries that preserves this given
set S. These are called symmetries of S. We saw that planar isometries,
respectively symmetries, can be composed to yield another planar isometry,
respectively symmetry. Every planar isometry is invertible. Every symmetry
of a given set S is invertible as well, with as inverse another symmetry of S.

We now put a first step into the world of abstract algebra, and introduce
the notion of a group. We will see soon that groups have close connections
with symmetries!

Definition 4. A group G is a set with a binary operation (law) - satisfying
the following conditions:

1. Forall g1,90 € G=¢1- 92 € G.
2. The binary law is associative.
3. There is an identity element e in G, such that g-e=e-g =g, Vg € G.

4. Every element g € G has an inverse g~', such that g-g~ ' =g '-g = e.

41
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Defunitiow of Group

A group G is a set with a binary operation - which maps a pair
(g,h) in GxG tog-hinG,
which satisfies:

The operation is associative, that is to say (f-g)-h=f-(g-h) for
any three (not necessarily distinct) elements of G.

There is an element e in G, called an identity element, such
that g-e=g=e-g for every g in G.

Each element g of G has an inverse g! which belongs to G and
satisfies g -g=e=g-g* -

Notations!

The binary operation can be written multiplicatively,
additively, or with a symbol such as *.

We used the multiplicative notation.
If multiplicatively, the identity element is often written 1.

If additively, the law is written +, and the identity element is
often written O.
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There are many things to comment about this definition! We understand
what a set G means. Now we consider this set together with a binary opera-
tion (also called binary law). This binary operation can be different things,
depending on the nature of the set G. As a result, this operation can be
denoted in different ways as well. Let us see some of them. We will write
the set and the law as a pair, to make explicit the binary operation:

e In multiplicative notation, we write (G,-), and the identity element is
often written 1, or 14 if several groups and their identity elements are
involved.

e In additive notation, we write (G, +), and the identity element is often
written 0, or Og.

e There could be more general notations, such as (G, x), when we want
to emphasize that the operation can be very general.

The multiplicative notation really is a notation! For example, if m denotes
a mirror rotation and r a rotation, the notation r-m (or in fact rm for short)
means the composition of maps, since multiplying these maps does not make
sense! It is thus important to understand the meaning of the formalism that
we are using!

There are 4 key properties in the definition of group. Let us use the
multiplicative notation here, that is we have a group (G, -).

1. If we take two elements in our group G, let us call them gy, g2, then
g1 - g2 must belong to G.

2. The binary operation that we consider must be associative.
3. There must exist an identity element.
4. Every element must have an inverse.

If any of these is not true, then we do not have a group structure.
It is interesting to notice that the modern definition of group that we just
saw was in fact proposed by the mathematician Cayley, back in 1854!
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Some History

In 1854, the mathematician Cayley wrote:

Arthur Cayley
(1821 - 1895)

tvery Property county!

+ If the result of the binary operation is not in G (that is G is not
closed under the binary operation), not a group!
» |If the binary operation is not associative, not a group !
KON, T DONT

0

THiNG MATH 5 “Scmwe

*+ If no identity element, not a group! LT RS
oo

* If noinverse, not a group! BECOME ONE N NUMBER ¢

HAPPENS. You ETTHER BELIEYE
OR ou DONT.

'."

R
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To get used to the formalism of the group definition, let us try to make
a small proof.

Proposition 1. Let (G,-) be a group, with identity element e. Then this
identity element is unique.

Proof. To prove that e is unique, we will assume that there is another identity
element €', and show that e = ¢’. Let us thus do so, and assume that both e
and €’ are identity elements of G.
We now recall what is the definition of an identity element. If e is an
identity element, then it must satisfy
e-g=g-e=g (3.1)

for every element g of GG, and ¢’ must similarly satisfy

for every element g of G.
Now we know that (3.1) is true for every element in G, thus it is true for
¢/ as well, and

We redo the same thing with €’. Because (3.2) is true for every element in
G, then it is true for e, which gives

e-e =e.
Now we put these two equations together, to obtain
e =d=e=¢e =c.
]

A group becomes much simpler to understand if its binary operation is
in fact commutative. We give such groups a particular name.

Definition 5. Let (G, ) be a group. If the binary operation - is commutative,
i.e., if we have

Voi,92 € G, g1-92 =92 g1,
then the group is called commutative or abelian (in honor of the mathe-
matician Abel (1802-1829)).

When a group is abelian, its binary operation is often denoted additively,
that is (G, +).
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A furst proof

* To get used to some group formalism, let us try to prove that
the identity element of a group is unique.

* Proof Suppose by contradiction that there are two elements
e and e’ which are both an identity element.

Because e is an identity element, we have
e-e’=e’.

Because €’ is also an identity element, we have
e-e’ =e.

Hence e-e’ = e’ =e, which concludes the proof.

Commutalivity ?

Let G be a group. If for every g,h in G, we have g-h = h-g,
we say that G is commutative, or abelian.

Otherwise, we say that G is non-
commutative or non-abelian.

Niels Henrik Abel
(1802 — 1829)




47

Suppose we have a group with a given binary operation. We now look at
subsets of this group, which also have a group structure with respect to the
same binary operation!

Definition 6. If (G, ) is a group and H is a subset of G, so that (H,-) is a
group too, we shall call (H,-) a subgroup of G.

Note again that the above definition can be written in additive notation.

We may consider the subgroup H = G as a subgroup of GG. Another
example of subgroup which is always present in any group G is the trivial
subgroup formed by the identity element only!

Let us use the multiplicative notation, and let (G,-) be a group with
identity element 1. Now we need to check that H = {1} is indeed a subgroup
of G. Tt is of course a subset of G, so we are left to check that it has a group
structure. Well, all we need to know here is that 1-1 = 1, which is true from
the fact that G is a group. This shows at once that (1) combining elements
of H gives an element in H, (2) there is an identity element in H, and (3)
the element of H is invertible (it is its own inverse in fact). There is no need
to check the associativity of the binary law here, since it is inherited from
that of G.

If H is a subgroup of G, they are both groups, and the size of H is always
smaller or equal to that of G. The size of a group G has a name, we usually
refer to it as being the order of the group G.

Definition 7. If (G,-) is a group, the number of elements of G (i.e., the
cardinality of the set G3) is called the order of the group G. It is denoted by
|Gl

For example, to write formally that the size of a subgroup H of G is
always smaller or equal to that of G, we write: |H| < |G]|.

A group G can be finite (|G| < o0o) or infinite (|G| = oo0)! We will see
examples of both types.

Be careful here: the word “order” means two different things
in group theory, depending on whether we refer to the order of a group,
or to the order of an element!!

We next define the order of an element in a group.
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A Group inside a Group

If G is a group, and H is a subset of G which is a group with
respect to the binary operation of G, then H is called a
subgroup of G.

(H=G is a subgroup of G.)

The trivial Group

The set containing only the identity element is a group,
sometimes called the trivial group.

It is denoted by
— {0} (additive notation)
— {1} (multiplicative notation) .

Every group contains the trivial group as a subgroup.
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From now on, we will adopt the multiplicative notation, and very often
when things are clear enough even remove the - notation. For example, we
will write g1¢9o instead of gy - go.

Definition 8. Let G be a group with identity element e. The order of an
element g in G is the smallest positive integer k such that

999---9=9" =e
—_—

k times

Note that such a & might not exist! In that case, we will say that ¢g has
an infinite order. The notation for the order of an element ¢ varies, it is
sometimes denoted by |g|, or o(g).

One might wonder why we have two concepts of order, with the same
name. It suggests they might be related, and in fact they are, but this is
something we will see only later!

Let (G,+) be a group whose order is |G| = n, that is G contains a finite
number n of elements. Suppose that this group G contains an element g
whose order is also n, that is an element g such that

g =e
and there is no smaller positive power k of g such that g* = e. Then

g’g2’.”’gnfl’gn:6
are all distinct elements of G. Indeed should we have some ¢g° = ¢t for
t < n then by multiplying both sides with ¢~*, we would get that g* = 1 for
t < n, a contradiction to the minimality of n!
But the group, by assumption, has only n distinct elements, hence we
must have that

G = {17g7g27"'7gn71}'

If this is the case, we say that (G,-) is generated by g, which we write
G =(9)

These types of groups are very nice! In fact they are the simplest form
of groups that we will encounter. They are called cyclic groups.
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Order of o Group/Order of an Element

The cardinality of a group G is called the order of G and is
denoted by |G]|.

* A group can be finite or infinite.

The order of an element g in G is the smallest positive integer k
such that gt=1. If no such k exist, the order is oo.

+ Does having the same name mean that there is a link between
the order of a group and order of an element?
* Actually yes....but not so easy to see...

Whew ovder of element = ovder of group

* Let G be a group of finite order n (|G|=n).

* What happens if there exists an element g in the group G such
that the order of g =n?

* This means g"=1, and there is no k>0 smaller such that gk=1.
* This means that G is exactly described by G={1,g,g%,g3,...,g8™}.
* In this case, we say that G is a cyclic group.
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Definition 9. A group G will be called cyclic if it is generated by an element
gof G, ie.,
G = (g) ={g"|m € Z}.

Notice that this definition covers both the case of a finite cyclic group (in
that case, g" = e for some n, and this set is indeed finite) and of an infinite
cyclic group.

To start with, cyclic groups have this nice property of being abelian
groups.

Proposition 2. Cyclic groups are abelian.

Proof. To show that a group is abelian, we have to show that

9192 = 9201

for any choice of elements g; and g, in G. Now let G be a cyclic group. By
definition, we know that G is generated by a single element g, that is

G =(g) ={g"Iln € Z}.
Thus both ¢g; and g, can be written as a power of g:
n=9, 0=y

for some power ¢ and 7, and thus, thanks to the associativity of the binary
operation

919: =90 =9 = 9’9" = g20n
which concludes the proof. O
Let us summarize what we have been doing so far in this chapter.

e We defined this abstract notion of group.

e Using it, we defined more abstract things: an abelian group, the order
of a group, the order of an element of a group, the notion of subgroup,
and that of cyclic group.

e We also saw that based only on these definitions, we can start proving
results, such as the uniqueness of the identity element, or the fact that
cyclic groups are abelian.
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Cyclic Group

A group G is said to be cyclic if it is generated by one element
gin G. It is written G=<g>.

* If G=<g>, we have in multiplicative notation G={1,g,g°,g3,...,.8"1},
while in additive notation G={0,g,2g,...,(n-1)g} with ng=0.

* A cyclic group is abelian. - -
« Proof: gigigig' ﬁ for all g,h in G, we have g-h=h-g

Associativity! ‘ ~ A cyclic group of order 2

g g’=1

A 4

What we did so-fow...

* We stated an abstract definition of group.
* Based on it only, we built new abstract objects (abelian group,

subgroup and cyclic group) and definitions (order of group
and element).

CYCLIC
GROUP
ABELIAN GROUP ELEMENT
GROUP ORDER ORDER SUBGROUP

GROUP
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This might look really abstract, which is somewhat normal since this is a
first step into abstract algebra. However, you already know all these abstract
objects, because you saw them already in the two previous chapters! These
definitions are abstracting mathematical properties that we observed. We
will spend the rest of this chapter to convince you that this is indeed the
case.

We will use a lot the notion of multiplication table for the rest of this
chapter. We note that they are sometimes called Cayley tables.

Recall from the previous chapter that we have obtained the complete set
of symmetries for a rectangle, whose multiplication table we recall below (we
write m = m, for the vertical mirror reflection):

L[t [m e [
1 1 m T mry
m m 1 mry | 'x
Tr Tr mry | 1 m
mry || mry | vz m 1

First of all, let us see that the symmetries of a rectangle form a group G,
with respect to the binary operation given by the composition of maps.

e Composition of symmetries yields another symmetry (this can be ob-
served from the multiplication table).

e Composition of symmetries is associative.
e There exists an identity element, the identity map 1.

e Each element has an inverse (itself!) This can be seen from the table
as well!

This shows that the set of symmetries of a rectangle forms a group. Note
that this group is abelian, which can be seen from the fact that the multipli-
cation table is symmetric w.r.t. the main diagonal.

Of course, that the set of symmetries of a rectangle forms an abelian
group can be shown without computing a multiplication table, but since we
know it, it gives an easy way to visualize the group structure.
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What's the link?

These definitions are
abstracting
mathematical
properties we
already observed!

Where is the connection
with what we did in
the first chapter ??

Recall: Symumetiies of the Rectangle

* Let m be the vertical mirror reflection. -
* Letr be areflection of 180 degrees.
* Let 1 be the do-nothing symmetry.
* rmis the horizontal mirror reflection. . g
1 r m rm
1 1 r m rm
Table r r 1 rm m
m m rm 1 r

rm rm m r 1
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The group of symmetries of the rectangle has order 4.
Let us look at the order of the elements:

m?*=1,r*=1, (rm)*=1,

thus these elements have order 2.
We next look at the subgroups:

e The trivial subgroup {1} is here.

e We have that {1, 7} forms a subgroup of order 2.
e Similarly {1,m} forms a subgroup of order 2.

e Finally {1,7m} also forms a subgroup of order 2.

We can observe that these are the only subgroups, since by adding a 3rd
element to any of them, we will get the whole group! Let us illustrate this
claim with an example. Let us try to add to {1,7}, say m. We get H =
{1,r,m} but for this set H to be a group, we need to make sure that the
composition of any two maps is in H! Clearly rm is not, so we need to add
it if we want to get a group, but then we get G!

We further note that all the subgroups are cyclic subgroups! For example,
{1,m} = (m). But G itself is not a cyclic group, since it contains no element
of order 4.

Let us summarize our findings:

Let G be the group of symmetries of the rectangle.
1. It is an abelian group of order 4.
2. Apart from the identity element, it contains 3 elements of order 2.
3. It is not a cyclic group.

4. Tt contains 3 cyclic subgroups of order 2.
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Group of Symunetiies of the Rectangle

The symmetries of the rectangle form a group G, with respect
to composition:

Check List:
G={1,r,m,rm} v closed under binary operatio
v/ associativity
v'Identity element
v'Inverse

The identity element 1 is the do-nothing symmetry.
It is a group of order 4.
It is an abelian group. (the multiplication table is symmetric)

Subgroupsy and Orders

Can you spot subgroups?
{1,m}, {1,r}, {1,rm} are subgroups.

They are all cyclic subgroups! ]

All elements have order 2 (but 1=do -nothing).

1 r m rm
1 1 r m rm
r r 1 rm m
m m rm 1 r
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Let us now look at our second example, the symmetries of the square.
We recall that there are 8 symmetries:

1.
2.
3.

7.
8.

my= reflection with respect to the y-axis,

mo= reflection with respect to the line y = z,
mgz= reflection with respect to the x-axis,

my= reflection with respect to the line y = —x,
the rotation ry /s,

the rotation .,

the rotation rsy /2,

and of course the identity map 1!

By fixing m = mg and r = r3, /5, we also computed that

which allowed us to compute the following multiplication (Cayley) table.

rmo o= My

r?m = m
3 _

r’m = mgy

’ Hl ‘m ‘7" ‘7"2 ‘7“3 ‘rm‘rzm‘r:)’m‘
1 1 m |r r? | rm | r’m | r’m
m m 1 m | rPm|rm |3 r? T
r r rm | r? rs r’m | m | m
r? r? rm | r3 1 T m | m rm
rs rs rm | 1 r r? m | rm | r’m
rm || rm |7 m | rm|r*m]|1 rs r?
r’m || r*m | r? rm |m | rm|r 1 s
rm || rm | r3 r’m|rm |m r? T 1
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Recall: Symwmetries of the Square

1. Do-nothing
2. Reflection in mirror m1
3. Reflection in mirror m2
4. Reflection in mirror m3
m3 6. Rotation of 90 degrees
7. Rotation of 180 degrees
8. Rotation of 270 degrees
m?2
ml
Multiplication Table
1 m r rm r’m rm
1 1 m r r’ r rm r’m r‘m
m m 1 r’m r’m rm r? r? r
r r rm r? r? 1 rm rm m
r? r r’m r3 1 r r’m m rm
3 3 . 1 r r m rm r’m
rm rm r m rPm r’m 1 r r
r’m r’m r’ rm m rm r 1 r
rm rm r m r? r 1
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Let us check that the symmetries of the square form a group. We consider
the set
G ={1,r,7%,r*, m,mr,mr*, mr*}

together with the composition of maps as binary law. Then we have

e closure under the binary composition, that is the composition of two
symmetries is again a symmetry;,

e the composition is associative,
e there exists an identity element,

e cach element has an inverse (this can be seen in the table, since every
row has a 1!)

We just showed that G is a group.

It is a group of order 8, which is not abelian, since rm # mr. Note that
as a result G cannot be cyclic, since we proved that every cyclic group is
abelian!

We next look at possible subgroups of G. Let us try to spot some of
them.

e We have that {1, m} forms a subgroup of order 2. It contains an element
m of order 2, thus it is cyclic!

e Another subgroup can be easily spotted by reordering the rows and
columns of the Cayley table. This is {1,r,r% r®}, which is a subgroup
of order 4. It contains one element of order 4, that is r, and thus it is
cyclic as well! It also contains one element of order 2, that is 2. The
element % also has order 4.

e The subgroup {1,7,7%, 13} itself contains another subgroup of order 2,
given by {1, 7%}, which is cyclic of order 2.

We have now spotted the most obvious subgroups, let us see if we missed
something.
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Group of Symumetiies of the Squowve

The set of symmetries of the square form a group G, with

respect to composition.

G={1,m,r, r2,r3, rm, ’m, r’m}. Check List:
v closed under binary operation
v  associativity
v'ldentity element
¥'Inverse

The identity element 1 is the do-nothing symmetry.
It is a group of order 8.
It is a non-abelian group.

Cawv yow spot Subgroups? (1)

v closed under binary operatio
v associativity

v'Identity element

v'Inverse

<m> is a cyclic group of order 2!

1 m r r? r? rm r’m rm

1 1 m r r? r? rm rm rm

m m 1 rm r’m rm r3 r? r

r r rm r? r3 1 r’m r*m m

r? r? r’m r3 1 r rm m rm

r3 r3 rm 1 r r? m rm r’m
rm rm r m rm r’m 1 r3 r?
rm rm r? rm m rm r 1 r?

rm rm r3 r’m rm m r? r 1
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If we take the subgroup {1,r,r% r®} and try to add one more element,
say m, we realize that rm, r®m,... must be there as well, and thus we get
the whole group G.

Let us try to add some more elements to the subgroup {1, m}. If we add
r, then we need to add all the power of r, and we obtain the whole group G
again.

Alternatively we could try to add 72 to {1,m}. Then we get H =
{1,m,7?,7?m, mr?}, and this we have that 72m = mr?. Thus we managed to
find another subgroup, this time of order 4. It contains 3 elements of order
2.

We had identified the subgroup {1,72}. If we add m, we find the subgroup
H again. If we add rm, we find another subgroup given by {1,72 rm,r3m}.

Finally, we had mentioned at the beginning that {1, m} forms a subgroup
of order 2. But this is true for every mirror reflection, and we have more
than one such reflection: we know we have 4 of them! Thus to each of them
corresponds a cyclic subgroup of order 2.

We list all the subgroups of GG that we found.

1. Order 1: the trivial subgroup {1}.

{1,7m}, {1,7*m} and {1,73m}, together with {1,72}.
3. Order 4: we have {1,7,7%, 73} which is cyclic, and {1, m, 72, r?m,mr
together with {1, 72, rm, r3m} which are not cyclic.

Let G be the group of symmetries of the square. Here is a list of its subgroups.

2. Order 2: the cyclic groups generated by the 4 reflections, that is {1, m},

It is interesting to recognize the group of symmetries of the rectangle, which
makes sense, since a square is a special rectangle.

You are right to think that finding all these subgroups is tedious! In fact,
finding the list of all subgroups of a given group in general is really hard.
However there is nothing to worry about here, since we will not try for bigger
groups, and for the symmetries of the square, it was still manageable.
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Canv yow spot Subgroups? (I1)

v closure under binary operation
v  associativity
v'ldentity element

<r>is a cyclic group of order 4!

v'Inverse
1 r r? r3 m rm r’m r‘m
1 1 r r? r3 m rm rm rm
r r r? r 1 rm r’m rm m
r? r? r? 1 r r’m rm m rm
r3 r3 1 r r? rm m rm rm
m m rPm r’m rm 1 r3 r? r
rm rm m rm r’m r 1 r? r?
rm r’m rm m rPm r? r 1 r3
rm rm r’m rm m r3 r? r 1

Cowv yow spot Subgroups? (III)

v closure under binary operation
v associativity
v'Identity element

<r?>is a cyclic group of order 2!

v'Inverse
r’ rm rm r r? m r’m
1 1 7 rm rm r r? m r’m
r? r? 1 rm rm r3 r r’m m
rm rm rm 1 r? m rm r r3
rm rm rm r? 1 rm m r3 r
r r 7 r’m m r? 1 rm rPm
r3 r3 r m r’m 1 r? rm rm
m m r’m r3 r rm rm 1 r?

r’m r’m m r r3 rm rm r? 1
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We finish this example by summarizing all that we found about the group
of symmetries of the square.

Let G be the group of symmetries of the square.
1. It is a group of order 8.

2. Apart from the identity element, it contains 7 elements, 5 of order 2,
and 2 of order 4.

3. It is not a cyclic group.
4. In fact, it is not even an abelian group.

5. It contains 5 cyclic subgroups of order 2, 1 cyclic subgroup of order
4, and 2 subgroups of order 4 which are not cyclic, for a total of 8
non-trivial subgroups.

In the first two chapters, we explained mathematically nice geometric
structures using the notion of symmetries. What we saw in this chapter is
that symmetries in fact have a nice algebraic structure, that of a group. What
we will do next is study more about groups! Once we have learnt more, we
will come back to symmetries again, and see that we can get a much better
understanding thanks to some group theory knowledge.
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Cawv yow spot Subgroups? (IV)

v closed under binary operatio
v  associativity

v'ldentity element

v'Inverse

Is this group cyclic? What is it?

Group of symmetries of the rectangle!

r? rm rm r3 m rm
1 1 r? rm rm r r m r’m
r? r? 1 rm rm r3 r r’m m
rm rm rm 1 r? m r’m r r3
r*m r*m rm r? 1 r’m m r3 r
r r r3 r’m m # 1 rm rm
r r3 r m r’m 1 r rm rm
m m rm r3 r rm rm 1 r?
r’m r’m m r r3 rm rm r? 1

Subgroupsy and Orders

In our group G ={1,m,r, r%,r3, rm, r’m, r’m} we have harvested
as subgroups:

coincidence...more later)

The obvious subgroups: G and {1}

The cyclic subgroups: <m> and <r?> of order 2, <r> of order 4

More difficult : the group of symmetries of the rectangle

Orders of elements: r of order 4, m of order 2, r2of order 2
Do you notice? 4 and 2 are divisors of |G| (not a
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Exercises for Chapter 3

Exercise 11. In Exercise 7, you determined the symmetries of an equilateral
triangle, and computed the multiplication table of all its symmetries. Show
that the symmetries of an equilateral triangle form a group.

1. Is it abelian or non-abelian?
2. What is the order of this group?
3. Compute the order of its elements.
4. Is this group cyclic?
5. Can you spot some of its subgroups?
Exercise 12. Let z = ¢*™/3, Show that {1, z, 22} forms a group.
1. Is it abelian or non-abelian?
2. What is the order of this group?
3. Compute the order of its elements.
4. Is this group cyclic?
5. Can you spot some of its subgroups?
Exercise 13. Let X be a metric space equipped with a distance d.

1. Show that the set of bijective isometries of X (with respect to the
distance d) forms a group denoted by G.

2. Let S be a subset of X. Define a symmetry f of S as a bijective
isometry of X that maps S onto itself (that is f(S) = 5). Show that
the set of symmetries of S is a subgroup of G.

Exercise 14. Let G be a group. Show that right and left cancellation laws
hold (with respect to the binary group operation), namely:

g2 - g1 = g3 - g1 = g2 = g3,

g3 g1 = g3 - g2 = g1 = go,
for any g1, g2, 93 € G.
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Exercise 15. Let GG be an abelian group. Is the set
{reG, r=a""}
a subgroup of G7 Justify your answer.

Exercise 16. Let GG be a group, and let H be a subgroup of G. Consider
the set
gH = {gh, h€ H}.

1. Show that |[¢gH| = |H|.
2. Is thet set
{9€G, g = Hg}
a subgroup of G?

Exercise 17. Let G be a group, show that

(192) ' = g5 'gr 1,

77'

for every g1, go € G. This is sometimes called the “shoes and socks property”!

Exercise 18. In a finite group G, every element has finite order. True or
false? Justify your answer.

Exercise 19. This exercise is to practice Cayley tables.

1. Suppose that G is a group of order 2. Compute its Cayley table.

Guided version.

e Since G is of order 2, this means it has two elements, say G =
{g1,92}. Decide a binary law, say a binary law that is written
multiplicatively.

e Now use the definition of group to identify that one of the two
elements must be an identity element 1. Then write the Cayley
table.

e Once you have written all the elements in the table, make sure
that this table is indeed that of group! (namely make sure that
you used the fact that every element is invertible).
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2. Suppose that G is a group of order 3. Compute its Cayley table.

Exercise 20. Consider the set M,,(R) of n x n matrices with coefficients in
R. For this exercise, you may assume that matrix addition and multiplication
is associative.

1. Show that M, (R) is a group under addition.
2. Explain why M, (R) is not a group under multiplication.

3. Let GL,(R) be the subset of M, (R) consisting of all invertible matri-
ces. Show that GL,(R) is a multiplicative group. (GL,(R) is called a
General Linear group).

4. Let SL,(R) be the subset of GL,(R) consisting of all matrices with
determinant 1. Show that SL,(R) is a subgroup of GL,(R). (SL,(R)

is called a Special Linear group).

5. Explain whether SL,(R) is a subgroup of M, (R)
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Chapter 4

The Group Zoo

“The universe is an enormous direct product of representations
of symmetry groups.” (Hermann Weyl, mathematician)

In the previous chapter, we introduced groups (together with subgroups,
order of a group, order of an element, abelian and cyclic groups) and saw as
examples the group of symmetries of the square and of the rectangle. The
concept of group in mathematics is actually useful in a variety of areas beyond
geometry and sets of geometric transformation. We shall next consider many
sets endowed with binary operations yielding group structures. We start
with possibly the most natural example, that of real numbers. Since both
addition and multiplication are possible operations over the reals, we need
to distinguish with respect to which we are considering a group structure.

Example 1. We have that (R, +) is a group.

e R is closed under addition, which is associative.
e Vx € R,z 4+ 0 =0+ 2 =z, hence 0 is the identity element.

e Vz e R,3(—x) € R, so that x + (—x) = 0.
Example 2. We have that (R*,-), where R* = R\{0}, forms a group:

e R* is closed under multiplication, which is associative.

e Vx ¢ R*, z-1 =1 -2 ==z, hence 1 is the identity element.

e VzeR, Jz ' =121 sothatz-(2)=(2) -z =1

Both (R,+) and (R*,-) are abelian groups, of infinite order (|R| = oo,
[R*| = o).

69
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Recall the Definitiow of Group

Do you remember from last week?

Check List:

v closed under binary operation
v associativity

v'|dentity element

¥'Inverse

Have you thought of examples of groups you might know?

Real Numbery

* The real numberdl form a group, with respect to addition.

Check List:

v closed under binary operation
v’ associativity

v'|dentity element

¥'Inverse

* What about multiplication?

* The real numbers without the zero form a group for multiplication.
* What about the set of complex numbers? (left as exercise)
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Consider the set of integers Z.

Definition 10. We say that a,b € Z are congruent modulo n if their differ-
ence is an integer multiple of n. We write

a=bmodn<sa—-b=t-n, teZ.
Example 3. Here are a few examples of computation.
e 7=2mod 5 because 7T—2=1-5,
e —6=—1mod 5 because —6 — (—1) = (—1) - 5,
e —1 =4 mod 5 because —1 —4 = (—1) - 5,
e —6 =4 mod 5 because 4 — (—6) =2 - 5.

We are of course interested in finding a group structure on integers
mod n. To do so, we first need to recall what are equivalence classes.

Proposition 3. Congruence mod n is an equivalence relation over the
integers, i.e., it is a relation that is reflexive, symmetric and transitive.

Proof. We need to verify that congruence mod n is indeed reflexive, symmet-
ric, and transitive as claimed.

Reflexive: it is true that ¢ = a mod n since a —a =0 - n.

Symmetric: we show that if a = b mod n then b = a mod n. Now a = b
modn <= a—b=tn <= b—a=(—t)n <= b=a modn.

Transitive: we show that if a = bmodn and b = ¢mod n then a =
cmodn. Nowifa—b=tinand b—c=tmn,thena—c=a—-b+b—c=
(t; + to)n, showing that a = ¢ mod n. O

Given an equivalence relation over a set, this relation always partitions it
into equivalence classes. In particular, we get here:

Theorem 4. Congruence mod n partitions the integers Z into (disjoint)
equivalence classes, where the equivalence class of a € 7 is given by

a=1{b€Z, a=b mod n}.
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Move Numbers : Integers mod,

For a positive integer n, two integers a and b are said to be
congruent modulo n if their difference a - b is an integer
multiple of n:

a=b modn.

Example:
7=2mod5

since 7-2 is a multiple of 5.

We havea=bmodn < a-b=0modn <& n | a-b & a-b=nq
& a=nq+b

Integers mod 12

* Integers mod 12 can be represented by
{0,1,2,3,4,5,6,7,8,9,10,11}
* Suppose itis 1pm, add 12 hours, this gives 1 am.
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Proof. Recall first that a “partition” refers to a disjoint union, thus we have

to show that
Z=|Ja=J{veZ a=b modn}

a€Z a€ZL
where @ N a’ is empty if @ # o’. Since a runs through Z, we already know
that Z = |J,z @, thus the real work is to show that two equivalence classes
are either the same or disjoint. Take

a={b€Z,a=b modn}, d ={b €Z, a =0 modn}.

If the intersection @ N a’ is empty, the two sets are disjoint. Let us thus
assume that there is one element ¢ which belongs to the intersection. Then
c=a modnandc=d modn=c=a+tn=ad+sn

for some integers s, ¢. But this shows that
a—ad =sn—tn=(s—t)n=a=d modn

and we concluce that the two equivalence classes are the same. O

Note that a = bmod n < a—b=1t-n <= a = b+ tn, which
means that both a and b have the same remainder when we divide them by n.
Furthermore, since every integer a € Z can be uniquely represented as a =
tn+r withr € {0,1,2,...,(n—1)}, we may choose r as the representative
of a in its equivalence class under congruence mod n, which simply means
that integers mod n will be written {0,1,2,...,n —1}.

Let us define now addition of integers mod n:

(@ modn)+ (b modn)=(a+0b) modn.

When we write a mod n, we are chosing a as a representative of the equiva-
lence class a, and since the result of the addition involves a, we need to make
sure that it will not change if we pick o’ as a representative instead of a!

Proposition 4. Suppose that a’ = a mod n, and t/ = b mod n, then (a’ mod

n) £ (b mod n) = (a £ b) mod n.

Proof. Since a’ = a mod n, and b’ = b mod n, we have by definition that
ad=a+qn, V=b+rn, qr €Z

hence

ad+tbt=(a+gn)t(b+rm)=(axd)+n(¢gxtr)=a+b modn.



74

CHAPTER 4. THE GROUP ZOO

Equivalence Relatiow

Being congruent mod n is an equivalence relation.

* Itisreflexiveza=amodn

* |tis symmetric: if a=b mod n, then b=a mod n.

e [tis transitive: if a=b mod n and b=c mod n, then a=c mod n

Thus if a = b mod n, they are in the same equivalence class.
We work with a representative of an equivalence class, it does
not matter which (typically between 0 and n-1).

What it means: we identify all elements which are “the
same” as one element, an equivalent class!

Addition modulo w

Let us define addition mod n:
(a mod n) + (b mod n) = (a+b) mod n

Problem: given a and n, there are many a’ such thata=a’
mod n, in fact, all the a’ in the equivalence class of a.

Thus addition should work independently of the choice of a’,
that is, independently of the choice of the representative!

Take a’ =amodn, b’=b mod n, then it must be true that (a’
mod n) + (b’ mod n) = (a+b) mod n.

a’ =amodn & a’ =a+qn for some q

b’=b mod n < b’ =b+rn forsomer

Thus (a+gn)+(b+rn) = (a+b) + n(g+r) = a+b mod n.
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All this work was to be able to claim the following:
The integers mod n together with addition form a group G,
where by integers mod n we mean the n equivalence classes

G={0,1,3,.. n-1)},

also denoted by Z/nZ, and by addition, the binary law
@+b=(a+0b) mod n.

We indeed fullfil the definition of a group:

e Closure: since (a+b) mod n € G.

e Associativity.
e The identity element is 0, since @ +0 = a mod n = a.

e The inverse of a isn — a, since@+n —a=n mod n = 0.
We further have that G is commutative. Indeed @; + a3 = a3 + a; (by
commutativity of regular addition!).

Therefore (G is an abelian group of order n. The group G of integers mod
n has in fact more properties.

Proposition 5. The group G of integers mod n together with addition is
cyclic.

Proof. We have that G has order |G| = n. Recall that for a group to be
cyclic, we need an element of G of order n, that is an element a such that
(in additive notation)
a+...a=na=0.

We take for @ the element 1, which when repeatedly composed with itself
will generate all the elements of the group as follows:
(141=2

1+1+1=3
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Group Structure of Integersy mod w

The set of integers mod n forms an abelian group, with binary
operation addition modulo n, and identity element O (that is,
the equivalence class of 0).

It has order n.

... and n is the smallest integer

with that property!
Is it cyclic? Yes! 1 is of order n since
1+1...+1=n=0 mod n...

It is an abelian group.

Integers mod 2

* The group of integers mod 2 = {0,1} (choice of

representatives!)
Bits are integer modulo 2!

There are 18 kinds of
people in the world.

1 1 Those who understand
binary, and those who
don't.
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Example 4. The group (Z/27Z,+) of integers mod 2 has Cayley table

—| |
=]

SEE

and forms a cyclic group of order 2 (Z/27 = (1), T =T41= 0).
Example 5. The group (Z/3Z,+) of integers mod 3 has Cayley table

|_[0[T[2]

= Dl DNof| Do

|l S| 2l

N | O
Ol Dol =l

This is a cyclic group of order 3: Z/3Z = (1) = (2).
Example 6. The Cayley table of the group (Z/4Z,+) of integers mod 4 is

|

Ol wol b —l| —I

— Dl ol Dol DN

wl nof —| o] oI
ol =l oI wofl| ol

Wl Do =

This is a cyclic group: (Z/4Z,+) = (1) = (3). The subgroup (2) = {0,2} of
(Z/AZ,+) has a Cayley table quite similar to that of (Z/2Z, +)!

0
2

[\l Nenl

SEE

A “historical” use of integers modulo n is credited to the Roman emperor
Julius Caesar (100 BC 44 BC), who apparently was communicating with his
army generals using what is now called Caesar’s cipher. A modern way of
explaining his cipher is to present it as an encryption scheme ex defined by

ex(r) =2+ K mod26, K =3

where x is an integer between 0 and 25, corresponding to a letter in the
alphabet (for example, 0—A,...,.25—7). This is a valid encryption scheme,
because it has a decryption function dx such that di(ex(x)) = = for every
integer x mod 26.
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Integers mod 4

* Integers mod 4 ={0,1,2,3} (choice of representatives!)
* Order of the elements?

v'0 has order 1
v'1 has order 4 It is a cyclic
v'2 has order 2

¥'3 has order 4 group!
0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Cawv yow spot av sulbgroup?

* {0,2}is a subgroup of order 2. It is cyclic!

w LN O

w RPN O O
=, WRO N N
O N W B =
N O B W W
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After studying integers modulo n with respect to addition, we consider
multiplication. First, we check that

(@ modn)-(b modn)=(a-b) modn
does not depend on the choice of a representative in @ mod n and b mod n.

Proposition 6. Suppose that o’ = a mod n and b’ = b mod n, then (d
mod n) - (b’ mod n) = (a-b) mod n.

Proof. We write a’ = a+qn, b/ = b+rn and compute a’-V' = (a+qn)(b+rn) =
ab+ n(ar + gb+ n) as needed! O

This operation obeys (1) closure, (2) associativity, and (3) there exists an
identity element 1: @-1 = @. But not every @ has an inverse! For an inverse
a~! of @ to exist, we need aa=! = 1 + zn, where z € Z.

Example 7. If n = 4, 2 cannot have an inverse, because 2 multiplied by any
integer is even, and thus cannot be equal to 1 + 42z which is odd.

To understand when an inverse exists, we will need the Bézout’s Identity.

Theorem 5. Let a,b be integers, with greatest common divisor ged(a, b) = d.
Then there exist integers m,n such that

am +bn =d.

Conversely, if am’ +bn’ = d' for some integers m’,n’, then d divides d'.

Proof. Recall that the Euclidean Algorithm computes ged(a,b)! Suppose
b < a. Then we divide a by b giving a quotient gy and remainder ry:

a:bqo—l—'r’o, rog < b. (41)

Next we divide b by ro: b = roq1+r1, r1 < 1o, and ro by r1: 1o = r1qa+72, 79 <
r1 and we see the pattern: since ry; < rg, we divide rp by 7,11

Tk = Tk41qk42 T Tka2, Thro < Tkt (4.2)

Each step gives us a new nonnegative remainder, which is smaller than the
previous one. At some point we will get a zero remainder: ry = ry 11y 12+0.
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Caesar’s Cipher

To send secrete messages to his generals, Caesar is said to
have used the following cipher.

e X 2 ey(x)=x+K mod 26, K=3

Map Ato 0,...,Z to 25 and decipher this
message from Caesar: YHQL YLGL YLFL

It is a well-defined cipher because
there is a function d such that

dy(eg (x))=x for every x integer
mod 26.

Integers mod w and Multiplication?

Need to check well
defined, like for addition!

Are integers mod n a group under multiplication?
* No! not every element is invertible.
* Example: 2 is not invertible mod 4

Invertible elements mod n are those integers
modulo n which are coprime to n.

Etienne Bezout
(1730-1783)
Proof. Bezout’s identity! There are integers x,y such that

ax+ny=gcd(a,n), and if ax’+ny’=d then gcd(a,n) | d.

* If gcd(a,n) =1 = ax+ny =1 for some x,y - ax =1 mod n-> a invertible.

* If ainvertible - ax=1 mod n for some x - ax+ny=1 for somey
- gcd(a,n)|1 = ged(a,n)=1
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We now show inductively that d = ged(a,b) is equal to rxy1. The line
(4.1) shows that gcd(a,b) divides ryo. Hence ged(a,b) | ged(b,rg). Sup-
pose that ged(a,b) | ged(ry_1,7n). Since ry_1 = ryqni1 + Tni1, We have
that ged(ry_1,7y) divides both ryyq and ry thus it divides ged(ryiq1, 7n).
Thus ged(a, b)|ged(rn—1,7n)| ged(ry, rv+1) = rn41. On the other hand,
backtracking, we see that ry.; divides a,b: ryyq | ry thus since ry_; =
TNqN+1 + TN41, We have g | ry_g, ...

To show Bézout’s identity, we write d = ryi1 = ry_1 —TnNQN+1, and sub-
stitute for each remainder its expression in terms of the previous remainders

Tk+2 = Tk — Tk+1Gk+2

all the way back until the only terms involved are a,b. This gives that
d =ryi1 = am + bn for some m,n € 7Z, as desired.

Conversely, let d’ be a positive integer. Suppose that am’ + bn’ = d’ for
some integers m/,n’. By definition of greatest common divisor, d divides a
and b. Thus there exist integers o', with a = da’ and b = db’, and

da'm’ + db'n' = d'.
Now d divides the two terms of the sum, thus it divides d'. O

We are ready to characterize integers mod n with a multiplicative inverse.

Corollary 1. The integers mod n which have multiplicative inverses are
those which are coprime to n, i.e. , {a, | ged(a,n) =1}.

Proof. 1f ged(a,n) = 1, Bézout’s identity tells us that there exist z,y € Z
such that ax +ny = 1. Thus ax = 1 + (—y)n and 7T is the inverse of a.
Conversely, if there is an T such that @z = 1 then ax = 1 +yn <=
ax —yn = 1 for some y € Z. By Bézout’s identity, we have ged(a,n) | 1,
showing that ged(a,n) = 1. ]

The set (Z/nZ)* of invertible elements mod n forms a group under multiplication.

Tndeed (a) closure holds: (@)~ = (b ')(@!) € (Z/nZ)*, (b) associativity
holds, (c) the identity element is 1, (d) every element is invertible (we just
proved it!).

What is the order of this group?

(Z/nZ)"| = #{a € {0,1,2,..., (n = 1)} | ged(a,n) =1} = o(n),

where p(n) is a famous function called the Euler totient, which by definition
counts the number of positive integers coprime to n.
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Group of Irwertible modudo- w

The set of invertible elements mod n form a group under
multiplication.

* This group is closed: the product of two invertible elements is
invertible.

* Multiplication is associative, the identity element is 1 (the
equivalence class of 1).
* Every element has an inverse.

Its order is the Euler totient function ¥ (1)
By definition it counts how many integers are coprime to n.

Rooty of Unity

We call a complex number z an nth root of unity if z" =1.
Thus z= e%™" js an nth root of unity because (eZ™/n)n=1,

An nth root of unity z is called primitive if n is the smallest
positive integer such that z"=1.

Example:

We have that i is a 4rth root of unity, because i*=1.
Also -1 is a 4rth root of unity, because (-1)*=1.
Now i is primitive, because i2 # 1, i3 # 1.

But (-1) is not primitive because (-1)2=1.
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Let us see one more example of a group. From the complex numbers, a
very special discrete set is that of nth roots of unity, which by definition is
wW ={weC|uw"=1}= {ei%ﬁk, k=1,2,...,n},

since (e F)" = ¢2™ — 1 for any k € Z. Note that the polynomial X"—1 = 0
has at most n roots, and we found already n of them, given by ei%ﬁk, k =
1,...,n, thus there is no another nth root of unity.

The set w™ of nth roots of unity forms a group under multiplication.

Indeed, (a) closure is satistifed: e'nFeinhe = et (kith2) ¢ (W) (b) as is
associativity. (c) The identity element is 1. Finally (d) every element in w™
is invertible: (ef k)=l = i (k1)

We also have commutativity since ei F1eionkz = ein (kitha) — ik

An nth root of unity w is said to be primitive if n is the smallest positive
integer for which w™ = 1. But then, since w™ has n elements, all the nth
roots of unity are obtained as a power of w! For example, take w = i (you

may want to think of another example of primitive nth root of unity!), then
{wh = 61127”“7 k=1,...,n}=wm.

We just proved the following:

P27
znk1.

Proposition 7. The group (w™,-) of nth roots of unity is a cyclic group of
order n generated by a primitive nth root of unity, e.g. w = e

Example 8. Consider (w®,.) = ({1,¢'¥,e"52},.). There are two primitive
roots of unity. Set w = ¢/% . The Cayley table of (w®,-) is

L 11 ]w[w?]
1 1 | w | w?
wl w w1
w1l | w

Example 9. Consider (w¥,.) = ({1,4,—1, —i},-), with Cayley table

L [ r[ef[a]—
1 1 i | -1 ] —2
7 1 | -1 ] —2| 1
-1 =] 1 7
— || —t] 1 v | -1

So i is a primitive 4th root of unity since i # 1,i%> = —1,% = —i,i* =1
and (i) = w®, but —1 is not a primitive root because (—1)? = 1.
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Group Structure of Rooty of Unity

nth roots of unity form a group with respect to multiplication,
the identity element is 1 (which is a root of unity!)

It is an abelian group.
It has order n.

It is cyclic, generated by a primitive root!

4rtiv rooty of unity

* i =4rth primitive root of unity
* The group of 4rth roots of unity is {1, i?=-1, i*=-i }

1 i -1 -i
1 1 i =il -i
i -1 -i 1
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So far we have seen many examples of groups: integers mod n with addi-
tion, invertible integers mod n with multiplication, nth roots of unity with
multiplication, R with addition, R* with multiplication, and all those groups
we saw as symmetries (that of the square, of the rectangle, of triangles...)
with composition. Among them, some were infinite, some were finite, some
were cyclic, some not, some of the groups were abelian, some were not.

The time has come (“the Walrus said” ...) to sort things out a bit, and
try to "quantify” the similarity or dissimilarity of the group structures we
encountered in our “group zoo”.

We start here to develop tools for analyzing and classifying group struc-
ture. Suppose we are given two groups (G, -) and (H, x) with possibly differ-
ent sets GG, H and respective binary operation - and .

Definition 11. A map f : G — H which obeys

f(gi-agr) = f(q) * f(gx), for all gp, g1 € G
in G in H
in H

is called a group homomorphism.

Recall that a map f : G — H which takes elements of the set G and pairs
them with elements of H is called

e injective or one-to-one, if no two different elements ¢, g» of G map to
the same h € H, ic., f(gr) # f(g2) if g1 # 9.

e surjective or onto if for all h € H, there exists g € G so that f(g) = h.
e bijective if it is both injective and surjective.

Definition 12. If f : G — H is a group homomorphism and also a bijection,
then it is called a group isomorphism. We then say that G and H are
isomorphic, written G >~ H.

Maybe it will be easier to remember this word by knowing its origin:
iso = same, morphis = form or shape. Let us see a first example of group
homomorphism.
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Examples of Groups we saw

Integers mod n
Invertible integers mod n
nth roots of unity

E

WE \{0}

Symmetries of square
Symmetries of rectangle

Symmetries of equilateral
triangle

Symmetries of isosceles
triangle

0
1
1
0
1

Do-nothing
Do-nothing
Do-nothing

Do-nothing

n
win)

n

infinite

infinite

8

4

6

yes
yes
yes
yes
yes
no

Yes

no

yes

Tume to-sort out things/!

Let (G,), (H,*) be two groups. A map f: G >H is called a group
homomorphism if f(g-h)=f(g)*f(h).

A group homomorphism is a map that preserves the group

structure.

A group homomorphism is called a group isomorphism if it is a

bijection.

If there is a group isomorphism between two groups G and H,
then G and H are said to be isomorphic. Two groups which are

isomorphic are basically “the same”.
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Example 10. Consider the group (Z/47Z, +) of integers mod 4, as in Exam-
ple 6, with Cayley table

—

wl pof —| o] oI
| ol wol poll| v
ol =l oI wofl| el

W DO Il S
| ol Dol |

and the group (w™®,-) of 4rth roots of unity whose Cayley table

| [ rlif[-1[—d]
T | 1] | 1]
i 1 i 1
S EN I
—i =i 1] |1

was computed in Example 9. These two groups are isomorphic, which can
be seen on the Cayley tables, because they are the same, up to a change of
labels (1 <> 0,i <> 1,—1 <> 2,—i <> 3). Formally, we define a map

o (ZJAZ, +) — (WD), m— ™.

Firstly, we need to check that it is well defined, that is, if we choose m’ =m
mod 4, then f(m’) = f(m) :

fm') = f(m+4r) =i"™ =i" r e Z

It is a group homomorphism, since f(n+m) =i = """ = f(n)f(m). Tt
is also a bijection: if f(n) = f(m), then " = ™ and n = m mod 4, which
shows injectivity. The surjectivity is clear (check that every element has a
preimage, there are 4 of them to check!)

m-+n
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4rthv rooty of unity vs Integers mod 4
LA 01z
. . .

0 1 2 3

1 1 2 3 0
-1 =il -l 1 i 2 2 3 0 1
i i 3 3 0 1 2

The two tables are the same, up to a change of labels: 1 < 0,i¢>1,-1 $32,-i <53

Let us define a map f: {integers mod 4} - {4rth root of unity}, n > i"

* It is a group homomorphism: f(n+m)=im*= M " = f(n)f(m).

* It is a bijection: if f(n)=f(m) then i"=i™ > n=m mod 4 shows injectivity. This is
clearly surjective.

Integers mod 4 vs Rotatiow of 2T1/4

I O F O T A [ e
0 0 2 3 1 1 r r? r?

1
1 1 2 3 0 r r r ] 1
2 2 3 0 1 2 | 2 | & 1 p
3 3 o0 1 2 P B 1 rPR

The two tables are the same, up to a change of labels: 1 ¢ 0,ré>1, r’¢2, r’¢>3
Let us define a map f: {integers mod 4} - {rotation of 2r/4}, n > r"

* It is a group homomorphism: f(n+m)=rm*=r™ " = f(n)f(m).
* It is a bijection: if f(n)=f(m) then r"=r™ - n=m mod 4 shows injectivity. This is
clearly surjective.
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Example 11. Similarly, we can show that the group (Z/4Z, +) is isomorphic
to the group of rotations by an angle of 27 /4, whose Cayley table is

L ][]
1 1] r |r2]
rflr |21
rPllr? 1|
Bl 1| r | r?

by considering the map
f:(Z/AZ,+) — (rotations of the square, o), n — r".

It is well-defined (as in the above example) and is a group homomorphism,
since f(n +m) = r™™ = "™ = f(n)f(m). Tt is also a bijection: if
f(n) = f(m), then v = r™ and n = m mod 4, which shows injectivity. The
surjectivity is clear as above.

Let us summarize briefly what happened in this chapter. In the first
half, we showed that we already know in fact more groups than we thought!
The list includes the integers modulo n with addition, the invertible integers
modulo n with multiplication, the roots of unity, etc

We then decided to start to classify a bit all these groups, thanks to the
notion of group isomorphism, a formal way to decide when two groups are
essentially the same! We then showed that integers mod 4, 4rth roots of
unity, and rotations of the square are all isomorphic! We will see more of
group classification in the coming chapters!
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Exercises for Chapter 4

Exercise 21. We consider the set C of complex numbers.
1. Is C a group with respect to addition?
2. Is C a group with respect to multiplication?
3. In the case where C is a group, what is its order?
4. Can you spot some of its subgroups?

Exercise 22. Alice and Bob have decided to use Caesar’s cipher, however
they think it is too easy to break. Thus they propose to use an affine cipher
instead, that is

ex(r) = kix + ko mod 26, K = (ky, ko).

Alice chooses K = (7,13), while Bob opts for K = (13,7). Which cipher do
you think will be the best? Or are they both equally good?

Exercise 23. Show that the map f : (R,+) — (R*,), z — exp(z) is a
group homomorphism.

Exercise 24. Show that a group homomorphism between two groups G and
H always maps the identity element 14 to the identity element 1.

Exercise 25. In this exercise, we study a bit the invertible integers modulo
n.

1. Take n = 5, and compute the group of invertible integers modulo 5.
What is the order of this group? Can you recognize it? (in other
words, is this group isomorphic to one of the groups we have already
classified?)

2. Take n = 8, and compute the group of invertible integers modulo 8.
What is the order of this group? Can you recognize it? (in other words,
is this group isomorphic to one of the

groups we have already classified?)
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Exercise 26. Let f be a group homomorphism f : G — H where G and H
are two groups. Show that

flg™) =Fflg)™"

Exercise 27. Consider the group (Z,+) of integers under addition. Let H
be a subgroup of Z.

1. Show that H is of infinite order.

2. Use the Euclidean division algorithm to show that H is generated by
a single element.

3. Find a subset of Z which forms a multiplicative group.

Here is a guided version of this exercise. Please try to do the normal version
first!

1. Recall first what the order of a group is, to understand what it means
for H to be of infinite order. Once this is clear, you need to use one
of the properties of a group! If you cannot see which one, try each of
them (can you cite the 4 of them?) and see which one will help youl!

2. This one is more difficult. You will need to use a trick, namely use the
minimality of some element...In every subgroup of Z, there is a smallest
positive integer (pay attention to the word “subgroup” here, this does
not hold for a subset!).

3. To have a multiplicative group (that is a group with respect to mul-
tiplication), you need to define a set, and make sure this set together
with multiplication satisfies the usual 4 properties of a group!

Exercise 28. When we define a map on equivalence classes, the first thing
we must check is that the map is well defined, that is, the map is independent
of the choice of the representative of the equivalence class. In this exercise
we give an example of a map which is not well defined.

Recall the parity map sgn : Z — 7Z,/2

sgn(2k +1) — 1
sgn(2k) — 0

Let Z/57 be the group of integers modulo 5. Let us attempt to define the
map sgn : a — sgn(a). Show that sgn is not well-defined on Z/5Z.
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Chapter 5

More Group Structures

“The theory of groups is a branch of mathematics in which one
does something to something and then compares the results with
the result of doing the same thing to something else, or something
else to the same thing. Group theory lets you see the similarities
between different things, or the ways in which things can’t be dif-
ferent, by expressing the fundamental symmetries.”(J. Newman,
Mathematics and the Imagination.)

In the 4 previous chapters, we saw many examples of groups, coming from
planar isometries and from numbers. In Chapter 4, we started to classify a
bit some of our examples, using the notion of group isomorphism. The goal
of this chapter is to continue this classification in a more systematic way!

What happened in Examples 10 and 11 is that the three groups considered
(the integers mod 4, the 4rth roots of unity, and the rotations of the square)
are all cyclic of order 4. As we shall see next, all cyclic groups of a given
order are in fact isomorphic. Hence, from a structural point they are the
same. We shall call the equivalent (up to isomorphism) cyclic group of order
n, or the infinite cyclic group, as respectively

‘ the cyclic group C), of order n if n < oo, or the infinite cyclic group C., otherwise.

Theorem 6. Any infinite cyclic group is isomorphic to the additive group
of integers (Z,+). Any cyclic group of order n is isomorphic to the additive
group (Z/nZ,+) of integers mod n.

Before starting the proof, let us recall that (Z,+) is cyclic, since Z =
(1) = (—1). Its order is |Z| = oc.
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The Cyclic Group C,,

* We just saw 3 cyclic groups of order 4, all of them with same
multiplication table. They are essentially the “same group”,
thus to analyze them, there is no need to distinguish them.

Theorem. An infinite cyclic group is isomorphic to the additive
group of integers, while a cyclic group of order n is isomorphic
to the additive group of integers modulo n.

This is also saying that there is exactly one cyclic group (up
to isomorphism) whose order is n, denoted by C, and there
is exactly one infinite cyclic group.

Proof of Theoremv

A cyclic group is generated by one
element (multiplicative notation)

Part1

* Let G be an infinite cyclic group, G=<x>, g of order infinite.
Define the map f:{group of integers}>G, f(n)=x".

* This is a group homorphism: f(m+n)= x"™M = x" xM=f(m)f(n).

* This is a bijection, thus we have a group isomorphism.

Part 2
* Let G be a cyclic group of order n, G=<x>, with g of order n.

Define the map f:{group of integers mod n}->G, f(n)= x".
* This is a group homorphism: f(m+n)= x"*™M = x" xM=f(m)f(n).
* This is a bijection, thus we have a group isomorphism.
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Proof. Let G be a cyclic group. Whether it is finite or not, a cyclic group is
generated by one of its elements g, i.e., (g) = G. Define the map

fZ— G, ki f(k)=g" if |G| =00
[:Z/nZ — G, kw— flk)=g¢" if|G]=n< .

Note that f : Z/nZ — G is well-defined, since it does not depend on the
choice of k as a representative of the equivalence class of & mod n. Indeed,
if ¥ =k mod n, then k' = k + sn for some integer s, and

f(E) = f(k+sn) = g""" = g™ = g".
This map is bijective (one-to-one and onto) and
fle+1) =g =g"-g' = f(k) - f(1),

hence it is a homomorphism that is bijective. It is then concluded that f is
an isomorphism between the integers and any cyclic group. ]

Example 12. With this theorem, to prove that the integers mod 4, the 4rth
roots of unity, and the rotations of the square are isomorphic, it is enough
to know that are all cyclic of order 4. Thus

Cy ~ (ZJAZ, +) ~ (w¥, ) ~ (rotations of the square, o).

We can summarize the cyclic groups encountered so far:

group Cn order n
integers mod n (+) C, order n
nth roots of unity (-) Cy, order n
rotations of regular polygons with n sides | C, order n
symmetries of isosceles triangles Cs order 2
(Z,+) Cw | infinite order

Now that we know that cyclic groups are all just instances of the abstract
cyclic group C), for some n € N or n = oo, we can ask ourselves how much
structure exists in C,, as a function of the properties of the number n € N.
This is important, because every instance of €, will naturally inherit the
structure of C,,! We start with the subgroups of C,,.
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Idea of the Proof

-2 -1 0 1 2
integers O O O O O
l l l l |
cyclic group (] (] (] (] ()
<g>
g-z g-l 1:go gl g2

Cyclic Groups seevv so-fowr
Govp __________Joder ________Jc_____________

integers mod n n C,
nth roots of unity n C,
Symmetries of the 2 C,
isosceles triangle

Subgroup of rotations of 90 4 C,
degrees of the square

Subgroup {0,2} of the 2 C,

integers mod 4
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Theorem 7. Subgroups of a cyclic group are cyclic.

Proof. Let (G, -) be a cyclic group, denoted multiplicatively, finite or infinite.
By definition of cyclic, there exists an element g € G so that G = (g). Now
let H be a subgroup of G. This means that H contains 1. If H = {1}, it is a
cyclic group of order 1. If H contains more elements, then necessarily, they
are all powers of g. Let m be the smallest positive power of g that belongs
to H, ie., g™ € H (and ¢,¢°%, ...,g™ ' ¢ H). We must have by closure
that (¢g™) is a subgroup of H. Assume for the sake of contradiction that
there exists ¢' € H,t > m and ¢' ¢ (g™). Then by the Euclidean division
algorithm,
t=mq+r, 0<r<m-—1.

Therefore
gt — gmq+r — gmqgr c H,

and since ¢ is invertible, we get

g™ ¢ =¢ =4 € H.
N~
€eH eH
But r is a positive integer smaller than m, which contradicts the minimality
of m. This shows that g must belong to (¢") (i.e., 7 = 0) and hence (¢g")
will contain all elements of the subgroup H, which by definition is cyclic and

generated by g. O
We next study the order of elements in a cyclic group.

Theorem 8. In the cyclic group C,,, the order of an element g* where (g) =
C, is given by |g*| = n/ ged(n, k).

Proof. Recall first that g has order n. Let r be the order of g*. By definition,
this means that (¢*)" = 1, and r is the smallest r that satisfies this. Now
we need to prove that » = n/ ged(n, k), which is equivalent to show that (1)
T|gcd?n,k) and (2) gcd?n,k) |T'

Step 1. We know that ¢ = 1 and that ¢ has order n. By definition of
order, kr > n. Suppose that kr > n, then we apply the Euclidean division

algorithm, to find that

kr=ng+s, 0<s<n=¢"=¢"¢ =g¢°cC

and s must be zero by minimality of n. This shows that |n | rk|.
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Subgroups of o Cyclic Group

Proposition

Subgroups of a cyclic group are cyclic. | A cyclic group is generated by one

element (multiplicative notation)

Proof. G is a cyclic group, so G=<x>. Let H be a subgroup of G. If
H={1}, then it is cyclic. Otherwise, it contains some powers of x.
We denote by m the smallest power of x in H, and <x™> < H.

Let us assume that there is some other xiin H, then
by minimality of m, i>m, and we can compute the of H
Euclidean division of i by m: x' = x™3* 0 <r<m.

<x™> subgroup

Thus x" in H and by minimality of m, r=0, so that x' = x™¥and
every element in His in <x™> .

Order of Elementy invav Cyclic Group

Proposition. Let G be a cyclic group of order n, generated by g.
Then the order of gk is |g*|=n/gcd(n,k).

Order is the smallest positive
integer r such that (g)"is 1

Before we start the proof, let us check this statement makes sense!

Recall that G is cyclic generated by g means that G={1, g, g,...,
g™}, and g"=1.

v If k =n, then g¢=g"=1 and n/gcd(n,k)=n/n=1 thus | 1|=1.
v If k=1, then gk=g and n/gcd(n,k)=n thus |g|=n.
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Step 2. Using
ged(n, k)|n and ged(n, k)|,

. n k
with n|kr, we get PN |—gcd(n7k)7‘.
Step 3. But gcd(m,m) = 1 from which we obtain —gch‘n’k)V
|

which conclude the proof of (2)! We are now left with (1), namely show that
r must divide n/ ged(n, k).
Step 4. Note that

<gk>n/ ged(n,k) _ <gn)k/gcd(n,k) - 1.

Now we know that r is the smallest integer that satisfies (¢*)" = 1 thus
n/ ged(n, k) > r, and using again the Euclidean division algorithm as we did
in Step 1, we must have that
n kN seqremy k\qr+s
— = cd(n,k) — q O < <.
cedn ) "t (g")¢ (¢)"™, 0<s<r
This would imply
1=1-¢°=s=0.

n
Hence | 7| Ged(n) O

n

Example 13. The order of 1 is |1| = |¢"| = wed(am)
is |g| = m =n.

Combining the fact that a cyclic group of order n has cyclic subgroups
generated by its elements {g*}, and the fact that the orders of these elements
are |gF| = n/ged(n, k), we can prove one more result regarding the order of
subgroups in a cyclic group.

=1, and the order of ¢

Theorem 9. The order of a (cyclic) subgroup of a group C,, divides the order
of the group.

Proof. We have seen in Theorem 7 that if G = (g) and H is a subgroup of
G, then

H=(g")
for some m. We have also seen in Theorem 8 that || is n/ ged(n, m), hence
|H| = |¢g"| = 7. Now by definition,

gcd(?z,m
-

—|N.

ged(n, m)
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Proof of the Proposition

Given gk, we have to check that its order r is n/gcd(k,n). This is
equivalent to show that r| n/gcd(k,n) and n/gcd(k,n) | r.

Step 1 : g has order r means gk" = 1, which implies n | kr.

n is the smallest integer such that g"=1, thus if g =1, kr>n and by Euclidean
division, kr =ng+s, 0 <s<n. But then 1=gk'= gna*s = gs showing that s=0 my
minimality of n.
* Step 2: gcd(k,n) |k and gecd(k,n)|n thus n/gcd(k,n) | (k/ gcd(k,n))r.
* Step 3: n/gcd(k,n) and k/gcd(k,n) are coprime thus n/gcd(k,n)|r.

* Step 4: only left to show that r | n/gcd(k,n). But (gk)™/ecdlkn=1
thus r | n/gcd(k,n) [if you understood Step 1, this is the same
argument!]

Order of Subgroupy inv av Cyclic Group

* We have seen: every subgroup of a cyclic group is cyclic, and if
G is cyclic of order n generated by g, then g* has order
n/gcd(k,n).

* What can we deduce on the order of subgroups of G?

*Let H be a subgroup of G. Then H is cyclic by the first result.
Since H is cyclic, it is generated by one element, which has to be
some power of g, say g.

*Thus the order of H is the order of its generator, that is n/gcd(n,k).
(1)

In particular, the order of a subgroup divides
the order of the group!
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The beauty of these results is that they apply to every instance of the
cyclic group C,. One may work with the integers mod n, with the nth roots
of unity, or with the group of rotations of a regular polygon with n sides, it
is true for all of them that

e all their subgroups are cyclic as well,
e the order of any of their elements is given by Theorem 8§,
e and the size of every of their subgroups divides the order of the group.

If we think of the type of searches we did in the first chapters, where we were
looking for subgroups in the Cayley tables, it is now facilitated for cyclic
groups, since we can rule out the existence of subgroups which do not divide
the order of the group!

Example 14. Let us see how to use Theorem 8, for example with 4rth roots
of unity. We know that —1 = i, thus n = 4, k = 2, and the order of —1 is

n _§_2
ged(n, k) 2 7

as we know!

Example 15. Let us see how to use Theorem 8, this time with the integers
mod 4. Let us be careful here that the notation is additive, with identity
element 0. Recall that the integers mod 4 are generated by 1. Now assume
that we would like to know the order of 3 mod 4. We know that k = 3 and
n =4, thus

4
n 4y
1

ged(n, k) -

and indeed
3+3=6=2 mod4, 3+3+3=9=1 mod 4, 3+3+3+3=12=0 mod 12.

This might not look very impressive because these examples are small
and can be handled by hand, but these general results hold no matter how
big C,, is!
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Examples

Thus these results apply to all the cyclic groups we have seen:
nth roots of unity

integer mod n

rotations of 2r/n

4rthvroot of unity/ Integers mod 4

We saw that i is a primitive root, thus it generates the cyclic
group of 4rth roots of unity.

To determine the order of -1, we notice that -1=i2.
Now we only need to compute n/gcd(n,k)=4/gcd(4,2)=2.

What is the order of 3 mod4 ?
We recall that the integers mod 4 are generated by 1.
Thus 3=k, n=4, and we compute n/gcd(k,n)=4/gcd(3,4)=4.
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We will now start thinking the other way round! So far, we saw many
examples, and among them, we identified several instances of the cyclic group
C,, (integers mod n with addition, nth roots of unity with multiplication,
rotations of regular polygons with n sides...). We also saw that C,, exists for
every positive integer n. Surely, there are more groups than cyclic groups,
because we know that the group of symmetries of the equilateral triangle
seen in the exercises (let us call it D3 where 3 refers to the 3 sides of the
triangle) and the group of symmetries of the square (let us call it D,, where
4 again refers to the 4 sides of the square) are not cyclic, since they are not
abelian! (and we proved that a cyclic group is always abelian...) The “D”
in D3 and D4 comes from the term “dihedral”.

order n | abelian | non-abelian

Cy ~ {1}
Cy
Cs
Cy
Cs
Cs D3
Cy
Cy D,

O 3 O U i W N

The next natural question is: what are possible other groups out there?
To answer this question, we will need more tools.

Definition 13. Let (G, ) be a group and let H be a subgroup of G. We call
the set
gH ={gh|h € H}

a left coset of H.

We have that gH is the set of elements of GG that we see when we multiply
(i.e., combine using the group operation -) the specific element g € G with
all the elements of H. Similarly, a right coset of H is given by

Hg = {hg|h € H}.

If the group is not abelian, there is a need to distinguish right and left cosets,
since they might not be the same set!
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Cloussification so-fow
Find more groups: either we look for some other examples, or
for some more structure!

_ abelian groups non-abelian groups

{1} X

0~ v W B W N
(o]
u

infinite E

More Structuwe: Cosety

Let G be a group, and H a subgroup of G.
The set gH={gh, h in H} is called a left coset of H.
The set Hg={hg, h in H} is called a right coset of H.

The operation used is the binary ]
operation of the group!

For example: take G to be the dihedral group D,, and
H=<r>={1,r,r3,r3}. Then <r>m ={m,rm,r?m,r*m} is a right coset of H.
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It might help to think of a coset as a “translation of a subgroup H” by
some element g of the group.

Example 16. Let GG be the group of integers mod 4, and let H be the
subgroup {0,2}. The coset 1 + H is 1 + H = {1, 3}.

Example 17. Let G be the group of symmetries of the square, denoted by
Dy, and let H be the subgroup {1,r,7% 73} of rotations. The coset Hm is
Hm = {m,rm,r*m,r3m}.

Let us see a few properties of cosets.

Lemma 2. Let G be a group, and H be a subgroup.
1. For everyge G, g€ gH and g € Hg.
2. We have gH = H if and only if g € H.

Proof. 1. Since H is a subgroup, 1 € H, hence g-1 € gH that is g € gH.
Similarly 1-g € Hg showing that g € Hg.

2. Suppose first that g € H. Then gH consists of elements of H, each
of them multiplied by some element g of H. Since H is a subgroup,
gh € H and gH C H. To show that H C gH, note that

g 'he H= g(¢g-'h) € gH = h € gH

for every h € H!
Conversely, if gH = H, then gh € H for every h, and g-1 € H.

The next lemma tells us when two cosets are the same set!

Lemma 3. Let G be a group with subgroup H. Then
gl =g,H < gi'g2€ H, 91,92 € G.

Proof. 1f ¢tH = g2 H, then {g1h|h € H} = {g2h|h € H} and there exists an
h € H such that gih = g, - 1, which shows that h = g;'g, € H.

Conversely, if g;'g, € H, then g;'gy = h € H and g, = g;h which shows
that goH = gthH = gy H, where the last equality follows from the above
lemma. [
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How to-Visualize Cosets?

Write a left coset using the additive notation of the binary
operation of the group, that is

g+H={g+h, hin H}.
Then a coset of H can be seen as a translation of H!

G={0,1,2,3} integers modulo 4 D,={1, r,r?,r3,m,rm,r’m,r3m}
H={0,2} is a subgroup of G. H=<r>={1,r,r%,r3} subgroup of G.
The coset 1+H ={1,3}. The coset <r>m={m,rm,r2m,r3m}
G D,
0 2 1 3 1rr2ps 2o 3
m rm r2m r3m

Same Cosets?

Again G={0,1,2,3} integers modulo 4, with subgroup H={0,2}.
All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} .

Some cosets are the same! When does it happen?

Lemma. We have g,H=g,H if and only if g, g, isin H.

Proof. If g,H=g,H then g, -1 = g,h that is h 1 =g, 1 g, which shows
thatg,*g, isin H. H is a subgroup!

Conversely, if g, g, is in H, then g;* g, =h for some h in H, and
g, = g,h which shows that g,H=g, hH = g,H.
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We next show that cosets of a given subgroup H of G have the property
of partitioning the group G. This means that G can be written as a disjoint
union of cosets! That

G = U gH

comes from the fact that g runs through every element of G (and g € gH),
thus the union of all cosets gH will be the group GG. To claim that we have a
partition, we need to argue that this is a disjoint union, namely that cosets
are either identical or disjoint.

Proposition 8. Let G be a group with subgroup H, and let g1,go be two
elements of G. Then either giH = goH or g1 H N g H = .

Proof. 1f the intersection of g1 H and g»G is empty, we are done. So suppose
there exists an element g both in g1 H and in goH. Then

g=qh=gh

thus
ghH = g:h'H = g1 H = goH,

using Lemma 2. O

Example 18. We continue Example 16. Let GG be the group of integers mod
4, and let H be the subgroup {0,2}. The cosets of H are 1+ H = {1,3} and
0+ H = {0,2}. We have

G=(1+H)U(0+H).

Example 19. . We continue Example 17. Let G be the group of symmetries
of the square, denoted by Dy, and let H be the subgroup {1,r, 72,73} of rota-
tions. The cosets of H are Hm = {m,rm,r*m,r*>m} and H = {1,r,r? r3}.
We have

Dy,=HmUH.

We need a last property of cosets before proving a fundamental theorem
of group theory!
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Cosety pawtition the Group!

Let G be a group, with subgroup H, and take all the cosets gH of H.

Since g takes every value in G, and H contains 1, the union of all
cosets is the whole group:  G=U gH.

We now prove that two cosets g,H and g,H are either identical or
disjoint!

Suppose there exists an element g both in g,H and in g,H, then g =
g,h =g,h’. Thus g;hH = g,H = g,h” H=g,H.

Cosety pawtition the Group: Examples

G=1{0,1,2,3} integers modulo 4 D, ={1, r,r2,r3,m,rm,r2m,r3m}

H={0,2} is a subgroup of G.

H=<r>={1,r,r2,r3} subgroup of G.
The coset 1+H ={1,3}.

The coset <r>m={m,rm,rm,r3m}

G D,
1rrrs 5 -
0 ) 1 3 m rm r’m r3m

D,={1,rr3r3}U{m rm r’m r3m}

G={0,2}U{1,3}=HU (1+H) =<r>U<r>m
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Proposition 9. Let G be a group with subgroup H. Then
[H| = |gH|, g € G.
In words, cosets of H all have the same cardinality.

Proof. To prove that the two sets H and gH have the same number of ele-
ments, we define a bijective map (one-to-one correspondence) between their
elements. Consider the map:

At H — gH, b — Ay (h) = gh.
This map is injective (one to one): indeed
Ag(h) = Ag(h2) = ghi = gho

and since g is invertible, we conclude that h; = hs.
This map is surjective (onto): indeed, every element in gH is of the form
gh, and has preimage h. ]

Example 20. We continue Example 18. Let G be the group of integers mod
4, and let H be the subgroup {0,2}. We have

1+ H| = [{1,3}/=2
[H| = [{0,2}].
Example 21. We continue Example 19. Let GG be the group of symmetries

of the square, denoted by D,, and let H be the subgroup {1,7,r% 13} of
rotations. We have
[Hm| = [{m,rm,r*m,r*m}| = 4,

‘Hl = ‘{1,7‘,1”2,7‘3}’.

We are finally ready for Lagrange Theorem!
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Cardinality of o Coset

We have |gH|=|H]| (the cardinality of a coset of H is the
cardinality of H).

The two sets gH and H are in bijection.

Indeed, consider the map A,:H-> gH, that sends h to gh.

* for every gh in gH, there exists a preimage, given by h.

* if two elements h and h” are mapped to the same element,
then gh=gh’, and it must be that h=h".

Both steps rely on g
being invertible!

Cardinality of o Coset: Examples

G=1{0,1,2,3} integers modulo 4 D, ={1, r,r2,r3,m,rm,r2m,r3m}

H={0,2} is a subgroup of G. H=<r>={1,r,r2,r3} subgroup of G.

G D,
1rrrs 5 -
0 ) 1 3 m rm r’m r3m

|<r>] = |<r>m|
| H|=]1+H]| =2
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Theorem 10. Let G be a group and H be a subgroup of G. Then
G| =G : H]|H]

where |G : H| is the number of distinct left (or right) cosets of H in G. If
|G| is finite, then
|G|
G:H|=+1—
| H
and |H| divides |G]|.
Note that this also shows that the number of distinct left or right cosets
is the same. It is called the index of H in G.

Proof. We know that the cosets of H partition GG, that is
G = U gk:Ha
k=1

where r = [G : H] is the number of distinct cosets of H.
We have also seen that |gH| = |H| in Proposition 9, i.e., all the cosets
have the same cardinality as H. Therefore

Gl=)_lg:H| = r|H| =[G : H]|H|.
k=1

]

Example 22. We finish Example 16. Let GG be the group of integers mod 4,
and let H be the subgroup {0,2}. The cosets of H are 1 + H = {1,3} and
0+ H ={0,2}. Then |G : H] =2 and

G| =[G : H]|H| = 2|H| = 4.

Example 23. We also finish Example 17. Let G be the group of symmetries
of the square, denoted by Dy, and let H be the subgroup {1,7, 7% r3} of rota-
tions. The cosets of H are Hm = {m,rm,r*m,r*m} and H = {1,r,r? r3}.
Then [G': H] = 2 and

Dy = (G : H]|H| = 2|H]| = 8.
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Lagrange Theorem

The number of cosets of H in G is called the index of Hin G,
denoted by [G:H].

Lagrange Theorem. Let G be a group,
then |G| =[G:H] |H]. If |G]|<eo, then
|G|/|H|=[G:H] that is the order of a
subgroup divides the order of the group.

Joseph Louis Lagrange

Proof. The cosets of H partition G, thus (1736 — 1813)

|G| =Z |gH]. Since |gH|=|H|, we have
|G| =Z |H|, and thus |G|=|H]|:(number of
terms in the sum)= |H| [G:H].

Lagrange Theovem: Examples

G=1{0,1,2,3} integers modulo 4 D, ={1, r,r2,r3,m,rm,r2m,r3m}

H={0,2} is a subgroup of G. H=<r>={1,r,r2,r3} subgroup of G.
D

G 1rr2rd ’

0 2 1 3 m rm r’m r’m

|D,|=8 =[G:H]|H|=2-4
|G|=4=[G:H]|H|=2-2
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Lagrange Theorem has many consequences.

Corollary 2. Let G be a finite group. For any g € G, the order |g| of g
divides the order of the group |G]|.

Proof. Consider the subgroup of G generated by g:

(9) ={g.9% -, g =1}.

The order of this subgroup is |g|. Hence by Lagrange Theorem, we have
lg| divides |G|.
0

This for example explains why the group of symmetries of the square
contains only elements of order 1,2, and 4!

Corollary 3. A group of prime order is cyclic.

Proof. Let G be a group of order p, for a prime p. This means elements of GG
can only have order 1 or p. If g is not the identity element, then g has order
p, which shows that G is cyclic. ]

Let us now go back to our original question about finding new groups.
What we just learnt is that if the order is a prime, then there is only the
cyclic group C,. Thus (boldface means that the classification is over for this
order):

order n | abelian | non-abelian
1 Cy ~ {1} X

2 Cy X

3 Cg X

4 Cy

5 05 X

6 Cs D5

7 07 X

8 Cy Dy
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Covollawy 1of Lagrange Theorem

Corollary. Let G be a finite group. The order of an element of
G divides the order of the group.

Proof. Let g be an element of G. Then H=<g> is a subgroup of G,
with order the order of g (by definition of cyclic group!). Since the
order of H divides |G|, the order of g divides |G].

Example. D, ={1, r,r%,r3,m,rm,r?m,r3m}.
Since |D, |=8, elements of D, have order 1, 2, 4 (it cannot be 8
because this is not a cyclic group!) W alee e it e
cyclic groups!

|g*|=n/gcd(n,k).

Corollawy 2 of Lagrange Theorem
Corollary. If |G| is a prime number, then G is a cyclic group.

Proof. If |G| is a prime number p, then we know that the order
of an element must divide p, and thus it must be either 1 or p, by
definition of prime number. Thus every element g which is not
the identity has order p, and G=<g>.

Example. If |G|=3, then G must be the cyclic group C,.
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Since we cannot find any new group of order 2 or 3, let us look at order
4,

We can use a corollary of Lagrange Theorem that tells us that in a group
of order 4, elements can have only order 1, 2 or 4.

o [f there exists an element of order 4, then we find the cyclic group C.

e If there exists no element of order 4, then all elements have order 2
apart the identity. Thus we have a group G = {1,¢1,92,93}. Let us
try to get the Cayley table of this group. For that, we need to know
whether g; ¢, is the same thing as g»¢;...But g1 ¢9> is an element of G by
closure, thus it has order 2 as well:

(0192)* = 01020192 = 1 = g1g2 = g5 ' g7 .

But now, because every element has order 2

G=l=g'=g, G=1=g"'=0¢0

and we find that
9192 = g291-

Furthermore, g19, is an element of G, which cannot be 1, g; or go, thus
it has to be gs.

Let us write the Cayley table of the group of order 4 which is not cyclic.

’ H 1 ‘ 91 ‘ g2 ‘ 9192 ‘
1 1 (51 g2 | 9192
9 % L | g192| 92
92 92 | 9192 | 1 g1

9192 || 9192 | 92 g1 1

We recognize the table of the symmetries of the rectangle! This group is
also called the Klein group.
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Clausification so-fowr
Find more groups: either we look for some other examples, or
for some more structure: nothing new for prime orders!

_ abelian groups non-abelian groups

1 {1} X
2 C; b
3 G X
4 C,

5 C; X
6 Ce D,
7 C; X
8 Cq D,
infinite =

Order 4

* By Lagrange Theorem, a group of order 4 has elements with
order 1,2 or 4.
* If there exists an element of order 4, this is C,!

* If not, all elements different than the identity are of order 2...

Take gy, g, in G={1, g, 8,, 83} thus g,g, is in G and (g,g,)(g,8,)=1!
This implies g,8,=g,'g,'=g,8, and g, commute with g, !

I N P P T
1 1 01 82 8
g g 1 83 8

g, 5] 83 1 3]
g,=8,8, g; g 8 1

This is the
Klein
Group!
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We can update our table of small groups:

order n abelian non-abelian
1 Cy ~ {1} x
2 02 X
3 Cs X
4 Cy, Klein group X
5 05 X
6 Cs Ds
7 07 X
8 Cy Dy

Good news: we have progressed in our list of small groups, but we still
have not found a group which is not a group of symmetries (up to isomor-
phism!). We will get back to this question in the next chapter. For now, let
us see a few more applications of Lagrange Theorem.

Corollary 4. Let G be a finite group. Then

g|G| -1

for every g € G.

Proof. We have from Lagrange Theorem that |g| | |G|, thus |G| = m|g| for
some integer m and hence:

g\GI _ (g\g\)m — 1" =1,
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Clausification so-fowr
Find more groups: either we look for some other examples, or
for some more structure: nothing new for order 4!

_ abelian groups non-abelian groups

1 {1} X
2 C; b
3 G X
4 C,, Klein group X
5 C; X
6 Ce D,
7 C; X
8 Cq D,
infinite =

Corollawy 3 of Lagrange Theoremw

Corollary. If |G| is finite, then gl®l =1.

Proof. We know that the order of an element must divide |G|,
thus the order of g, say |g|=k, must divide |G|, that is |G|=km
for some m. Then gl®! = gkm = (gk )m=1.

Example. If G=D,, then r8=1 (in fact r*=1) and m®=1 (in fact
m?=1).
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We continue and prove a result from number theory, known as Euler
Theorem.

Theorem 11. Let a and n be two integers. Then
™ =1 modn
if ged(a,n) = 1.

Proof. 1f ged(a,n) = 1, then a is invertible modulo n, and we know that the
order of the group of integers mod n under multiplication is ¢(n). By the
previous result

=™ =1 mod n.

]

Finally, another nice theorem from number theory is obtained, called
Fermat little theorem.

Corollary 5. For every integer a and every prime p, we have a? = a mod p.

Proof. Just replace n by a prime p in Euler Theorem, and recall that ¢(p) =
p — 1 by definition of ¢(p). ]

The key result of this chapter is really Lagrange Theorem! Thanks to this
result and its corollaries, we have learnt a lot about the structure of a group:
(1) that the order of a subgroup always divides the order of the group, (2)
that the order of an element always divides the order of the group. We also
obtained some partial classification of groups of small orders: we showed that
for every order we have a cyclic group, and that all the groups we have seen
so far are isomorphic to groups of symmetries!

The group structure of integers modulo n, and that of invertible elements
modulo n are important in practice in the areas of coding theory and cryp-
tography. A famous example coming from cryptography is the cryptosystem
called RSA.
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Corollawy 4 of Lagrange Theorem

Euler Theorem. We have that a (") =1 mod n if gcd(a,n)=1.

Proof. Take G the group of invertible
elements mod n. We know that its order
is ¢ (n), because a is invertible mod n if
and only if gcd(a,n)=1. We also know
that al6! =1 by the previous corollary!

Leonhard Euler
(1707 - 1783)

Corollawy 5 of Lagrange Theoremw

Little Fermat Theorem. We have aP! =1 mod p for a 20.

Proof. Take n=p a prime in Euler
Theorem.

Pierre de Fermat
(1601 —1665)
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Exercises for Chapter 5

Exercise 29. Let GG be a group and let H be a subgroup of G. Let gH be
a coset of H. When is gH a subgroup of G?

Exercise 30. As a corollary of Lagrange Theorem, we saw that the order
of an element of a group G divides |G|. Now assume that d is an arbitrary
divisor of |G|. Is there an element ¢ in G with order d?

Exercise 31. Take as group GG any group of order 50. Does it contain an
element of order 77

Exercise 32. Take as group G the Klein group of symmetries of the rectan-
gle. Choose a subgroup H of GG, write GG as a partition of cosets of H, and
check that the statement of Lagrange Theorem holds.

Exercise 33. This exercise looks at Lagrange Theorem in the case of an
infinite group. Take as group G = R and as subgroup H = Z. Compute the
cosets of H and check that the cosets of H indeed partition G. Also check
that the statement of Lagrange Theorem holds.
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Chapter 6

Back to Geometry

“The noblest pleasure is the joy of understanding.” (Leonardo da
Vinci)

At the beginning of these lectures, we studied planar isometries, and
symmetries. We then learnt the notion of group, and realized that planar
isometries and symmetries have a group structure. After seeing several other
examples of groups, such as integers mod n, and roots of unity, we saw
through the notion of group isomorphism that most of the groups we have
seen are in fact cyclic groups. In fact, after studying Lagrange Theorem,
we discovered that groups of prime order are always cyclic, and the only
examples of finite groups we have seen so far which are not cyclic are the
Klein group (the symmetry group of the rectangle) and the symmetry group
of the square. We may define the symmetry group of a regular polygon more
generally.

Definition 14. The group of symmetries of a regular n-gon is called the
Dihedral group, denoted by D,,.

In the literature, both the notation D, and D, are found. We use D,,,
where n refers to the number of sides of the regular polygon we consider.

Example 24. If n = 3, D3 is the symmetry group of the equilateral triangle,
while for n =4, D, is the symmetry group of the square.

123
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Recall so-fow

We studied planar isometries.
We extracted the notion of groups.

We saw several examples of groups: integer mod n, roots of
unity,...

But after defining group isomorphism, we saw that many of
them were just the same group in disguise: the cyclic group.

Cyclic groups are nice, but
haven’t we seen some other
groups?

The Dihedral Group D,,

For n >2, the dihedral group is defined as the rigid motions of

the plane preserving a regular n-gon, with respect to
composition.

We saw

» D,= group of symmetries of the equilateral triangle
» D,= group of symmetries of the square

(In the literature, the notation D, and D,, are equally used.)
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Recall that the group of symmetries of a regular polygon with n sides
contains the n rotations {ry, § = 27k/n, k = 0,...,n — 1} = (ror/n),
together with some mirror reflections. We center this regular n-sided polygon
at (0,0) with one vertex at (1,0) (we might scale it if necessary) and label
its vertices by the nth roots of unity: 1,w,w?,...,w" !, where w = e27/"
Now all its rotations can be written in the generic form of planar isometries

H(z)=az+ [, |a|=1as
H(Z):Oéz, a:wk:eﬂﬂk/na k:()7>n_1

We now consider mirror reflections about a line [ passing through (0,0) at
an angle ¢g, defined by I(A\) = X\e"?° X\ € (—o0, +00). To reflect a complex
number z = pe® about the line [, let us write zz = pre’?® for the complex
number z after being reflected. Since a reflection is an isometry, pr = p. To
compute g, suppose first that pr < @o. Then pr = ¢+2(po—). Similarly
if or > vo, pr = — 2( — ¥p), showing that in both cases pr = 2¢g — .
Hence
2p = peisﬂR — peiQADO*iSD — ei2¢0pe*i¢ = pi2vo5
We now consider not any arbitrary complex number z, but when z is a

root of unity w*. Mirror reflections that leave {1,w,w?, ... ,w" '} invariant,
that is which map a root of unity to another, will be of the form

H(w") = ew™ =k
where § = 2y, depends on the reflection line chosen. Then e = Wit =
wktmoa n = (»5 and we find the planar isometries

H(z)=w’z, s=0,1,...,n—1.

Hence, given a vertex w!, there are exactly two maps that will send it to a
given vertex w”*: one rotation, and one mirror reflection. This shows that
the order of D,, is 2n.

Furthermore, defining a rotation r and a mirror reflection m by

27 /n

rizee Z=wWz, Mm:2Z— 2

we can write all the symmetries of a regular n-gon as

n—1

0 2 n—1 m
D,={r"=1,rr° . ...r" " myrm,r™, ... r" " m}.

In particular, w®z = r*m(z).
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The Dihedral group Dy

Order of D,,

* We know: isometries of the plane are given by z—>az + p and
> oaz+B, |al=1.
* Thus an element of D, is either z-> az, or z-> a Z.

* We may write the n vertices of a regular n-gon as nth roots of
unity: 1,w,...,w"2,

* Now there are exactly 2 maps that send the vertex 1 to say
the vertex wk: z—» wkz, and z-> wk z.

Thus the order of D, is 2n.
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These symmetries obey the following rules:

e " =1, that is r is of order n, and (r) is a cyclic group of order n,
e m? =1, that is m is of order 2, as Z = z,

e rm is also of order 2, as (r*m)(r*m)(z) = w'w’z = Ww 2 = 2.

Since m and r°m are reflections, they are naturally of order 2, since repeating
a reflection twice gives the identity map. Now

r'mr’m=1=mr’m=r"° Vs €{0,1,...,n— 1}.

The properties

" =1,m*=1,mrm=r"

enable us to build the Cayley table of D,,. Indeed Vs,t € {0,1,...,n— 1}

TtTS — rt-i—s mod n7 Tt,r,sm — ,r,t+sm — Tt—i—s mod n7n7

and

mr® =r %m = ,r,nfsm7 Ttstm — Tt,r,fs — T,tfs mod n) TtmT’s — Ttrfsm — rtfs mod .
We see that D,, is not an Abelian group, since r*m # mr®. Hence we shall
write

D, = {{r,m)|m? = 1,r" = 1,mr = r~'m},

that is, the group D, is generated by r, m via concatenations of r’s and m’s

reduced by the rules r™ = 1,m? = 1,murm =r~! or mr = r~'m.

Proof. Consider any string of r’s and m’s

7"7".rmm--.m?”r...rmm-..m..‘
—_—— — T —— —_—
s1 t1 52 t2
—eS1 81,2820, 12 .83 3 Sk tk
=rtmr2m2rems .. rthme,
Due to m? = 1 and r" = 1 we shall reduce this immediately to a string of

AL

rimr®?m.---r*%*m

where a; € {0,1,--- ,n — 1}. Now using mr*m = r~* gradually reduce all
such strings, then we are done. ]
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The Dihedral Group Dy

SO02DE660
06000600

Description of the Dihedral Group

* The rotation r:z=> wz generates a cyclic group <r> of order n.
* The reflection m: z-> Z is in the dihedral group but not in <r>.

* Thus Dn =<r>U <r>m'| m?=1 I | m(z)=z I | r(z)=wz I | w root of 1 I
* Furthermore: mrm(z) =mrm(z)= mr(z)=m(wz)=wz=w1z=r(z)

Thatis mrm™ =r?
This shows that: D, ={ <r,m> | m2=1, r"=1, mr =r-{m}

Indeed: we know we get 2n terms with <r> and <r>m, and any
term of the form mri can be reduced to an element in <r> or
<r>m using mr =r‘m: mri = (mr)r! =rimr! =rl(mr)r-? etc
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What happens if n = 1 and n = 2? If n = 1, we have r! = 1, i.e., the
group D; will be D = {1,m} with m? = 1, with Cayley table

| [ L]m]

m
1

1] 1
m || m

This is the symmetry group of a segment, with only one reflection or one
180° rotation symmetry.
If n =2 we get Dy = {1,r,m,rm}, with Cayley table

[t m[rm]
1 1 m | rm
r r 1 |rm| m

m | rm| 1 r

rm || rm | m r 1

This is the symmetry group of the rectangle, also called the Klein group.
Let us now look back.

e Planar isometries gave us several examples of finite groups:

1. cyclic groups (rotations of a shape form a cyclic group)

2. dihedral groups (symmetry group of a regular n-gon)

e Let us remember all the finite groups we have seen so far (up to iso-
morphism): cyclic groups, the Klein group, dihedral groups.

These observations address two natural questions:

Question 1. Can planar isometries give us other finite groups (up to
isomorphism, than cyclic and dihedral groups)?

Question 2. Are there finite groups which are not isomorphic to
subgroups of planar isometries?

We start with the first question, and study what are all the possible
groups that appear as subgroups of planar isometries.
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The Kleiv Group

When n=2, the description of D, gives the group of
symmetries of the rectangle, also called the Klein group.

Christian Felix Klein (1849 —1925)

Two- Natuwral Questions

Planar isometries gave us cyclic and dihedral groups. All our
finite group examples so far are either cyclic or dihedral up to
isomorphism.

QUESTION 1: can planar isometries give us other finite groups?

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries?
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For that, let us recall what we learnt about planar isometries.

From Theorem 1, we know that every isometry in R? can be written as
H :C — C, with

H(z)=az+p, or H(z) =az+f, |a| =1.

We also studied fixed points of planar isometries in Exercise 5. If H(z) =
az + (3, then

e if « =1, then H(z) = z + 8 = z and there is no fixed point (apart if
B = 0 and we have the identity map), and this isometry is a translation.

. if()z;«rél,then@z—l—ﬁ:z:>z:1i and

—a’

He) - 1L — e (- 122) —a (- 125)

showing that H(z) = « (z — i) + £ that is we translate the fixed

-« 1-a?
point to the origin, rotate, and translate back, that is, we have a rota-

tion around the fixed point %

If H(z) = az + 3, we first write this isometry in matrix form as

V= lme nl )+ [ 6

and fixed points (zg,yp) of this isometry satisfy the equation

xp|  |cosd sin 0 Tp n th PN 1 —cos@ —sind | |zp| |t
yr|  |sinf —cosf| |yr to —sinf  1+cosO| |yr| |t2
M

The matrix M has determinant det(M) = (1 — cosf)(1 + cos#) — sin?0 = 0.
By rewriting the matrix M as

25mgsmg — QSmgcosg sz’ng .0 0
M = 95in? 02 4 =2 0 [sm— — cosﬂ
—2singcos; 2cos5c085

>

and fixed points (zp, yr) have to be solutions of

.9
Sinz T t
9 2 0 0 Lo
{—cosg} [sm2 0032] {yF "
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First Question: Planow isometries

Let us assume that we are given a finite group of planar
isometries.

* What are all the isometries that could be in this finite group?

Remember all the isometries of the plane we saw in the first chapter?

= translations
= rotations
= reflection

= glide reflection = composition of reflection and translation
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If [tq,to] = A[sin(0/2), — cos(6/2)] then
2([zr,yr], [sin(0/2), — cos(0/2)]) = X\ = xpsin(0/2) — yp cos(0/2) = \/2

showing that (xp, yr) form a line, and the isometry (6.1) is now of the form

x! cos? g — sin? g 2sin g cos g T sin ¢
= + A 2
/ 0 .0 20 9
2

in ¢ —cos2? 4 — 0
Y 28in 3 o8 cos” 5 +sin” 3| |y COS 5

- COS§ Sing 1 0 cos% sing T Y sing
N sin 5 —Cosg 0 —1f [sing —cosg Y —Cosg

0 .0
0S 3 Z
“ 7 Sln29 we get
SIH§ —COS§

cos g sin g T 1 0] [cos g sin g T 0
sin? —cos? " lo =1 in? — 0 +A 1
5 51 |y sin § coss| |y

Multiplying both sides by the matrix (rotation): [

H W
v y
and in the rotated coordinates (', ') and (Z, §), we have &’ = 7 and (g]’—%) =
—(g— %) which shows that in the rotated coordinates this isometry is simply
a reflection about the line y = +’§\.

If [t1,to] # A[sin(0/2), — cos(0/2)], then we have no fixed points. Just like

in the previous analysis we have here

x cos? sz’n% x ty
2 . 0 +
Y sing  —cosg| |y o

and we have as before in the rotated coordinates that

i 1 0] [z cost  sinf [t 1 0]z m
7 =0 =1 5] T |si 0 - 1| 1] T
Y — Y sing  —cos5 | |t2 0 — Y n
and we recognize a translation along the direction of the reflection line ' =

T +m and a reflection about the line y = %, since (§' — 5) = —(§ — 5). This
gives a proof of Theorem 2, which we recall here.

TN

TN
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Planaw Isomelries inv av Finite Group

* Atranslation generates an infinite subgroup!
* Thus translations cannot belong to a finite group.

* A glide reflection is the composition of a reflection and a
translation.

* Thus again, it generates an infinite subgroup, and cannot
belong to a finite group.

{ We are left with rotations and reflections!
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Theorem 12. Any planar isometry is either
a) A rotation about a point in the plane

b) A pure translation

c) A reflection about a line in the plane

d) A reflection about a line in the plane and a translation along the same
line (glide reflection)

Since we are interesting in subgroups of planar isometries, we now need
to understand what happens when we compose isometries, since a a finite
subgroup of isometries must be closed under composition.

A translation T'(8) is given by T'() : =z — z + (3, thus

T(B2)oT(B1) = (24 P1) + Po=2+ 1+ o =TS + )

and translations form a subgroup of the planar isometries that is isomorphic
to (C,+) or (R?,+). The isomorphism f is given by f: T(83) — f3.
A rotation Rq about a center (2 = zj is given by

Ra(0)z — ew(z — 20) + 2o,
thus
RQ(GQ) O RQ(@l) = €i02 (€i91 (Z — Zo) —f- 20 — Zo) —|— zZ0 — RQ(@l —I— 92)

which shows that rotations about a given fixed center {2(= z;) form a sub-
group of the group of planar isometries.
We consider now the composition of two rotations about different centers:

Ra, (01) = €' (2 — 21) + 21, Rq,(0y) = (2 — 25) + 2
so that

Ro,(03) 0 Ro,(01) = €2(e (2 — 2) + 21 — 22) + 2
= 0400 (5 _2)) e (2y — 25) + 2,

ei(91+92)[z _ 7] +
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Rotations

* Recall: to define a rotation, we fix a center, say the origin,
around which we rotate (counter-clockwise).

R(B):z>efz

* What if we take a rotation around a point different than 0?
Ry(0) 12 > e ¥ (z-2p)+2,

First translate z, to the origin, then
rotate, then move back to z,

Rotations avround Different centers

¢ What if we take two rotations around different centers?

* If both R,,(8;) and R,,(6,) are in a finite group, then both
their composition, and that of their inverse must be there!

R,,(6,) R,,(8,)(z)=e0102)z — £®1702)z, + €92(z,-7,) +2,
(R,(6,))1(R,,(8,))}(z)= e(102)z — e(B1+02)z, + €792(z,-7,) +7,

(R,,(8,)) R, (8,)) IRy, (B,)R,, (8,)(2)=2+(z,-2,)[e(0+02—(e 02+ eio1)41]

Pure translation if z, is not z,! Thus such
rotations cannot be in a finite group!




137

where we determine +:

_ei(91+92) _ei(91+92)

21+€i9221 — 610222 + 29 = v+
(1 _ ei(91+92)),y = 25 + et02 (21 _ 22) _ ei(91+02)21

2y 4 €72(2) — 29) — O1F02)
- 1 _ 6i(91+92)

Hence, we have a rotation by (6; + 6,) about a new center 7.
If 21 # 25 and 0, = —01, we get in fact a translation:

Ra,(—61) o Rq,(01) =z — 21 + e’iel(zl — 2) + 2o
=24 (21 — 20)(e7 — 1)

TV
a translation!

After rotations and translations, we are left with reflections and glide
reflections about a line [. Suppose we have two reflections, or two glide
reflections, of the form

01:2 = e Z 4B,y 2 — €27 + By,
so that
p20p1(2) = €%z + B1) + B = €2 4 Bie™ + .
Hence if 65 = 6, = 6 we get a translation:

w0 p1(2) =2+ Eew + 52

a translation vector

which is happening when the lines defining the reflections and glide reflections
are parallel (reflect a shape with respect to a line, and then again with respect
to another line parallel to the first one, and you will see that the shape is
translated in the direction perpendicular to the lines.)

If instead O — 0y # 0, we get a rotation, since the ¢y o ¢1(z) will have
one well defined fixed point, given by

zpp = €27 pp 4 Ble 4 By

Biet® + By

= Zpp = 1— 67;(92_91)
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Reflections

* Among the planar isometries, so far, only rotations with same
center z, are allowed!

* Reflections are also allowed, assuming that their lines
intersect at z, (otherwise, we could get rotations about a
different point.)

First Question. Leonoawdo- Theoremv

QUESTION 1: can planar isometries give us other finite
groups than cyclic and dihedral groups?

ANSWER: No! This was already shown
by Leonardo da Vinci!

Leonardo da Vinci (1452-1519) ™ painter, sculptor,
architect, musician, scientist, mathematician,
engineer, inventor, anatomist, geologist,
cartographer, botanist and writer “ (dixit wikipedia)
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Now, we have built up enough prerequisites to prove the following result.

Theorem 13 (Leonardo Da Vinci). The only finite subgroups of the group
of planar symmetries are either C,, (the cyclic group of order n) or D, (the
dihedral group of order 2n).

Proof. Suppose that we have a finite subgroup G = {1, @2, -+ , @, } of the
group of planar isometries. This means that for every ¢y, (@) is finite, that
there exists ¢, ' € G, and that p; 0 o, = ps € G = {1, P2, ..., ¢n}. Thus

1. ¢k cannot be a translation, since (pr) = {¢},n € Z} is not a finite set.

2. ¢ cannot be a glide reflection, since ¢y 0 ¢y is a translation hence (%)
is then not a finite set.

3. ¢ and ¢, cannot be rotations about different centers, since

Rq,(02)Ro, (01) = et 02401) 5 i02401) 5 er(zl — 29) + 29

Ré; (92)3511 (91) _ e—i(02+01)z _ 6—1’(02—1—01)21 + e—i@z (21 _ 22) + 29
and

Raq,(—02)Ra, (—01)Ra,(02) Ra, (61)
i) [iOat01) o _ 02400 | it oy
— e 020 5 172 () — 25) + 2
=2 — 21+ e (2 — zp) + e OHN) 5, _ o020 5 | =2 29) + 29
=2+ (20— 21) + e O (5 — 21) — (20 — 21) (7" 4 €'2)

=2+ (20— zl)[e’i(92+91) — (e’i("'2 + e’wl) + 1]

N

TV
a pure translation if 21 # 22

Therefore in the subgroup G = {1, o, -+ , ¢, } of finitely many isome-
tries, we can have

1) rotations (which must all have the same center (2)

2) reflections (but their lines must intersect at €2 otherwise we would
be able to produce rotations about a point different from € and
hence produce translations contradicting the finiteness of the set.)
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Motivation for Leonawdo- Theoremw

Leonardo da Vinci systematically
determined all possible
symmetries of a central building,
and how to attach chapels and
niches without destroying its
symmetries.

Extract of Leonardo’s notebooks.

Proof of Leonowdo Theovew (1)

* We have already shown that a finite group of planar
isometries can contain only rotations around the same center,
and reflections through lines also through that center.

* Among all the rotations, take the one with smallest strictly
positive angle B, which generates a finite cyclic group of order
say n, and every rotation belongs to this cyclic group!

* [if ® is another rotation angle, then it is bigger than 8, thus
we can decompose this rotation between a rotation of angle
(a multiple of) 8 and a smaller angle, a contradiction] ¢ same
argument as we did several times for cyclic groups!
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Let us look at the rotations about €2 in the subgroup G = {¢1, 2, -+ , n}
and list the rotation angles (taken in the interval [0, 27)) in increasing order:6; <
Oy < --- < 6_1. Now r(6;) is the smallest rotation, and (26,), r(361),. . .,r(k6;)
for all k£ € Z must be in the subgroup as well.

We shall prove that these must be all the rotations in G, i.e., there can-
not be a 6; which is not kf; mod 27 for some k. Assume for the sake of
contradiction that 0; # k6#;. Then 0, = st + ( where 0 < { < 0, and

r(0)r(—=sb1) = r(0)r(61)~" = r(¢)

but r(6;)r(01)~* belongs to the group of rotations and thus it is a rotation
of an angle that belongs to {0,0s,--- ,6,_1}, with { < 0, contradicting the
assumption that 6; is the minimal angle.

Also note that 6, = 27/l since otherwise (6, = 27 4+ n with n < 6; and
r'(0)) = r(n) with n < 0;, again contradicting the minimality of ;.

Therefore we have exactly [ rotations generated by r(#;) and (r(6;)) is
the cyclic group C} of order [.

If C; = (r(0,)) exhausts all the elements of G = {1, @2, ,vn}, we are
done. If not, there are reflections in G too. Let m be a reflection that belongs
to {¢1,92,...,¢n}. If m and (r(6;)) are both in G, then by closure

m,mr,mr?, ... ,mrP"l € G
and all these are (1) reflections since mr® = r% = m = r#=% and m would
be a rotation, (2) distinct elements since mr® = mr? = r® = r¥,

Can another reflection be in the group say m? If m # mr®, then mm is
by definition a rotation in G, that is mm = r®, since we have shown that all
rotations of G are in (r(6;)). Now this shows that

m=m"'r* =mr® and (mr®)(mr®) =1= mrm=r"°
Since m? = 1 as for any reflection, we proved that
G={1rr*. . 7"V momre, o mrTY, mE =1, =1, mem =
The group G is therefore recognized as the dihedral group
D, = {{(r,m)|m* = 1,7' = 1,mr = r~'m}.

Therefore we proved that a finite group of planar symmetries is either cyclic
of some order [ or dihedral of order 2{ for some [ € N. O
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Proof of Leonowdo-Theovenv (II)

* If the finite group of isometries contain only rotations, done!
* If not, we have reflections!
* Let r be the rotation of smallest angle 8 and m be a reflection.

* Then m, mr, mr2,..., mr™! are distinct reflections that belong to
the group [if mri=ri then m would be a rotation too].

* No other reflection! [for every reflection m’, then mm’ is a
rotation, that is mm’=r for some j, and m’ is in the list!]

We proved: the finite group of planar isometries is either a
cyclic group made of rotations, or a group of the form

{1, r,r2,., L m,mr,...,mr"1} with relations m2=1, r"=1 and
mr = rim, namely the dihedral group!

CW@W ’ Lovv SO‘fal
(What we saw, no claim that this is complete ©, all the
finite ones written here are planar isometries )

_ ELIEL AT non-abelian groups

1 {1} X
2 C; X
3 C;

4 C, Klein group

5 Cs

6 Ce D,
7 C

8 Cg D,

infinite BE
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Let us look at our table of small groups, up to order 8.

order n abelian non-abelian
1 Cy ~ {1} x
2 02 X
3 Cs X
4 Cy, Klein group X
5 05 X
6 Cs Ds
7 07 X
8 Cy Dy

Using Leonardo Theorem, we know that planar isometries only provide
cyclic and dihedral groups, so if we want to find potential more groups to
add in this table, we cannot rely on planar geometry anymore! This leads to
the second question we addressed earlier this chapter:

Are there finite groups which are not isomorphic
to subgroups of the group of planar isometries?
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Classification so-fowr
Invertible mod 2,3,4,5,6,7 are cyclic, invertible mod 8 are C,xC,
[done in Exercises for 5 and 8, same computation for others!]

_ abelian groups non-abelian groups

{1} x
C; X
G

C, Klein group

0O~ o B W N
(@]
v

infinite =

We are left with the second Question...

QUESTION 2: are there finite groups which are not
isomorphic to planar isometries?

29 7 ? 2
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Exercises for Chapter 6

Exercise 34. Show that any planar isometry of R? is a product of at most
3 reflections.

Exercise 35. Look at the pictures on the wiki (available on edventure), and
find the symmetry group of the different images shown.
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Chapter 7

Permutation Groups

We started the study of groups by considering planar isometries. In the
previous chapter, we learnt that finite groups of planar isometries can only
be cyclic or dihedral groups. Furthermore, all the groups we have seen so far
are, up to isomorphisms, either cyclic or dihedral groups! It is thus natural to
wonder whether there are finite groups out there which cannot be interpreted
as isometries of the plane. To answer this question, we will study next
permutations. Permutations are usually studied as combinatorial objects,
we will see in this chapter that they have a natural group structure, and in
fact, there is a deep connection between finite groups and permutations!

We know intuitively what is a permutation: we have some objects from
a set, and we exchange their positions. However, to work more precisely, we
need a formal definition of what is a permutation.

147
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Question 2 after Lagrange Theovesm

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries (cyclic or dihedral groups)?

_ abelian groups non-abelian groups

1 {1} X
2 C; X
3 Cs X
4 C, Klein group X
5 C X
6 C. D,
7 o X
8 Cq D,
infinite x

What iy a Permutation ? (1)

* Intuitively, we know what a permutation is...

http://www.virtualmagie.com/ubbthreads/ubbthreads.php/ubb/download/Number/3018/filename
3415%20net.jpg
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Definition 15. A permutation of a set X is a function o : X — X that is
one-to-one and onto, i.e., a bijective map.

Let us make a small example to understand better the connection between
the intuition and the formal definition.

Example 25. Consider a set X containing 3 objects, say a triangle, a circle
and a square. A permutation of X = {A,o,J} might send for example

A A o0 O o,

and we observe that what just did is exactly to define a bijection on the set
X, namely a map ¢ : X — X defined as

o(AN)=A, o(o) =0, o(0) =o.

Since what matters for a permutation is how many objects we have and
not the nature of the objects, we can always consider a permutation on a set
of n objects where we label the objects by {1,...,n}. The permutation of
Example 25 can then be rewritten as o : {1,2,3} — {1,2,3} such that

o(1) =1, 0(2) =3, 0(3) = 2, oraz(i § g)

Permutation maps, being bijective, have inverses and the maps combine nat-
urally under composition of maps, which is associative. There is a natural
identity permutation o : X — X, X = {1,2,3,...,n} which is

o(k) — k.
Therefore all the permutations of a set X = {1,2,...,n} form a group under
composition. This group is called the symmetric group S,, of degree n.

What is the order of 5,7 Let us count how many permutations of
{1,2,...,n} we have. We have to fill the boxes

I

1 2 3 -+ n

with numbers {1, 2, ...,n} with no repetitions. For box 1, we have n possible
candidates. Omnce one number has been used, for box 2, we have (n —1)
candidates, ... Therefore we have

nn—1)(n-2)---1=n!
permutations and the order of .S, is
|Sy| = nl.
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What iy o Permutation? (I1)

What is formally a permutation?

A permutation of an arbitrary set X is a bijection from X to
itself

Recall that a bijection is both an injection and a surjection.

What iy a Permutation? (III1)

Bridging intuition and formalism

A @ O
Define an arbitrary bijection

A A A
O X o » 0

A
@
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Notation

If | X]=n, we label the n elements by 1...n.

(48

123
132

o)

Combining Permutations

123 123 _ 123
213 132 231

It’s a composition, so
this permutation first!

123 51325231
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Group Structure of Permutations (1)

* All permutations of a set X of n elements form a group under
composition, called the symmetric group

Composition of two
on n elements, denoted by S,. bijections is a bijection

* Identity = do-nothing (do no permutation)

* Every permutation has an inverse, the inverse permutation.

A permutation is a
bijection!
* Non abelian (the two permutations of the previous slide do
not commute for example!)

Group Structure of Permutations (I1I)

The order of the group S, of permutations on a set X of
elements is n!

N O N PP
i) £ e

2 choices 1 choice

n
choices choices

|S,| =n!
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Let us see a few examples of symmetric groups S,,.

Example 26. If n = 1, S; contains only one element, the permutation
identity!

Example 27. If n = 2, then X = {1, 2}, and we have only two permutations:
or:1—1, 22

and
o9:1—=2 21,

and Sy = {071, 05}. The Cayley table of Sy is

g1 | 02

o1 | 01| O2 |
02 | 02 | 01

Let us introduce the cycle notation. We write (12) to mean that 1 is sent to
2, and 2 is sent to 1. With this notation, we write

52 = {(), (12)}.

This group is isomorphic to Cs, and it is abelian.

(12 3
=1 3 2

of Example 25 in the cycle notation is written as (23). We can combine two
such permutations:

The permutation

(12)(23)

which means that we first permute 2 and 3: 1 2 3 — 1 3 2 and then we
permute 1 and 2: 1 3 2+ 2 3 1. Let us look next at the group Ss.
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Permutations o av Set of 2 Elementy
* |X] =2, X={1, 2}
*1S;,1=2,5,={0,05}, 6;:12>12,0,:12>21.
0y 0,
0y 0y 0,
0, ) 0y
Cycle Notatiow
123 23
(132) (23) =) 32
thus 123 - 132
23
123 123 (12)(23)- 322
213 132 thus 123 > 132
152
251
thus 1325231
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Example 28. If n = 3, we consider the set X = {1,2,3}. Since 3! = 6, we
have 6 permutations:

Sy ={o1 =(),00 = (12),03 = (13),04 = (23), 05 = (123),06 = (132)}.

We compute the Cayley table of Ss.

| 1O (2 [(23) [(13) [(123)](132)]
0 () (12) | (23) | (13) |(123) | (132)
(12) | (12) |() (123) | (132) | (23) | (13)
(23) | (23) |(132)] () (123) | (13) | (12)
(13) | (13) |(123) | (132) | () (12) | (23)
(123) || (123) | (13) | (12) |(23) | (132)| ()
(132) || (132) | (23) | (13) | (12) |() (123)

We see from the Cayley table that S3 is indeed isomorphic to D3! This
can also be seen geometrically as follows. Consider an equilateral triangle,
and label its 3 vertices by A, B, C, and label the locations of the plane where
each is by 1,2,3 (thus vertex A is at location 1, vertex B at location 2 and
vertex C' as location 3). Let us now rotate the triangle by r (120 degrees
counterclockwise), to find that now, at position 1 we have C, at position 2
we have A and at position 3 we have B, and we apply all the symmetries of
the triangle, and see which vertex is sent to position 1,2, and 3 respectively:

y
B(2)
A1)
o « L J1]2]3] |
1 A|B|C|()
G r C|A|BJ(213)
2 | B C A (123)
m | A|C|B|(23)
rm | B|A|C|(12)
rm | C|B|A]|(13)

and we see that to each symmetry corresponds a permutation. For example,
r sends ABC' to CAB and thus we have (132).
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Permutations o av Set of 3 Elementy

« |X|=3,X={123}
+ 0,:123 >123(), 0,:123 213 (12) ,0,:123->321 (13),
0,:123 132 (23), 0: 1235231 (123), 0, : 1235312 (132).

I T M N (R
() (1,2)  (23) (1,3) (1 2 3) (1 3 2)
(1,2) (1,2) () (1,2,3) (1,3,2) (2,3) (1,3)
(2,3) (2,3) (1,3,2) () (1,2,3) (1,3) (1,2)
(1,3) (1,3) (2,2,3) (1,3,2) () (1,2) (2,3)
(1,2,3) (1,2,3) (1,3) (1,2) (2,3) (1,3,2) ()
(1,3,2) (1,3,2) (2,3) (2,3) (1,2) () (2,2,3)

The Symumetric Group S;
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Have we found New Groups?

b Sz ?
since | S, |=2, it is the cyclic group C,!
*S;?

We know |S;]|=3!=6, and it is non-abelian.
We also know |D;|=2-3=6 and it is non-abelian.

S; v& D3
-mmmmmm
() (,2) (2,3) (1,3) (123) (132) 1 1 r r? m rm  r’m

(1,2) (1,2) () (123) (132) (2,3) (1,3) r r r 1 rm rPm m
(2,3) (2,3) (132) () (123) (1,3) (1,2) r? r? 1 r rm m rm
(1,3) (1,3) (123) (2132) () (1,2) (23) m m rm rm 1 r? r
(123) (123) (1,3) (1,2) (2,3) (132) () rm rm m rm r 1 r?
(132) (132) (2,3) (1,3) (1,2) () (123) Pm rPm rm m r? r 1

Are they isomorphic?
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CHAPTER 7. PERMUTATION GROUPS

D; revisited

* Fix 3 locations on the plane: 1, 2, 3
* Call A,B,C the 3 triangle vertices

Question 2: more Bad Newsy !

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries (cyclic or dihedral groups)?

_ ELIEL AT non-abelian groups

{1} X
C,=5, X
G X
C,, Klein group X

CO ~ O U B W N =

infinite
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Thus despite the introduction of a new type of groups, the groups of
permutations, we still have not found a finite group which is not a cyclic or
a dihedral group. We need more work! For that, we start by noting that
permutations can be described in terms of matrices.

Any permutation o of the elements {1,2,...,n} can be described by

o(1) 0 -~ 1 0 1 T .
o (2) 1 0 0|2 c) .
- - T . )
a(n) 0 1 0 n Co(n) "
Py

where the kth row of the binary matrix is given by e?;(k) =(0,...,0,1,0,...,0),
where 1 is at location o(k). Now ey,..., e, are a set of orthogonal vectors,
that is, satisfying

0 if k#s
€{es:<ekaes>:6ks:{ 1 Z;ki$7 (71)

which form a standard basis of R™. Let us derive some properties of the
matrix P,.

Property 1. The matrix P, is orthogonal, that is P,PI = I,,, where I, is
the identity matrix. This follows from

T

€o(1)

63(2) T T T :

: ey e 0 Com [ =] (Cweom) | =
T .

€o(n)

using (7.1). Hence the inverse of a permutation matrix is its transpose.

Property 2. Using that det(AB) = det(A) det(B) and det(A”) = det(A),
we get

det(P,PT) = det(I) = 1.
Therefore det(P,) = +1. (det(P?) = det(P,) = (det P,)? = 1).
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Permutation Matrices : Definition

100 1 1
001 2 =13
010 3 2

If o is a permutation on X={1...n}, then it can be represented by a
permutation matrix P

kth row hasa 1 100 1 o(1)
at position o(k) | — :
(0..010..0) 010 n o(n)

Permutation Matrices: Proberties

Every row/column
hasonlyal
. P1 1 .
Pc Pc = : p1T pnT — :
Pn 1

A permutation matrix as an orthogonal matrix!

det(P_P_.T)=1 ™= det(P_)=1or-1
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Property 3. We will show next that any permutation can be decomposed
as a chain of “elementary” permutations called transpositions, or exchanges.
We consider the permutation o given by

o(1) 63(1) 1
o(n) eg(n) n

We shall produce o from (1,2, ...,n) by successively moving o(1) to the first

place and 1 to the place of o(1), then ¢(2) to the second place and whoever

is in the second place after the first exchange to the place of o(2) place, etc..
After moving (1) to the first place, using a matrix P, we get

[ 0(1) T [ 1
2
1 = Pn><n 0_(1)

After this step, we use an (n — 1) x (n — 1) permutation matrix to bring o(2)
to the second place as follows (without affecting o(1)):

[ o(1) T [ o(1) ]
o(2) 2
: 1 0 :
2 a [ 0 Pr—1)x(n-1) ] o(2) |’

and so on. From this process, it is clear that at every stage we have either
a matrix of exchange in which two rows of the identity are exchanged, or if
the output happens to have the next value in its designated place an identity
matrix. The process will necessarily terminate after n steps and will yield
the permutation o as desired.
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Trawnspositions

A transposition (exchange) is a permutation that swaps two
elements and does not change the others.

* In cycle notation, a transposition has the form (i j).
Example: (1 2) on the set X={1,2,3,4} means 1234 2134,

* In matrix notation, a transposition is an identity matrix, but for
for two rows that are swapped.

0100
1000
0010
0001

Decompositiow in Transpositions (1)

Any permutation can be decomposed as a product of
transpositions.

1%t row, 1 at

ith position gy 70..010..0 0(1
ith row, 1 at @
1t position

Place similarly 6(2) at the 2nd position, 6(3) at the 3" position etc, this
process stops at most after n steps! (since at every step, either two rows
are exchanged, or we have an identity matrix if nothing needs to be
changed).
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Hence we will be able to write

o(1) 1
" _BE BB
o(n) n

either an elementary exchange matrix of size n X n

or an identity matrix of size n x n

Now, we know from the property of the determinant that exchanging two
rows in a matrix induces a sign change in the determinant. Hence we have

where E; =

—1 if it is a proper exchange

det B = { 1 if it 1S Loen

Therefore we have shown that for any permutation, we have a decomposition
into a sequence of transpositions (or exchanges), and we need at most n of
them to obtain any permutation. Hence for any o we have:

PU:EnEnfl"'El

and
det P, = det E,, det E,,_; - - - det F; = (—1)# of exchanges
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Example
(-0
106

Decompositiow i Transpositions (I11)

1 o(1)
E, ..E,E; —
— n a(n)
PO

where E; is either an identity matrix, or a transposition
(exchange) matrix.

det(E;)=-1 for a transposition, and 1 for the identity, thus
det(Pa)=(_1)#exchanges
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The above development enable us to define the permutation to be even if
det P, =1,
and odd if
det P, = —1.

Definition 16. The sign/signature of a permutation o is the determinant
of P,. It is either 1 if the permutation is even or -1 otherwise.

We have a natural way to combine permutations as bijective maps. In
matrix form, we have that if

1 oa(l) 1 op(1)
Py N : , Py = :

’ n oa(n) ’ n op(n)

then
PO'APO'B = PO'BOO'A‘

The description of a permutation via transposition is not unique but the
parity is an invariant. We also have that

sign(caoopg) = sign(oa)sign(op)

det(P,,P,,) = det(P,,)det(F,,).

Then we have the multiplication rule.

even | odd
even | even | odd

odd | odd | even

This shows the following.
Theorem 14. All even permutations form a subgroup of permutations.

Proof. Clearly the identity matrix is an even permutation, since its determi-
nant is 1.

Product of even permutations is even, thus closure is satisfied.

The inverse of an even permutation must be even. To show this, we know

PP, =1,
so det(PT) = det(P,) = det(PT) =1 if det(P,) = 1. O

Definition 17. The subgroup A, of even permutations of the symmetric
group .S, is called the alternating group.
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Parity of o Permutation

A permutation is even if det(P,)=1 and odd if det(P)=-1.
The sign/signature of a permutation o is sign(c)=det(P,,).

Example
(132):123 ->312

(123 € 312 thus (13) : 123 5321 sign(132)=(-1)*=1.
3@9@ thus (12)(13) : 123 3215312 Same result from the

matrix approach!

The decomposition in transpositions is far from unique! It Y?
is the signature which is unique!! ®

The Alternating Group

The subset of S, formed by even permutations is a group,
called the alternating group A,.

- The identity is the do-nothing permutation o= (), its
permutation matrix is the identity, and its determinantis 1 and
sign(())=1, that is () is even.

* The composition of two even permutations is even, since
det(P,,P,,)= det(P,) det(P_,)=1-1=1.

* If o is a permutation with matrix P, then its inverse
permutation has matrix P, . Now det(P,P,")=1 and since
det(P,)=1, we must have det(P,")=1!
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Example 29. When n = 3, we consider the symmetric group S3, and identify
those permutations which are even. Among the 6 permutations of S3, 3 are
odd and 3 are even. Thus Aj is isomorphic to the cyclic group C3 of order 3.

An interesting immediate fact is that the size of the subgroup of even
permutations is %n!, since for every even permutation, one can uniquely as-
sociate an odd one by exchanging the first two elements!

Let us go back once more to our original question. We are looking for a
group which is not isomorphic to a group of finite planar isometries. Since
Ajs is isomorphic to a cyclic group, let us consider the next example, namely
A4.

Since 4! = 24, we know that |A4| = 12. There is a dihedral group Dg
which also has order 12. Are the two groups isomorphic?

Lagrange theorem tells us that elements of A4 have an order which divides
12, so it could be 1,2,3,4 or 12. We can compute that there are exactly 3
elements of order 2:

(12)(34), (13)(24), (14)(23),
and 8 elements of order 3:
(123), (132), (124), (142), (134), (143), (234), (243).

This shows that A4 and Dg cannot be isomorphic! We thus just found our
first example, to show that there is more than cyclic and dihedral groups!
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Example: A;
-EMMM@M

() (1,2) (2,3) (1,3) (123) (132)

(1,2) (1,2) () (123) (132) (2,3) (1,3)
(2,3) (2,3) (132) () (123) (1,3) (1,2)
(1,3) (1,3) (123) (132) () (1,2) (2,3)

(123) (123) (1,3) (1,2) (2,3) (132) ()
(132) (132) (2,3) (1,3) (1,2) () (123)

0 0 (123) (132) It is the cyclic group
(123) (123) (132) () of order 3!

(132) (132) () (123)

Order of A,,

The order of A is |A, |=]S,]/2 =n!/2.

Proof. To every even permutation can be associated

uniquely an odd one by permuting the first two
elements!

Examples.
* A,isoforder1 == thisis{1}.

* A;is of order 31/2=6/2=3 === this is C,.
* A,is of order 41/2 =24/2=12 == ?
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Question 2: one more Bad Newsy ?7?

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries (cyclic or dihedral groups)?

_ abelian groups non-abelian groups

1 {1} X

2 C=5, X

3 G, X

4 C,, Klein group X

5 Cs X

6 Ce D, =S,
7 (o8 X

8 Cg D,

—
N
(@)

s
~
I..U

Ovrder of Elementy A,

* Lagrange Theorem tells us: 1,2,3,4,6,12.
* Infact: 3 elements of order 2, namely (12)(34), (13)(24), (14)(23)

* And 8 elements of order 3, namely
(123),(132),(124),(142),(134),(143),(234),(243)

A, and D¢ are not isomorphic! n e
N

http://kristin-williams.blogspot.com/2009/09/yeah.html
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Exercises for Chapter 7

Exercise 36. Let o be a permutation on 5 elements given by o = (15243).
Compute sign(o) (that is, the parity of the permutation).

Exercise 37. 1. Show that any permutation of the form (ijk) is always
contained in the alternating group A, n > 3.

2. Deduce that A, is a non-abelian group for n > 4.

Exercise 38. Let H = {0 € S; | 0(1) =1, o(3) = 3}. Is H a subgroup of
S5?

Exercise 39. In the lecture, we gave the main steps to show that the group
Dg cannot be isomorphic to the group A4, though both of them are of order
12 and non-abelian. This exercise is about filling some of the missing details.

e Check that (1 2)(3 4) is indeed of order 2.
e Check that (1 2 3) is indeed of order 3.

e By looking at the possible orders of elements of Dg, prove that A, and
Dg cannot be isomorphic.



Chapter 8

Cayley Theorem and Puzzles

“As for everything else, so for a mathematical theory: beauty can
be perceived but not explained.” (Arthur Cayley)

We have seen that the symmetric group S, of all the permutations of n
objects has order n!, and that the dihedral group D3 of symmetries of the
equilateral triangle is isomorphic to Ss, while the cyclic group Cs is isomor-
phic to S5. We now wonder whether there are more connections between
finite groups and the group S,,. There is in fact a very powerful one, known
as Cayley Theorem:

Theorem 15. Fvery finite group is isomorphic to a group of permutations
(that is to some subgroup of S,,).

This might be surprising but recall that given any finite group G =
{91, 92, .., 9n}, every row of its Cayley table

g1 =€ | g2 g3 | Gn
g1
g2
gr | 9rg1 9r92 | 9r93 | = | 9r9n
gn

is simply a permutation of the elements of G (¢,9s € {91, 92, .-, In})-

171
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CHAPTER 8. CAYLEY THEOREM AND PUZZLES

Groups and Permutationw Groupys

We saw that D;=S;and C,=S,

Is there any link in general between a given group G and
groups of permutations?

The answer is given by Cayley Theorem!

Cayley Theovemw

Theorem Every finite group is isomorphic to a group of
permutations.

This means a
subgroup of some
symmetric group.

One known link: for a group G, we can consider its
multiplication (Cayley) table. Every row contains a permutation
of the elements of the group.
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Proof. Let (G, -) be a group. We shall exhibit a group of permutations (X, o)
that is isomorphic to G. We have seen that the Cayley table of (G, -) has
rows that are permutations of {g1, go, ..., gn}, the elements of G. Therefore
let us define

Y={o,: G =G, o4(x) =gz, Yz € G}

for g € G. In words we consider the permutation maps given by the rows of
the Cayley table. We verify that > is a group under map composition.

1. To prove that X is closed under composition, we will to prove that
04y ©0g1 = Ogoq1, 91 € G, g2 €G.
Indeed, for every = € G,
g, (09, (%)) = 04, (17) = 92(917) = (g291)2 = 0gpg, () € T

since gog7 € G.
2. Map composition is associative.
3. The identity element is o.(z) = ex, since

0g0 0, = 0ge=04,0.0045 = Oc.g = 0.

! we have g9~ = g~ 'g = e. From

4. The inverse. Consider g and g~
Oga ©0g1 = Ogagy

we have
0gO0g-1 = 0¢ = 0yg-100g.
Now we claim that (G,-) and (D, o) are isomorphic, where the group
isomorphism is given by
¢:G—= X, g o,

Clearly if 04, = 04, then gie = g2e = g1 = ¢2. If g1 = g2, then o, = 0y,.
Hence the map is one-to-one and onto, by construction!
Let us check that ¢ is a group homomorphism. If g1, g2 € G,

G(g192) = 140 = 04y © 0y = B(g1) © H(g2),

and hence we are done, ¢ is an isomorphism between (G, -) and a permutation
group! ]
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Proof of Cayley Theovem (1)

* We need to find a group Z of permutations isomorphic to G.

* Define 2={0,: G G, o,(x)=gx, g in G}

* The set 2 forms a group of permutations:

These are the
permutations given by
the rows of the Cayley

table!

o ltis a set of permutations (bijections).

o The identity is o, since it maps x to x.

o Associativity is that of map composition.
o Closure: we have that 0, 0,, = Oy,

o Inverse: we have that o,0,(1) = ;.

Proof-of Cayley Theorew (II)

Left to prove: G and X are isomorphic.

* We define a group isomorphism ¢: G 22, ¢(g)=0,.

o The map ¢ is a bijection.
o The map ¢ is a group homomorphism: &(g,8,)=d(g;) d(g,).

[Indeed: d(g,8,)= Oyyq, = O O, =d(8;) B(8,).]
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Now that we saw that all finite groups are subgroups of S,,, we can un-
derstand better why we could describe the symmetries of bounded shapes
by the cyclic group C,, or the dihedral group D,, which can be mapped in a
natural way to permutations of the vertex locations in the plane.

Example 30. Consider the group of integers modulo 3, whose Cayley table
is

O DN | =
— O NN

We have o¢(z) = x + 0 corresponding to the permutation identity ().
Then oy(z) = x + 1 corresponding to the permutation (123), o9(z) = x + 2
corresponding to (132).

Since we have a group homomorphism, addition in G = {0, 1,2} corre-
sponds to composition in ¥ = {0g, 01,05 }. For example

14+1=2 < (123)(123) = (132).

We next illustrate how the techniques we learnt from group theory can
be used to solve puzzles. We start with the 15 puzzle. The goal is to obtain
a configuration where the 14 and 15 have been switched.

Since this puzzle involves 16 numbers, we can look at it in terms of per-
mutations of 16 elements.

Let us assume that when the game starts, the empty space is in position
16. Every move consists of switching the empty space 16 and some other
piece. To switch 14 and 15, we need to obtain the permutation (14 15) as
a product of transpositions, each involving the empty space 16. Now the
permutation (14 15) has parity -1, while the product of transpositions will
always have parity 1, since 16 must go back to its original position, and thus
no matter which moves are done, the number of vertical moves are even, and
the number of horizontal moves are even as well.
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Exaumple
Take G={0,1,2} the group of integers mod 3.
-___z{> )
0 0 1 2

1 1 2 0 Z> (123)
2 2 0 1 Z> (132)

* You can check the consistency of the operations! (homomorphism)
* For example: 1+1 =2 ¢> (123)(123)=(132)

This is a subgroup of S,.

A Historical Point of View

ronecker~1870 .
Klein ~1880
Lie ~1880

Number Theory

Permutations \ l /

(Jordan ~1880)

E Group Theory i

[The symmetric group is complicated! Needs more tools.]

Lagrange ~1770
Galois ~1830
Cauchy~1820-1840

Geometry

Cayley ~1854
(modern definition
of group)
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Some Applications
* Symmetries
* Cryptography
* Puzzles
Symmelries

One of the main focuses of this class
* Symmetries of finite planar shapes (cyclic and dihedral groups)
» Symmetries of some infinite planar shapes (Frieze groups, later!)

One could also study symmetries of 3-dimensional shapes!

A tetrahedral AB, molecule (ex. methane CH,)
with symmetric group A,.
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15 Pusgzle

1 lzlala 11213} 4
slel 718 DL (MG (7. B
9 l10ll11] 12 9 |10 11 | 12

13| 15 14

13 [ 14| 15 |
| S | T‘

* 1870, New England
* 1890, price of 1000$ to who could solve it.

Impossibility of the 15 Pugsgle (1)

Every move involves switching the empty space (say 16) and
some other piece.

ENEE ENEE Y RN
15 15 12 15 12 12 12

(12 16) (11 16) (15 16) (12 16)

Solving the puzzle means we can write:
(14 15)= (a, 16)(a, 4 16) ...(a, 16)(a; 16)
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We next consider a solitaire puzzle. The goal of the game is to finish
with a single stone in the middle of the board. This does not seem very easy!
We might ask whether it would be easier to finish the game by having a
single stone anywhere instead. To answer this question, we consider the Klein
group, and label every position of the board with an element of the Klein
group, such that two adjacent cells multiplied together give as result the label
of the third cell (this is done both horizontally and vertically). The value
of the board is given by multiplying all the group elements corresponding to
board positions where a stone is. The key observation is that the value does
not change when a move is made.

When the game starts, and only one stone is missing in the middle, the
total value of the board is h (with the labeling shown on the slides). Since
a move does not change the total value, we can only be left with a position
containing an h. Since the board is unchanged under horizontal and vertical
reflections, as well as under rotations by 90, 180, and 270 degrees, this further
restricts the possible positions containing a valid h, and in fact, the easiest
version is as hard as the original game!

Other applications of group theory can be found in the area of cryptog-
raphy. We already saw Caesar cipher, and affine ciphers. We will see some
more: (1) check digits and (2) the RSA cryptosystem.
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Impossibility of the 15 Pusgszle (I1)

Solving the puzzle means we can write:
(14 15)=(a, 16)(a, 4 16) ...(a, 16)(a; 16)

* 1)

parity =-1 parity =1

16 must return to its
place, thus both
number of horizontal
and vertical moves
are even!

Solitavive (I)
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Solitaire (II)

* A move = pick up a marble, jump it horizontally or vertically

(but not diagonally) over a single marble into a vacant hole,
removing the marble that was jumped over.

N

* A win = finish with a single marble left in the central hole.

* Would it be easier if a win = finish with a single marble anywhere?

Solitaive (III)

h

* G={1,fg,h}=Klein group
* Label the board such that

labels of two cells multiplied
together give the label/af the

third cell.

Binary
operation of the
Klein group
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Solitaive (IV)

* total value of the board = the group element obtained by
multiplying together the labels of a/l of the holes that have
marbles in them.

* the total value does not change when we make a move!

TN

Solitavive (V)
Total value
flg [n =h
— Total value="7?
1
¢  (fgh)15= fgh=e
b f] e « without h, we have fg=h.
flg)lh|f|lg|h|f|lag|h
g|h|f|z ! fleg|h|f Since a move does not
nfflelnlfleln]f]g change the total value, we
T can only be left with h!
g | b | f
h f <
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Solitaive (VI)

A Solitaire board is unchanged under reflection in the
horizontal and vertical axes, and rotation through 90°,
180°, 270° and 360°.

if this h is
valid, then f

g | b |t is valid!
/’_'\ h|f|g
fle|h|flag|h|f|ag|h
_ g (o[t gln ]l n]f]
( | hif|g|h|f|lg|h|{f]|g
flag|h
T h I_
h|t] 2

Solitaive (VII)

flg [n If we can solve this
g h|f — position, then we can
h T g solve the middle one!

g|h|f We just shown: the “easiest
hlf| e version” is as hard!!
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Cryptography: Modular Arithmetic

Modular arithmetic (integers modulo n) enables

* Caesar’s cipher e X > e (x)=x+K mod 26, K=3

Affine ciphers

e X > e (x)=K,x+K, mod 26, (K,,26)=1, K=(K,,K,)

RSA cryptosystem

e X 2 ey(x)=x® mod n, K=(n,e)

Cryptography: Discrete Log Problem

* “Regular” logarithm: log,(b) is defined as the solution x of the
equation a* = b.
* Example: : log,(8)=3 since 23=8.

* Discrete logarithm: let G be a finite cyclic group, take g and h
in G, log,(h) in G is defined as a solution x of the equation g* = h.
* Example: log;(13)=x in the group of invertible integers

modulo 17 means that 3* = 13 (mod 17), and x=4 is a solution.
Need to check this is a cyclic group! ]

This is useful in cryptography because solving the discrete log
problem is hard!
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Cryptography: Check Digit (1)

Take a message formed by a string of digits.

A check digit consists of a single digit, computed from the other
digits, appended at the end of the message.

It is a form of redundancy to enable error detection.

We will look at the Check Digit introduced by J. Verhoeff in
1969, based on the dihedral group D..

Cryptography: Check Digit (I11)

Multiplication table of D with O=do-nothing, 1-4=rotations, 5-
9=reflections, *=binary operation in Ds.

|+ o |1 ]2 3 a5 J6 |7 |8 |9 |

O 00 N o un A W N L O
O© 00 N o uu A W N L O
00 N oo U © O B W N P
N o0 i O 0k O B W N
O U1 O 0 N N P O b W
U © 0 N O W N kB O B
A W N P O © 00 N OO WU,
w N P O B U1 ©O 00 N O
N B O & W OO0 1 © 0O N
B O & W N N OO 1 ©O
OO A W N P 0O N O 1 ©
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Cryptography: Check Digit (III)

How does it work?Let o be a permutation in S,,. To any string
a,a,... a,; of digits, we append the check digit a, so that

o(a;)* 0%(a,)* ..io“'l(an_l)* o"(a,)=0.

1

Composition of Binary operation
the permutation o of Dg

Single-digit errors are detected: if the digit a is replaced by
b, then o'(a) is replaced by o'(b) (o'(a)# o'(b) when azb) thus
the check digit is changed and an error is detected.

Cryptography: Check Digit (IV)

Example. Take 0=(1,7,9)(2,5,10,4,6) and the digit[%ggélg](n-lﬂ).

* 0(2)=5, 02(3)=3, 03(4)=5, 0*(5)=2, 0°(6)=6.
* 5*¥3*5%¥2*6* 0%(a,)=0 == 5* g%(a,)=0 == o5a.)= 5 and a,=2.
* We get [234562] that is 123451.

Check digit 8 ‘

on a German
banknote.

. ieuknste

gl DEUTSCHE BUNDESBANK
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Applicatiow of Euler Theorvem: RSA

RSA is an encryption scheme discovered by River, Shamir and
Adleman (in 1978).

Alice and Bob-Story

Alice and Bob want to exchange confidential data in the
presence of an eavesdropper Eve.
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Alice and Bob- story by xkcd

1M SURE YOUVE HEARD ALL ABOUT THIS YES, IT'5 TRUE. | BROKE. BoB'S
SORDID AFFAIR IN THOSE. GOsSIPY CRYPTOGRAPHIC FRIVATE. KEY AND EXTRACTED THE
PROTOCOL SPECS WITH THOSE. BUSYBODIES TEXT OF HER MESSAGES. BUT DOES

SCHNEIER AND RIVEST, ALWAYS TAKING ALIE'S ANONE. REALVZE Hou MUCH T HURT?
SIDE, ALWAVS LPEE&FI NG ME THE ATIACKER. /

E SAID 1T WAS NOTHING, BUT | DION T WANT T BELEVE- || SO BEFORE You S0 GUICKLY LABEL.
E‘vmmo Pﬂgﬂft PUBLIC-KEY' || OF COURSE ON SOME LEVEL. | |ME. A THIRD PARTY T THE (oMM~
AJTHENTICATED SIGNATURES ONTHE. || | REALIZED T WWAS AKNOWN- | |UNICATION, TUST REMEMBER |

FILES To THE LIPSTICK HEART SMEARED)|| PANTEXT ATACK. BUT | |[ | LOVED I FIRST. W
ON THE DISK SCREAMED AUCE." || COULDNT ADMIT 1T UNTIL|| HAP SOMETHING AND SHE
4 | SAW FOR MYSELF, 7 TCRE |T AWAY. SHES
THE A’ITN,IKER' NOT ME.
NOT EVE.

RSA Protocol (1)

* Select two distinct large primes p and q (“large” means 100

digits ©) This function counts the
* Compute n=pq. integers coprime to n.

e The Euler totient function of nis @ (n) = (p-1)(g-1).

* Pick an odd integer e such that e is coprime to @ (n].
* Find d such that ed = 1 modulo @ (n) .
7

e exists because it is
coprime to the Euler
totient function!

Publish e and n as public keys, keep d private.
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RSA Protocol (II)

* Alice: public key = (n,e), d is private.

* Bob sends m to Alice via the following encryption: c =m® mod n.

* Alice decrypts: m = cd mod n.

Why can Alice decrypt?

Step 1 ¢4 mod n = (me)9 mod n.

Step 2 We have ed =1 +k v (n).

Step 3 Now (m¢)d mod n = m * () = m mod n when m is
coprime to n.
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Exercises for Chapter 8

Exercise 40. e Let GG be the Klein group. Cayley’s Theorem says that
it is isomorphic to a subgroup of S4. Identify this subgroup.

e Let GG be the cyclic group Cy. Cayley’s Theorem says that it is isomor-
phic to a subgroup of S;. Identify this subgroup.

Exercise 41. Show that any rearrangement of pieces in the 15-puzzle start-
ing from the standard configuration (pieces are ordered from 1 to 15, with
the 16th position empty) which brings the empty space back to its original
position must be an even permutation of the other 15 pieces.

Exercise 42. Has this following puzzle a solution? The rule of the game is

_ele[®]
0aa00
o/eoee/e®®
000 0060
00000ag
00aan
000

the same as the solitaire seen in class, and a win is a single marble in the
middle of the board. If a win is a single marble anywhere in the board, is
that any easier?



Chapter 9

Quotient Groups

“Algebra is the offer made by the devil to the mathematician...All
you need to do, is give me your soul: give up geometry.” (Michael
Atiyah)

Based on the previous lectures, we now have the following big picture.
We know that planar isometries are examples of groups, and more precisely,
that finite groups of planar isometries are either cyclic groups or dihedral
groups (this is Leonardo Theorem). We also know that there other groups
out there, for example the alternating group, but still, most of the groups we
have seen can be visualised in terms of geometry. The goal of this lecture is
to introduce a standard object in abstract algebra, that of quotient group.
This is likely to be the most “abstract” this class will get! Thankfully, we
have already studied integers modulo n and cosets, and we can use these to
help us understand the more abstract concept of quotient group.

Let us recall what a coset is. Take a group GG and a subgroup H. The set
gH = {gh, g € H} is a left coset of H, while Hg = {hg, h € H} is a right
coset of H. Consider all the distinct cosets of G (either right or left cosets).
The question is: does the set of all distinct cosets of G form a group?

Example 31. Consider G = {0,1,2,3} to be the set of integers modulo 4,
and take the subgroup H = {0,2} (you might want to double check that you
remember why this is a subgroup). We have two cosets H and 1+H = {1, 3}.
To have a group structure, we need to choose a binary operation. Let us say
we start with 4+, the addition modulo 4. How do we add two cosets? Let us
try elementwise. To compute {0,2}+{1, 3}, we have {0+1,0+3,2+1,2+3} =
{1,3}. It seems not bad, the sum of these two cosets does give another coset!

191
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Quotient Group Recipe

Ingredients:
* Agroup G, a subgroup H, and cosets gH

The set gH={gh, hin H} is called a left coset of H.
The set Hg={hg, h in H} is called a right coset of H.

* Group structure 9
2

)]

When does the set of all cosets of H form a group?

15 Example (1)

All cosets of H: 0+H={0,2}, 1+H ={1,3},2+H={0,2},3+H={3,1} .
The set of cosets is { {0,2}, {1,3} }. Does it form a group?

We need a binary operation, say we keep +.

G=1{0,1,2,3} integers modulo 4 Let us compute!

H={0,2} is a subgroup of G.

The coset 1+H ={1,3}. * {0,2}+{0,2}={0,2}

* {0,2}+{1,3}={1,3}

G * {1,31+{1,3}={0,2}
0 2 1 3 a sy
1+{1,3}={2,0},3+{1,3}={0,2}
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Let us try to do that with both cosets, and summarize it in a Cayley
table.

{0,2} | {1,3}
{0,2} | {0,2} | {1,3}
{13} || {1,3} 1 {0,2}

We notice that we indeed have a group structure, since the set of cosets is
closed under the binary operation +, it has an identity element {0, 2}, every
element has an inverse, and associativity holds. In fact, we can see from the
Cayley table that this group is in fact isomorphic to the cyclic group Cs.

In the above example, we defined a binary operation on the cosets of H,
where H is a subgroup of a group (G, +) by

(g+H)+(k+H)={g9+h+k+h forall h,h'}.

We now illustrate using the same example that computations could have been
done with a choice of a representative instead.

Example 32. We continue with the same setting as in Example 31. Since
0+ H ={0,2} and 1 + H = {1, 3}, we have

O+H) +(1+H)=0+1)+H=1+H

using the representative 0 from 0 + H and 1 from 1+ H. Alternatively, if 2
and 3 are chosen as representatives instead, we have

2+H)+3+H)=02+3)+H=1+H

since 5 = 1 mod 4. There are in total 4 ways of choosing the coset repre-
sentatives, since 0 and 2 can be chosen for the first coset, and 1 and 3 could
be chosen in the second coset. Any choice will give the same answer as the
sum of the two cosets.
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1% Exaumple (II)
This is the cyclic
group i
{0,2} {0,2} {1,3}
{1,3} {1,3} {0,2}

We observe
1. The set of cosets is closed under the binary operation +.

2. It has an identity element {0,2}.
3. Every element has an inverse.
4. Associativity

1% Example (II1I)

Can be computed
using coset
representatives!

{0,2} {0,2} {1,3}

{1,3} {1,3} {0,2}

G={0,1,2,3} integers modulo 4. H={0,2} is a subgroup of G.
All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} .

How to compute with cosets:

* {0,2}=0+H=2+H: {0,2}+{0,2}=(0+H)+(0+H)=(0+0)+H=H={0,2}
=(0+H)+(2+H)=(0+2)+H=H={0,2}

* {1,3}=1+H=3+H: {0,2}+{1,3}=(0+H)+(1+H)=(0+1)+H=1+H={1,3}
=(2+H)+(3+H)=(2+3)+H=1+H={1,3}
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Let us now revisit integers modulo n. We recall that a and b are said to be
congruent modulo n if their difference a — b is an integer which is a multiple
of n. We saw that being congruent mod n is an equivalence relation, and
that addition modulo n is well defined, which led to the definition of group
of integers modulo n with respect to addition.

Now consider the group G = Z of integers, and the subgroup H = nZ,
that is

H=nZ=A{...,—2n,—n,0,n,2n,...}

is the set of multiples of n (you might check that this is indeed a subgroup).
We now consider the cosets of H, that is

O+ H, —-1+HO+H1+H2+H,....

Example 33. If n = 3, then H = 37Z consists of the multiple of 3. We have
exactly 3 distinct cosets, given by

0+ H1+H2+H

since Z is partitioned by these 3 cosets. Indeed, 0 + H contains all the
multiples of 3, 14+ H contains all the multiples of 3 to which 1 is added, and
0+ H all the multiples of 3, to which 2 is added, which cover all the integers.

Now when we do computations with integers modulo 3, we choose a coset
representative. When we compute (0 mod 3) + (1 mod 3), we are looking
at the sum of the coset (0 4+ H) and of the coset (1 + H).
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2nd Example: Recall integersy mod w

For a positive integer n, two integers a and b are said to be
congruent modulo n if their difference a - b is an integer
multiple of n: a=b mod n.

Being congruent mod n is an equivalence relation.

Addition modulo n was defined on equivalence classes, since we
showed that it is well defined independently of the choice of
the representative!

- Group of integers modulon

27 Exaumple: Integers mod wrevisited

Consider the group G of integers B . Let H =nB be the subgroup

formed by multiple of n. Check it’s a
All cosets of H: ...,-2+H,-1+H,0+H, 1+H, 2+H ... subgroup!

Example: n= 3, 0+H, 1+H, 2+H partition G
.. [B[7[ 6543 2[1[ o] 1] 2[ 3[4] 5[ 6] 7] 8] .

Coset representatives are used for

0+H 0+H 1+H 2+H

*|0fH =equivalence class of 0 mod 3
*|1#H =equivalence class of 1 mod 3

1+H 1+H 2+H 0+H .
*|2#H =equivalence class of 2 mod 3

24H 24H 0+H 1+H
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In the case of integers modulo n, we do have that cosets form a group.
Now we may wonder whether this is true in general. To answer this question,
let us take a general group GG, and its set of cosets. We need to define a binary

operation:
(9H,9'H) — (gH)(g'H)

multiplicatively, or
(9+H, g +H)— (g+H)+ (g + H)

additively. Now, is the set {gH, g € G} closed under this binary operation,
that is, is it true that

(9H)(g'H) = g9'H

multiplicatively, or
(g+H)+ (g +H)=(g+9)+H

additively. Let us see what happens multiplicatively. If we choose two ele-
ments gh € gH and ¢'h’ € ¢'H, then

(gh)(g'h') # gg'hl’

in general. We do have equality if the group is Abelian, but otherwise there
is no reason for that to be true. This leads us to the following definition.

Definition 18. A subgroup H of (G, -) is called a normal subgroup if for all
g € G we have
gH = Hg.

We shall denote that H is a subgroup of G by H < G, and that H is a normal
subgroup of G by H < G.

One has to be very careful here. The equality gH = Hg is a set equal-
ity! It says that a right coset is equal to a left coset, it is not an equality
elementwise.
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Whew do- Cosety form a Group? (1)

* Gagroup, Hasubgroup, gH={gh, hin H} a coset.
* Consider the set {gH, g in G}.

We need to define a binary operation:

map gH and g’H to (gH)(g’H) multiplicatively
map (g+H) and (g’+H) to (g+H)+(g’+H) additively

Is the set {gH, g in G} closed under this binary operation?

(gH)(g’H)=gg’H multiplicatively C})
(g+H)+(g’+H)=(g+g’)+H additively

)

Whew do-Cosets form a Group? (11)

(gH)(g’H)=gg’H multiplicatively 9)
(g+H)+(g’'+H)=(g+g’)+H additively  §
Take ghingH and g’h’ in g’H.

Do we have that (gh)(g’h’) =gg’h”’?

Not necessarily...True if G is abelian, otherwise not clear.

If gH=Hg, then gh=h’g, and the set {gH, g in G} is closed under
the binary operation.

This does NOT
mean gh=hg, this
means gh=h’'g.
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Now suppose we have (G,-) a group, H a normal subgroup of G, i.e.,
H < @G, and the set of cosets of H in G, i.e., the set G/H defined by
G/H ={gH|ge H}.

Theorem 16. If H < G, then (G/H,(91H)(g92H) = (g192)H) is a group.
Proof. To check what we have a group, we verify the definition.

1. Closure: (g1H)(goH) = g1(Hg2)H = g19oH € G/H using that goH =
Hgg.

2. Associativity follows from that of G.
3. eH = H is the identity in G/H.
4. Finally g1 H is the inverse of gH in G/H, since

(gH)(g7'H) = (997 ")H = H.

We also need to show that the operation combining two cosets to yield a
new coset is well defined. Notice that

(9H,g'H) — gg'H

involves the choice of g and ¢’ as representatives. Suppose that we take
g1 € gH and ¢, € ¢’H, we need to show that

(91H, 92H) — gg'H.

Since g; € gH, then g; = gh for some h, and similarly, since g, € ¢'H, then
g2 = ¢’k for some h' in H, so that

g H =ghH = gH, ¢oH = ¢h'H = ¢ H

and
(9 H)(9:H) = (9H)(g'H) = g9'H

as desired.

The group G/H is called quotient group.
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Quotient Group (I)

Let G be a group, with H a subgroup such that gH=Hg for any g in G.
The set G/H ={gH, g in G} of cosets of H in G is called a quotient group.

00 Anything
We need to check that G/H is indeed a group! missing?

* Binary operation: G/H x G/H , (gH,g’H) = gHg’H is associative
* Since gH=Hg, gHg’H=gg’H and G/H is closed under binary operation.
* The identity elementis 1H since (1H)(gH)=(1g)H=gH for any gin G.

* The inverse of gH is g*H: (gH)(g'H)=(g*H)(gH)=(gg!)H=(g g)H=H.

Quotient Group (II)

We need to check the binary operation does not depend on
¢ the choice of coset representatives.

(gH,g’H) > gHg’'H=gg’H 4= Involves choosing g and g’ as
respective coset representatives!!

Suppose we take g, in gH and g, in g’H, we need that g,Hg,H = gg’H.

g, in gH thus g, =gh for some h, g, in g’H thus g, = g’h’ for some h'".
Now g,H =(gh)H for some h, and g, H =(g’h’)H for some h".
Thus g,H g,H =(gh)H (g’h’)H=gHg’H=gg’H as desired.
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The order of the quotient group G/H is given by Lagrange Theorem
G/H| = |G|/|H].

Example 34. Continuing Example 31, where G = {0,1,2,3} and H =
{0,2}, we have
G/H| = 4/2 =2

and G/H is isomorphic to Cs.

Example 35. When G = Z, and H = nZ, we cannot use Lagrange since
both orders are infinite, still |G/H| = n.

Example 36. Consider Dihedral group D,,. The subgroup H = (r) of rota-
tions is normal since

1. if ' is any rotation, then r'r = r1’,
2. if m is any reflection € D,,, mr = r~'m always.

Hence rH = Hr, mH = Hm and r'm’H = r"Hm’ = Hr'm’ for j = 0,1 and
i=0,....n—1

Suppose now G is a cyclic group. Let H be a subgroup of G. We know
that H is cyclic as well! Since G is cyclic, it is Abelian, and thus H is normal,
showing that G/H is a group! What is this quotient group G/H?

Proposition 10. The quotient of a cyclic group G is cyclic.

Proof. Let H be a subgroup of G. Let xH be an element of G/H. To show
that G/H is cyclic, we need to show that H = (gH)* for some k and gH.
Since G is cyclic, G = (g) and x = ¢g* for some k. Thus

vH = g"H = (gH)*.
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Quotient Group (III)

Let G be a group, H a subgroup of G such that gH=Hg and G/H
the quotient group of Hin G.

What is the order of G/H?

By Lagrange Theorem, we have:

|G/H|=[G:H]=|G|/[H].

1% Example Again

G=1{0,1,2,3}integers modulo 4. H={0,2} is a subgroup of G.
G is abelian, thus g+H = H+g.

G/H is thus a group of order 2: G/H = C,.




274 Exaumple Again

Consider the group G of integers B . Let H =n 8 be the subgroup
formed by multiple of n.

Since B is abelian, g+H = H+g for every g in G.

G/H is thus a group of order n.
Here not from

Lagrange since the
order is infinite!

3¢ Example: the Dihedral Group (1)

D,={<r,m> | m?=1, r"=1, mr =r'm}

Let r’ be a rotation.
* rr’=r'r since the group of rotations is abelian.
s mr'=(r')'m

‘ H=<r>=group of rotations, then rH=Hr and mH=Hm.

- r'im/H=r'Hm =Hr'ml for j=0,1 and i=0,...,n-1.
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Quotient of Cyclic Groups (1)

* Let G be a cyclic group. Let H be a subgroup of G.

* We know that H is a cyclic group too.

* Since G is abelian, we have gH=Hg for every g in G.

* Thus G/H is a group!

What is the quotient group of a cyclic subgroup in a cyclic group?

Quotient of Cyclic Groups (I1)
Proposition. The quotient of a cyclic group G is cyclic.

Proof. Let H be a subgroup of G, and let xH be an element of G/H.
To show, G/H is cyclic, namely xH =(gH)* for some k and gH.

Since G is cyclic, we have G=<g> and x=g* for some k.

mmm) xH=gk H =(gH).

gH is thus the
generator of G/H!
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The notion of quotient is very important in abstract algebra, since it
allows us to simplify a group structure to what is essentiall

Example 37. The reals under addition (R,+), the subgroup (Z,+) of in-
tegers. We have (Z,+) < (R, +) because of the fact that (R, +) is abelian!
Now

R/Z ={r + Z|r € R}.
The cosets are r+Z with r € [0, 1). R/Z is isomorphic to the circle group S of
complex numbers of absolute value 1. The isomorphism is ¢[(r +Z)] = ™.
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Why do-we cowre about Quotient Groups?

The notion of quotient allows to identify group elements that
are “the same” with respect to some criterion, and thus to
simplify the group structure to what is essential.

Exaumple: Pawrity

Suppose we only care about the parity of an integer. For
example, to compute (-1)%, it is enough to know whether k is

odd or even. |:> k modulo 2
Looking at k modulo 2 = to work in the quotient group E/28 .

In this quotient group, every even number is identified to
0, and every odd number to 1.

This identification is done via equivalence classes! Even numbers
are an equivalence class, and so are odd numbers.
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Recall Cosety

Recall We have g,H=g,H if and only if g, g, isin H.

Generating the same coset is an equivalence relation!
* [tisreflexive:glg=1isinH
* Itissymmetric:if g, g, is in H, then (g, g,) =g, g, isin H.
* Itistransitive: if g, g,in Hand g, g5, then
(8.7 8,)(8," 83)=8," g3 in H.

|:> a coset = an equivalence class

group elements that are “the same”
with respect to some criterion

One more Exaumple (1)

Take G=@E ,+), it has H=(#,+) as a subgroup. Since G is abelian,
we have that g+l =B +g.

What is the quotient group G/H ?

G/H = S (circle)

1.http://www.dreamteamcar.fr/upload/RessortOMEAJ2.jpg
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One move Example (II)

Let us show the isomorphism formally.

We defineamap f:l /B > s1.
r+ @ > elv

* fis a group homomorphism:
f((r+ﬂ )+(S+! ))=f((r+s)+ B )=e2irt{r+s] = pliniglins = f(r_|. ) )f(5+u)

« fis a bijection: it is clearly a surjection, and ife?™ =e2™  then
r=s+B thatisr-sisin & , showing that r+& =s+8 .

Pure Matihs...

FIELDS arrancED By PURITY

_— =
MORE PURE
SOCOWOGY IS PSYCHOLEY IS BOLoGY 15 WHICH 15 JUST OH, HEY, T DION'T
JUST APPLIED Just APPLED JusTAPPLED  APPUED PHYSICS, SEE YOU GUYS ALL
PSYCHOLOGY BIOLOGY. CHEMISTRY IT's NICE TO THE LRy OVER THERE
BE On TR (

13 R97 %

SOCOLOGSTS  PSYCHOLOGISTS  DICLOGISTS  CHEMISTS  PHYSICISTS
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Exercises for Chapter 9

Exercise 43. Consider the Klein group G = {1, f, g, h}.
e What are all the possible subgroups of G?
e Compute all the possible quotient groups of G.

Exercise 44. Consider the dihedral group D,. What are all the possible
quotient groups of D7

Exercise 45. Consider A the set of affine maps of R, that is
A={f:o—ar+b, acR", beR}
1. Show that A is a group with respect to the composition of maps.

2. Let
N={g:x—x+0b, beR}.

Show that the set of cosets of N forms a group.

3. Show that the quotient group A/N is isomorphic to R*.
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Chapter 10

Infinite Groups

The groups we have carefully studied so far are finite groups. In this chapter,
we will give a few examples of infinite groups, and revise some of the concepts
we have seen in that context.

Let us recall a few examples of infinite groups we have seen:

e the group of real numbers (with addition),
e the group of complex numbers (with addition),
e the group of rational numbers (with addition).

Instead of the real numbers R, we can consider the real plane R2. Vectors
in R? form a group structure as well, with respect to addition! Let us check
that this is true. For that, we check our 4 usual properties: (1) the sum of two
vectors is a vector (closure), (2) addition of vectors is associative, (3) there
is an identity element, the vector (0,0), and (4) every vector (z1,z5) € R?
has an inverse, given by (—z1, —x2), since

(.%1,33'2) -+ (-513'1, —513'2) = (O, O)

211
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Examples of Infinite Groupy

¢ The real numbers
* The complex numbers
¢ The rational numbers

Anything else?

The 2 -dimevusional Reald Plane

http://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Basis_graph_%28no_label%29.svg/4
O00px-Basis_graph_%28no_label%29.svg.png
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The example that we just saw with R? is a special case of a vector space.
Vector spaces are objects that you might have seen in a linear algebra course.
Let us recall the definition of a vector space.

Definition 19. A set V' is a vector space over a field (for us, we can take
this field to be R) if for all u,v,w € V'

1. u+ v € V (closure property),

2. u+ v =v+ u (commutativity),

3. u+ (v+w) = (u+v) +w (associativity),

4. there exists 0 € V such that u +0 =0+ u,

5. there exists —v such that (—v) +v =20
and for all z,y € R we have

1. z(u+v) =zu+ zv,

2. (x +y)u = zu+ zu,

3. z(yu) = (zy)u

4. 1u = u, where 1 is the identity of R.

We recognize that the first axioms of a vector space V' are in fact request-
ing V' to be an Abelian group!

Example 38. The n-dimensional real space R" = {(z1,29,...,2,) |z; €R, i =1,...

is a vector space over the reals.

Example 39. We already know that the set C of complex numbers forms a
group. Now
C={z +iylz,y € R}

is a vector space over R, which gives another proof that C forms a group
under addition.

,n}
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Definitiow of Vector Space

A set V of vectors, a set F (field, say the real numbers) of scalars.

We recognize the
group definition!

[ * Associativity of vector addition: v; + (v, + V) = (v; + V,) + V5. | i

[ * Commutativity of vector addition: v, + v, = v, + v,.

[ * Identity element of vector addition: there exists 0 € V such thatv+0=vforallve V.]

[ *Inverse elements of vector addition: for all v € V, there exists -v € V such that v + (-v) = 0. ]

* Distributivity of scalar multiplication w/r vector addition: n(v, + v,) = nv, + nv,.
* Distributivity of scalar multiplication w/r field addition : (n; + n,)v = n,v + n,v.
* Respect of scalar multiplication over field multiplication: n; (n, v) = (n; n,)v.

* |[dentity element of scalar multiplication: 1v = v, where 1 = multiplicative identity in F.

Definitiow of Vector Space Revisited

The word field can be easily replaced by
real numbers if you don’t know it.

A set V of vectors, a set F (field, say the real numbers) of scalars.

* Vectors form an abelian group with respect to addition.

* Inverse elements of vector addition: for all v € V, there exists -v € V such that v + (-v) = 0.
* Distributivity of scalar multiplication w/r vector addition: s(v, + v,) = sv, + sv,.

* Distributivity of scalar multiplication w/r field addition : (n; + n,)v =n,v + n,v.

* Respect of scalar multiplication over field multiplication: n, (n, s) = (n; n,)s .

* |[dentity element of scalar multiplication: 1s = s, where 1 = multiplicative identity in F.
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A vector space is thus an Abelian group. What is the order of this group?
It’s infinity!

Now we might wonder what are the subgroups of this group. They are in
fact subspaces, as follows from the definition of a subspace.

Definition 20. Let V' be a vector space over some field F' and U be a subset
of V. If U is a vector space over F' under the operations of V' (vector addition
and multiplication by elements of F'), then U is called a subspace of V.

Let us recall the definition of a basis of a vector space.

Definition 21. A basis of V' is a set of linearly independent vectors of
V such that every element v is a linear combination of the vectors from this
set.

Example 40. The set {(1,0), (0,1)} is a basis of the two-dimensional plane
R2. This means that every vector x € R? can be written as

r=x1(1,0) + 22(0,1), 1,22 € R.

Now let us think of what happens in the above example if we keep the two
basis vectors (1,0) and (0,1), but now restrict to integer coefficients 1, 5.
We get a set of the form

{z =21(1,0) + 22(0,1), x,29 € Z}.

If you plot it, you will see that you find an integer grid!
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Group of Vectors

If we consider a vector space V, the vectors form an abelian
group.

What is its order? It is infinite...

Subspace

When we have a group, we saw we can have subgroups.

Group ) \ector space

Subgroup ¢mmmm) Subspace
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Subspaces of the 2 -dimensional Plane

Subspace

A subset of a vector space which is also a vector space is
called a subspace.

A subspace of V is thus a subgroup of the group V of vectors.
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Basis of aVector Space

A basis is a set of linearly independent vectors which span the
whole vector space (any other vector can be written as a
linear combination of the basis vectors).

Let x be a vector in V, a vector space over the real numbers
with basis {vy, v,,..., v}, then x=x; v; + x, v, + ... + X, v,, where
Xy, X, are real.

Example. The 2-dimensional real plane has for example
basis {v,=(0,1), v,=(1,0)}.

Integer Lineowr Combinations?

Let x be a vector in V, with basis {v,, v,,..., v, } over the reals,
then x=x; vy +X, Vv, + ... + X, v, Where x,,..., x, are real.

What happens if x,,..., X, are in fact integers?

Example. The 2-dimensional plane has for example basis
{v,=(0,1), v,=(1,0)}.

x=x,(0,1) + x, (1,0) where x,, x, are integers.
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We might ask whether the integer grid
{z =21(1,0) + 22(0,1), z1,20 € Z}

still has a group structure. In fact, we could ask the same question more
generally. Suppose that we have two linearly independent vectors vy, vs,
does the set

L ={x = zyv1 + 2909, 71,29 € Z}

form a group? We already know that addition of vectors is associative. If we
take two vectors in L, their sum still is a vector in L (we need to make sure
that the coefficients still are integers), so the closure property is satisfied.
The identity element is the vector (0,0), and every element has an inverse.
Indeed, if we have a vector (x1, z5) with integer coefficients then (—zq, —x2)
also has integer coefficients, and their sum is (0,0). In that case, L is called
a lattice, and it forms an infinite Abelian group.

A subset of the lattice L which itself has a subgroup structure is called a
sublattice.
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1% Example

([ ([ x L ([

® ® ® >0 ®

L L ® L L
Group Structuwre?

Take two linearly independent vectors v,,v, in the 2-dimensional
real plane. Consider the set {x,v;+x,V,,X;,X, integers}.

Does it form a group?
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2nd Exaumple

This forms an
infinite group!

Lattice

Take two linearly independent vectors v,,v, in the 2-dimensional
real plane. The set L={x,v;+x,V,,X;,X, integers} forms a group

called a lattice.

¢ Addition of vectors is associative.

* Closure:  (X,V;+X,V,)+(X3V+X,V,)= (X +X3)Vy+H(X,+X, )V, is in L.
* Inverse: -x,V;-X,V, is the inverse of x,v;+x,v, isin L.

* I[dentity is the zero vector.

A lattice is an infinite abelian group.
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Sublattice

When we have a group, we saw we can have subgroups.

Group =) | attice

Subgroup ¢mmmm) Sublattice

3 Exaumple

| lattice

sublattice i
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We spent quite some time at the beginning of theses lectures to study
isometries of the plane. What happens with the isometries of the integer
grid?

The isometries of R? — R? were completely characterized and analyzed
before and we know that a planar isometry ¢ is of the form

e (x,y)H(ﬂf’iy’)
)= e S e el

Let us now consider the integer grid lattice
7} ={(m,n)m € Z,n € 7Z}.

The isometries of the integer lattice, under the Euclidean distance defined
over R? will be a subgroup of the group of planar isometries, i.e., they will
be of the form

ep : (m,n)— (m',n)

MRS

The restriction of having to map integer coordinate points to integer co-
ordinate points immediately imposes the following constraints on #p and

[517 ﬁQ]D :

1. [61’6Q]D S Z2

2. cosf and sinf must be integers or zero, hence their possibilities are
{—1,0, 1} yielding 8 = 0,90°, 180°, 270°, 360°.

Hence the set of isometries of the integer lattice/grid forms a group of
planar transformations involving integer vector translations and rotations by
multiples of 90°.
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Lsometries of the Plane

We already know:

In matrix form:
Rg M z + b, where Ry =rotation matrix by angle of 6,
M=reflection matrix, b=translation vector.

Isometries of the Integer Grid (1)

We keep the basis vectors (1,0) and (0,1), but now instead of
the 2-dimensional plane, by taking integer coefficients, we get
the integer grid.
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Isometries of the Integer Grid (II)

What are the isometries of the integer grid?

They are a subset (in fact subgroup) of the isometries of the
plane, which sends integer points to integer points.

In matrix form:
Rg M z + b, where Ry =rotation matrix by angle of 6,
M=reflection matrix, b=translation vector.

1. The translation vector b must be part of the integer grid.
2. cosB and sinB must be 0,+1 or -1.

Quotient Group (I)

* The integer grid lattice is a subgroup H of the 2-dimensional
real plane seen as an abelian group G.

* Since G is abelian, H satisfies that g+H = H+g.
What is the quotient group G/H?

Take the unit square
[0,1[ x [0,1].
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Quotient Group (II)

/—\ Take the unit square
\_/ [0,1[ x [0,1[. In the

quotient group, the two
unit intervals in red are
the same thing.

__/

Quotient Group (III)

Take the cylinder
obtained by gluing two
sides of the unit square
[0,1[ x [0,1]. In the
quotient group, the two
unit circles in green are
the same thing.

-
(O

http://en.wikipedia.org/wiki/File:Zigzag rhombic lattice.png
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Exercises for Chapter 10

Exercise 46. e Show that the complex numbers C form a vector space

over the reals.

e (ive a basis of C over the reals.

e In the lecture, we saw for R? that we can obtain a new group, called a

lattice, by keeping a basis of R? but instead considering integer linear
combinations instead of real linear combinations. What happens for C
if we do the same thing? (namely consider integer linear combinations).

Exercise 47. Consider the set Ms(R) of 2 x 2 matrices with real coefficients.

1.

2.

Show that My (R) forms a vector space over the reals.
Deduce that it has an abelian group structure.
Give a basis of My(R) over the reals.

What happens for Ms(R) if we keep a basis over the reals and consider
only integer linear combinations instead of real linear combinations?
Do we also get a new group? If so, describe the group obtained.
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Chapter 11

Frieze Groups

We conclude this class by looking at frieze groups. A frieze pattern is a
two dimensional image that repeats periodically in one direction. We shall
consider that the repetition is in the z-axis direction.

The repetition periodicity will be set to 1. Therefore we are considering
a bivariate function I(z,y) periodic in x, that is such that

I(l‘—f— 1ay) = I(Zl},y), T € (—OO,—f—OO)

Usually y is restricted to y € [—%, %], so that the frieze is a unit width

band carrying a repetitive pattern in the z-direction. Frieze patterns are
popular ornaments in architecture, textiles, on fences etc., and can be very
beautiful and elaborate. We will study the possible symmetries that such
patterns can have, and we shall prove that there are exactly seven groups of
isometries that can arise as symmetries of planar friezes.

By definition, all the symmetry groups of friezes will have the subgroup
of translations by integers in the x-direction included. This subgroup is
generated by the basic mapping

7 (z,y) = (x4 1,y).

(1) is the infinite cyclic group of integer translations isomorphic to (Z, +).
Now the basic pattern of the frieze defined over the square [—3, 3] x[—3, 3]
is a finite planar shape which can have symmetries and properties that may

induce further symmetries for the whole frieze.

229
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What are Frieges?

Pottery jar, Southern Iraq (4500-4000 BC).

http://en.wikipedia.org/wiki/File:Frieze-group-3-examplel.jpg

Friege Definitiovw

A frieze pattern is a two dimensional image that repeats
periodically in one direction (say the x-axis).

‘é’ ‘é’
<@ <@
,ga £, A
'Ul L 1L 1 J/Z

The periodicity is set to 1.
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Tile Frieze, Palacio de Velazquez, Madrid, Spain

Meander Frieze, San Giorgio Maggiore, Venice, Italy

http://mathdl.maa.org/images/upload library/4/voll/architecture/Math/f3.ipg
http://mathdl.maa.org/images/upload_library/4/voll/architecture/Math/f4.jpg

friege Groups

* Groups of symmetries of frieze patterns.
* We will see: there are exactly 7 such groups.
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Group of Trawulations

* All the symmetry groups of friezes have the subgroup of
translations by integers included by definition.

* This subgroup is generated by t: (x,y)=> (x+1,y).
« L - >
,Fga £, A

-1/L 0 J/z 1 3/2

* <> = infinite cyclic group of integer translations.

Vertical Mirvor Reflections

* *

vi (xy) > (-x,y), v?=1

e e e e e e e e
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For example we might have a reflection symmetry w.r.t the z-axis and/or
the y-axis. Such a symmetry of the basic pattern will yield immediately
corresponding symmetries of the frieze.

Let us denote by v the vertical symmetry

v (ZL’,y) — (_x7y>

and by
h (ZL‘7’y) — ("L‘7 _y)a

the horizontal symmetry.
Clearly we have v?2 = e, h? = e, since these are both reflection isometries.
We have
hv =vh: (z,y) — (—z, —y),

a rotation by 180 degrees, yet another possible symmetry that the basic shape
can have.
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Horigontal Mirvor Reflections

* h: (x,y) > (x,-y), h*=1

.3

Induced Frieze
172 0 1/2 pattern

EANEANNE ANNE 10
EINEINEIEEE

Mirror Reflections

* hv=vh: (x,y) = (-x,-y), (hv)?=1.
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Notice that all the frieze symmetries will leave the z-axis invariant (i.e.,
will map it to itself). The subgroup of isometries that map the z-axis to
itself contains all isometries that combine:

1. translations along the x-direction

2. reflections about the z-axis

3. reflection about any axis perpendicular to z
4. glide reflections along the z-direction

5. rotations by 180° or its multiples centered on the z-axis.

The study of frieze groups is in fact the study of all subgroups of this
group that are discrete, hence their subgroup of translations will have to be
(1) where the unit of translation is the minimal one reproducing the frieze!

To complete the possible symmetries that friezes can have, we must also
consider glide reflections that preserve the x-axis. Denote by v a glide reflec-
tion about z, i.e.,

v (ZL‘,y) — (ZL‘—}-CL, _y)'

We clearly have

Vi (z,y) — (24 2a,y),

i.e., a translation by twice a as defined above. Therefore taking a = 1/2 we
get
1
v @y @t g -y)
7 (wy) = (L),

hence 7?2 = 7.
Therefore we can generate 7 by applying ~ twice.
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Move Isometiries?

* All frieze symmetries leave the x-axis invariant.
* The subgroup of isometries that map the x-axis to itself

contains all isometries that combine:

1. Translations along the x-axis
2. Reflections with respect to the x-axis

3. Reflections with respect to the y-axis, or an axis

perpendicular to x
4. Glide reflections along the x-axis

5. Rotations by 1 0 degrees, or its multiples

centered on the x-axis

Glide Reflections

* vy =glide reflection that preserves the x-axis

v: (xy) = (x+a,-y)
* Note that y%: (x,y)>(x+2a,y) .
Thus it is a translation by 2a.

Take a=1/2, to get y: (x,y) = (x+1/2,-y) and y?=Tt.

-1/2 0 1/2
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Theorem 17. All transformations that preserve the x-azis and have as sub-
groups of translations (T) can be generated by r, h,~y, hence all frieze groups
must be subgroups of (v, h,) .

Proof. 1. Any translation by integers can be generated. This is true since
v? = 7, hence we have (v?) = (7).

2. Any horizontal reflection can be generated: true because we have h.

3. Any reflection in a frieze will be about an integer or about an half
integer point. Let v, be any vertical reflection. Then

vy (z,y) — 20— z,y) = vo(z,y) = v(—z,y) = (z + 2p,y),

hence 2p is an integer because we only allow integer translations and
v, is generated by (v,v is a translation, thus some power of 7 = ~?):

v = ()" = v, = (v")"v.

4. Consider a half turn about a point P
Tp:(x,y) = (2p — 2, —y).
Then Tph = v, and we must have Tp = v,h = (y*)*rh.
5. Any glide reflection can be written as
Gy (2,y) = (¢ +p,—y),

hence p is an integer and G,h = (v*)¥ = G, = (72)*h. Hence all glide
reflections possible are generated.
]

After showing that (r, h,v) included all possible frieze groups, we must
show that there are some restrictions too, hence we cannot have all (r, h, v)-
subgroups as frieze groups.

Theorem 18. h and v cannot occur together in a frieze group.

Proof. hr : (z,y) — (z + 3,y). But we cannot have translation of 3 in the
frieze group since then the frieze would have a periodicity of % (and we assume
that the least periodicity is 1). O

These results yield all possible frieze groups as the subgroups of (r, h,7) .
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First Theovem

All transformations that preserve the x-axis and have as
subgroup <t> can be generated by v,h,y, hence all frieze
groups must be a subgroup of <v,h,y>.

1. Translations along the x-axis
2. Reflections with respect to the x-axis
. Reflections with respect to the y-axis, or an axis

Recall the
transformations
that preserve

the x-axis perpendicular to x
4. Glide reflections along the x-axis
5. Rotations by 1 0 degrees, or its multiples

centered on the x-axis

Second Theoremv

h and y cannot occur together in a frieze group.

Proof. If h and y belong to the group, then so does hy.
But then hy (x,y)=h (x+1/2,-y) = (x+1/2,y).

Contradicts the periodicity of 1 of the frieze pattern.
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This theorem gives a classification of Frieze groups.
Theorem 19. The frieze groups that have no glide reflection symmetries are
(). (1) (), (), ().
The frieze groups that contain glide reflections are
(s ()

Proof. The first group contains v? with all possible combinations of &, r, 2.
The second group of friezes contains glide reflections but v cannot occur with
h. It can occur with hr however, because we have

hr @ (x,y) = (—x,—y)

1
hry + (x,y) — (—x — 5,3‘;)
It follows that this is the same as (r,~) with shifted symmetry axes. O

A nice pictorial representation of friezes that have the above 7 types of
symietries is given below.

[
.~ N S I
n |
U e
o) |
mm
[
i) |
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Friege Group Classificatiov

The frieze groups that have no glide reflection are:
<y?>, <h,y?>, <v,y?>, <hv,y2>, <h,v,y*>.

The frieze groups that have glide reflections are:
<y>, <V,y>.

1. First group: y? with every possible of h and v.
2. Second group: y but h cannot be there.
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Groupsy 5 & 6
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Group 7

rarrar -
LSRN PR

<vy>

Whichv Friege Groups?
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Road Map: End of the Trip!

- : application

Zoom inside
finite group
theory!

spaces,
lattices, /
friezes/ .

1. Planar isometries
(rotation, translation,
reflections, glide
translations)

2. Classification of the
isometries of the plane

Mandalas
have a rich
group of
isometries!
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Chapter 1: importont

1. Definition of an isometry

2. Anisometry H of the complex plane is necessarily of the form
* H(z)=az+B, or
* H(z)=az +B

with |a|=1 and some complex number B.

TRUE OR FALSE. A planar isometry can have exactly
2 fixed points.

Chapter 2: Synunetries of Shape

1. Symmetries of planar
shapes (rotation,
translation, reflections,
glide translations)

2. Multiplication (Cayley)
tables

Nice group
of
symmetries!
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Chapter 2: important

1. Definition of a symmetry
2. How to compute multiplication (Cayley) tables.
They illustrate:
* Closure (every row contains all the symmetries)
* Inverse (every row contains the identity map)
*  Whether commutativity holds

TRUE OR FALSE. Combining two symmetries of the
same shape gives another symmetry of this shape.

Chapter 3: Introducing Groups

Definition of

= group

= abelian group

= order of group
order of element
= cyclic group
= subgroup

The rubik
cube has a

group
structure!
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CHAPTER 11. FRIEZE GROUPS

Chapter 3: importont

Definition of a group, abelian group, subgroup, cyclic group,
order of a group, order of an element

Prove or disprove a set with a binary operation has a group
structure.

Compute the order of a group or of an element.
Decide whether a group is cyclic.
Identify subgroups of a given group.

TRUE OR FALSE. The set of real diagonal matrices
forms a group with respect to addition/ multiplication.

Chapter 4: the Group Zoo-

* Integers mod n

* roots of unity

* group homomorphism
e group isomorphism

Do you
recognize
them?
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Chapter 4: important

1. Understand integers mod n

2. The notion of group homomorphism.

3. The notion of group isomorphism and how to show that two
groups are isomorphic.

TRUE OR FALSE. The Klein group is isomorphic to
the cyclic group of order 4.

Chapter 5: move Group Structure

1. Cyclic groups

2. Cosets, Lagrange
Theorem and its
corollaries.
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Chapter 5: important

1. Cyclic group of order n
2. Lagrange theorem and its corollaries.

3. The notion of group isomorphism and how to show that two
groups are isomorphic.

TRUE OR FALSE. The Dihedral group D, contains an
element of order 11.

1. Dihedral Groups
2. Leonardo Theorem

19 S8 o
S I
v}? G SHEE e BINGS
(537, R PN
%‘ b% ,A :"1 1) 'él;: =
3

An

., Sk T e
Ay \'«i}? v %&x ‘;:

Snow flakes have
the dihedral
group as
symmetry group!
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Chapter 6: important

1. What s a dihedral group
2. The statement of Leonardo Theorem.

TRUE OR FALSE. The symmetric group S, of all
permutations on 4 elements can be interpreted as a
group of planar symmetries.

Chapter 7: Permutotion Groups

* Permutations

* parity of a permutation

* symmetric and
alternating group

This is the permutation group
of some complicated object
(related to Lie algebras)!
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Chapter 7: important

1. Formal definition of a permutation
2. Parity of a permutation.

TRUE OR FALSE. A permutation can have two
different parities.

Chapter 8: Cayley Theorem, pugszles

: * Cayley Theorem
- T e R ‘ * Puzzles (15 puzzle,
= Ny SR solitaire game)
* Cryptography
{r s ¥ B applications (Caesar’s
b S cipher, check digit)

1. Cayley Theorem
2. Interpret a group as a subgroup of the symmetric group.
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Chapter 9: quotient Groups

Quotient groups

Atorusis a
quotient
group!

1. Definition of quotient group and normal subgroup.
2. ldentify normal subgroups.

Chapter 10: infinite Groupy

Thisis a
lattice!

Vector spaces and lattices
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Chapter 12

Revision Exercises

Here are a few extra exercises that serve as revision.

Exercise 48. Lagrange Theorem is likely to be the most important theorem
of group theory, so let us revise it! Here is a bit of theory first:

e Can you remember what it states?

e The proof of Lagrange Theorem relies on a counting argument, based
on the fact that cosets partition the group. Can you remember what
cosets partition the group mean? If so, can you rederive the counting
argument that proves Lagrange Theorem?

Now some more practice on how to use Lagrange Theorem!
e How many groups of order 5 do we have (up to isomorphism)?

e Consider the group of permutations S5. Does S5 contain a permutation
of order 77

e Suppose there exists an abelian group G of order 12 which contains a
subgroup H of order 4. Show that the set of cosets of H forms a group.
What is the order of G/H? Deduce what group G/H is.

Exercise 49. At the beginning of the class, we started by studying structure
of geometric figures. We have seen shapes, and been asked what is their group
of symmetries.

e Can you remember some of the shapes we studied, and what is the
corresponding group of symmetries?

253
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e Do you remember what are all the possible groups arising as symmetries
of planar shapes?

e Let us do the reverse exercise: think of a symmetry group, and try to
draw a figure that has this symmetry group.

Exercise 50. Let us remind a few things about permutations.
e What is the formal definition of a permutation?
e What is the parity of a permutation?

e Consider the permutation ¢ that maps:
1—-2,2—1,3—54—3,5—6,6—4T7—T1.
Compute its parity.

e We have studied that the group of symmetries of a planar shape can
be seen as a group of permutations. Do you remember how that works
(either in general or on an example?)

Exercise 51. Let us remember that planar isometries are either of type I:
H(z)=az+p, |a|=1orof type II: H(z) = az + 3, |a] = 1.

e Show that the isometries of type I form a subgroup H of the group G
of planar isometries.

e Show that G/H is a quotient group of order two.



Chapter 13

Solutions to the Exercises

“Intuition comes from experience, experience from failure, and
failure from trying.”

Exercises for Chapter 1

Exercise 1. Let X be a metric space equipped with a distance d. Show that
an isometry of X (with respect to the distance d) is always an injective map.

This exercise shows that one can study isometries in a much more general
setting than just in the real plane! In that case, we can only deduce injectivity
from the fact that the distances are preserved. It is also useful to recall
the definition of a metrice space. Consider a set X and define on pairs of
elements of X a map called a distance d : X x X — R with the properties
that

1. d(z,y) >0 for all z,y € X, and d(z,y) =0 <= x =1y (a distance is
positive).

2. d(z,y) = d(y,x) for all v,y € X (a distance is symmetric).

3. d(x,y) +d(y, z) > d(z,2) for all x,y,z € X (triangle inequality).

Solution. Let ¢ be an isometry of X. We have to show that if p(z) = ¢(y)
for x,y € X, then z = y. Now by definition of isometry

d(e(r),0(y)) = d(z,y)
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so if p(z) = ¢(y), then
0 =d(p(2),(y)) = d(z,y)

and = = y. Note that d(z,y) = 0 implies that = y is part of the axioms of
a distance!

Exercise 2. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H has only one fixed point which is 144,
and H sends 1 — ¢ to 3+ i, then H(z) =

Guided version.

1. Recall the general formula that describes isometries H of the complex
plane. We saw that an isometry of the complex plane can take two

forms, either H(z) =...,or H(z) = ...

2. You should have managed to find the two formulas, because they are
in the lecture notes! Now you need to use the assumptions given. First
of all, we know that H has only one fixed point, which is 1 + 7. Write
in formulas what it means that 1 + i is a fixed point of H (write it for
both formulas).

3. Now you must have got one equation from the previous step. Use the
next assumption, namely write in formulas what it means that H sends
1 — 17 to 3 + 1, this should give you a second equation.

4. If all went fine so far, you must be having two equations, with two
unknowns, so you are left to solve this system!

5. Once the system is solved, do not forget to check with the original
question to make sure your answer is right!

We will provide two solutions for this question. Here is the first one,
which is done from scratch.

Solution. We remember that the general formula for a planar isometry is
either H(z) = az+ (3, or H(z) = az+ f3, |a| = 1. In the first case, that is
H(z) = az + S, |a| = 1, we compute

a =1

B =2

a(l+0)+ 5
a(l—10)+p

{ 1+i =H(1+1)

340 = H(l—1) :>_2:2‘“:>{
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We find that H(z) = iz + 2. Now the question states that there is only one
fixed point. Let us check that this is true:

2
Hiz)=iz4+2=2 <= 2(i—1) = -2 — 2= - =1+1.
—1

Since we have only one fixed point, the one we wanted, the answer is H(z) =

iz + 2. Now in the second case that is H(z) = az + 3, |a| = 1, we again
compute

141 =H(1+1i) =a(l—19)+p _ . a = —i
{3+¢ —H(—i) =a(l+i)+8 = 27T 5 =242

We find that H(z) = —izZ+2i+2. Now the question states that there is only
one fixed point. Let us check that this is true:

H(z) = —iz42i42 =z <= 2zp+iz = —i(20—121)+2i+2 <= 2p+21 = 2.

We see that z = 141 is indeed a fixed point, however, it is not the only one!
This shows that the final answer to this question is

H(z)=iz+2.

Here is the second solution, which uses Exercise 3!

Solution. If you remember Exercise 3, then you can alternatively solve the
exercise this way. In Exercise 3, we investigated the fixed points of a planar
isometry, and found the following:

e Hz)=az+ 3, |a] =1:

— All points are fixed when @ = 1 and 8 = 0;
— No fixed point when av = 1 and 8 # 0;

— One and only one fixed point % when a # 1.
e Hz)=az+f,|lal =1 (a=¢€"Y and § = s +it):

: [ i 0 .
— No fixed point when s - cos; +t - sing # 0;

— The line QSian-x—Qsingcosg-y = s is fixed when s-cosg—{—t-sing =
0.
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In fact, you do not need to remember all of that, it is enough that you
remember that in the second case, if H(z) = az + 3, |a| = 1, there is
never a unique fixed point: either we have no fixed point, or we have a line.
Since there is one and only one fixed point, we only need to look at the case
H(z) =az+ S, |a| = 1. Then

{1+z’ =H(l1+1i) =
34i =H(l—i) =

So the answer is H(z) = iz + 2.

Exercise 3. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H fixes the line y = x+1 (identifying the
complex plane with the 2-dimensional real plane), then H(z) =

We can solve this exercise in two different ways, as we did for the previous
exercise. Let us start from scratch.

Solution. Suppose that H(z) = az + B, |a| = 1 first. If H fixes the line
y = x + 1, this means that H fixes all the points on this line, so we can take
two convenient points:

y=0,, x=—-1, andz =0, y=1

which in the complex plane correspond to z = x+iy = —1 and z = x+iy =1
respectively. Now

i =H(@#) =aoa+p S a =1
{_1 CH(-1) ——a+8 = —1+i=oa( 1):>{5 _0
This gives us the identity map! We now consider H(z) = az + f, |a| = 1,
and the same two convenient points on the liney =z +1: 2z =7 and z = —1.
We solve
i =H@GE) =al—i)+p : B . a =i
{_1 ~H(Z1) —a(-1)+ 8 —i+1l=(1—i)a = B o—i-1

So the answer is H(z) = iz — 1 4 i. We can check that the fixed points are
indeed the line mentioned.

Now if we remember Exercise 3, we can do as follows (the same thing as
in the previous exercise).
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Solution. Recall again Exercise 3, where we investigated the fixed points of
a planar isometry:

o H(z) =az+p, |o|=1:

— All points are fixed when a = 1 and § = 0;
— No fixed point when o« = 1 and 8 # 0;

— One and only one fixed point % when o # 1.
e Hz)=az+f, |la| =1 (a=¢e" and 8 = s + it):

- 0 0 .
— No fixed point when s - cos3 +t - sing # 0;

— The line QSiHQg-x—%ingcosg-y = s is fixed when s~cosg+t-sin§ =

0.

Since the fixed points form a line, we know that it cannot be H(z) = az + 3,
because then it never happens that only a line is fixed. Thus we only need
to consider H(z) = az+ f3, || = 1. Take the same two convenient points on

the liney =2+ 1: 2z =14 and z = —1 and solve
i =H@G) =a-i)+p : B : a =i
{_1 —H(=1) —a(-1)+8 = i+1=(1—-i)a= 5 —i_1

So the answer is H(z) =iz — 1 + .

Exercise 4. Show that an isometry of the complex plane that fixes three
non-collinear points must be the identity map.

This is a generalization of the Lemma 1 seen in Chapter 1, where we
proved almost the same thing. The statement was for three special points,
0, 1 and i. This exercise shows that the points can be anything as long as
they are not colinear! You can try to redo the proof step-by-step and see what
happens...this is the first solution, or try to use what you now know about
planar isometries, this is the second solution below.

Solution. Let H be an isometry of the complex plane which fixes say 21, 22, 23:
H(Zl) = Z1, H(ZQ) = Z9, H(Zg) = Z3.
We have, by definition of an isometry, that

|H(z) = H(z1)[* = |z — 1]
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thus by developing both the left and the right handside, we get

H(2)H(z) — H(2)H(z) — H(z1)H(2) + H(2))H (21) = 22 — 22, — 212+ 2171

Since we know that H(z;) = 21, we further simplify to get

H(z)H(z) — H(2)21 — 21 H(2) + 2121 = 22 — 221 — 212 + 21 71,

that is

H(2)H(z) — H(2)% — 21H(2) = 22 — 27, — 41 Z.

Now we can do the exact same thing by replacing z; by 23, which yields

H(2)H(z) — H(2)Z, — 2o H(2) = 22 — 225 — 2%

So far, everything is pretty much the same as what we did in the class!
Now we notice that H(z)H(z) appear on both the left hand sides of the 2
above equations, and zZz similarly appear on both the right hand sides. Thus

we get

H(2)H(z) — 22 = H(2)%Z + 2 H(2) — 25 — 212

H(2)Zy + 20H(2) — 225 — 292,

from which it follows that

H(2)Z1 + 21H(2) — 22y — 212 = H(2)Zg + 20H(2) — 225 — 292.
By rearranging the terms we get
(H(z) —2)(zZ1 — 22) + (H(2) — 2)(21 — 22) = 0.

So now, we have used two of the three points we have! So we redo everything
we did so far with z; and z3 instead of z; and 29, to get

(H(z) = 2)(21 — %) + (H(z) — 2)(21 — 23) = 0.

Now we can extract H(z) — z from the second equation above

—(H(2) — 2)(z1 — %)

21 — 22

H(z)—z=
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(note that z; # 25 so that makes sense, if z; = 29, then z, 2o, z3 are then
necessarily collinear!), and insert it in the equation that follows to get:

(H(2) = 2)(21 = 2)

21 — 22

(H(Z) — Z)(El - 23) - (2’1 - 23) =0.

We can then factor out H(z) — z, namely

(1) - 2) (2 - ) - =222 g

21 — k9

We are now almost there! Recall that we want to prove that H is the identity
if the three points 21, 25, 23 are not collinear. If we can now prove that

o _(21—753)(51—52)7&0

21—z
<1 3) 21 — 22

then it must be that
H(z)—z=0,

which concludes the proof! So let us make sure that

(21— 7) — (21 — 23)(Z1 — Z2)

£ 0.

21 — 29
If this term were to be 0, then
(21 — 23) (21 — 22) = (21 — 23)(21 — 22),

or equivalently
Zg—2 2

23— 2 Z3— 721

But this is not possible, because we have assumed that zq, 25,23 are not
collinear. Can you see this? The above equation says that (2o —21)/(23 — 21)
is a real number, this means that if we write zo — 2; and z3 — z; in polar
coordinates, with respective phase 1, and 15, then the complex part of the
ratio is €/¥17¥2) which has to be zero. Thus 91 = 15, showing that z,— 2z, and
z3 — 21 are two vectors centered at the origin pointing in the same direction.
In other words, 2o — 21, 23 — 21 and 0 are collinear! This shows that zs, z3, 21
are collinear, a contradiction.
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Here is another possible solution to this question. The advantage of the
above solution is that it assumes nothing on planar isometries, but the com-
putations are a bit lengthy...the advantage of the solution below is that it is
pretty short! however you already need to know what are planar isometries!

Solution. o If H(z) = az+ f, |a] =1, then

{ zn=H(z1) =axn+p

ZQZH(ZQ) :OCZ2+/8 :Zl_zzza(21—2’2)‘

Then we know that a has to be 1. Since v = 1, we get z; = 2; + ( and
29 = 29 + (3, which forces 3 to be 0. Since « = 1 and 8 = 0, we have
that H(z) = z and we are done!

o If H(z) = az+ f, |a| =1, then

ZIZH(Zl) :a21+ﬁ B B L
S R

We do the same thing for z; and z3:

leH(Zl) :az_l—i—ﬂ . o - =
{ 23 = H(Z3) = Oé2/73 + ﬁ — 4 = a(21 23)'

Now we put the two equations that we obtained together:

{21—22204(2_1—2_2) :21—2222:1—2:2.

2 —z3=a(s — %) 21— 23 21— 23

To finish the proof, argue as above that this means that z;, 2, and z3
are colinear. In other words, H(z) = oz + [ cannot fix any arbitrary
three points unless if they are colinear. Thus an isometry which fixes
three arbitrary non-colinear points is of the form H(z) = az + 8 and
we showed that it is then H(z) = z.

Exercise 5. In this exercise, we study the fixed points of planar isometries.
Recall that a planar isometry is of the form H(z) = az+ 3, H(z) = az + f3,
|a] = 1. Determine the fixed points of these transformations in the different
cases that arise:

1. if Hz) =az+ f and a = 1,
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2. if H(z) =az+ P and a # 1
3. if H(z) = az + § and a = 1, further distinguish 5 =0 and § # 0,
4. if H(z) = az + f and « # 1, further distinguish 5 =0 and 5 # 0.

This exercise shows the importance of fized points. In fact, it is an inter-
mediate step to prove Theorem 2.
Solution. The formula (from Theorem 1) is that an isometry H of the complex
plane is given by

H(z)=az+ for H(z) =az+f,

where || = 1.
We now look at the fixed points of these maps. Let us start with

H(z) =az+p.

If z is a fixed point, then H(z) = z, that is

az+ =2 < z(la—1)+5=0.

The case a« = 1. If @« = 1, then § = 0. What it means is: if a = 1,
then H(z) = z + [, that is the isometry is a translation, and in that case,
a fixed point occurs only when g = 0, that is the identity map. If H is a
translation, different than the identity, then it has no fixed point.

The case a # 1. If a # 1, we can divide by 1 — «, to get

Z:B/(].—()é)7

that is we have only one fixed point. Note that if 3 = 0, H is a pure rotation
around the origin, and we understand geometrically that there is only one
fixed point at z = 0. If H(z) = az +  with « # 1, then the isometry
has only one fixed point given by z = /(1 — «).

We now continue with the other case, that is

H(z)=az+ 0.
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We have
H(z)=2 <= az+ ==z
Let us write z = 2y + 22;. Then we can continue to develop

H(z) =2 <= a(z2o—iz1) +=20+iz1 <= 2(a—1)+F=2z1i(l+a).

If you look at this last equation as a function of z5 and z;, you can see that
we will get either a line, or a point, or an empty set. We need to distinguish
cases as above to figure out when the different scenarios occur.

The case o = 1. If a =1, then

Since z; is a real number, it must be that [ is a totally imaginary number,
say B =13, B a real number. If we write 3 = |3|e*¥, then ¢ = 7/2, and

é _ |5|63i7r/262'4p _ @

DY, 2 2

This shows that if H(z) = z + 3, then § = i|3| and the fixed points
form a line given by
_ 18]

Z1 9
The case a#1, =0. Ifa#1, =0, then

1
2ol — 1) = z19(1 4+ @) = 29 = 218 +CI.
a—

We provide two solutions here. Here is the first one:
For this expression to make sense, it must be that the fraction is a totally
imaginary number, say (1+ «)/(1 —a) = ia for some a a real number. Since
|a] = 1, we have that o = cos@ + isinf, and (1 + «)/(1 — @) = ia becomes
cosf + 1= —asinf and sinf = acos — a that is cos@ = (a®> — 1)/(a® + 1).
This isometry has for fixed points a line. If H(z) = az, then its fixed
points form a line.
Here is the second solution.
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Alternatively, starting again from
2ol — 1) = z1i(1 4+ «),
one can start by rewriting o as o = cos 8 + i sin 4, yielding
2p(cosf +isinf — 1) = 2z14(1 + cos§ + isinf),
and by separating real and imaginary part, we get
Zgcost — zg+ z1sinf = 0, zgsinf — z; — z1cos6 = 0.
This is a system of linear equations in zg, 21, which can be written
(6089—1 sin 6 )(zo):<0)
sin 0 —1 —cos@ 21 0/

To know whether this system has a solution, we look at the determinant
of the matrix, given by 0! This means the matrix is not invertible. If the
matrix were invertible, then the only solution would be (zo, z1) = (0,0), but
since this is not the case, then that means that the solution is a subspace of
dimension 1, that is a line (a solution exists, since (0, 0) is always a solution).

The case a # 1, § # 0. Finally, if a # 1, 8 # 0, then

2114+ a)—

20 =
a—1

Here we can follow either of the above methods, that is either try to determine
when _
2i(l+a)—p

a—1

is a real number, or write the system of linear equations.
Here is the first solution.
With the first method, we have that if

z2i(l+a)—0
a—1

=z, € R,

then
211+ z11c080 — z18inf — B —iffy = xcosl + xisinh — x
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that is, by separating real and imaginary parts
21+ z1c080 — By = xsinf, — z;sinf — f; = x(cosf — 1).
By identifying what x should be equal to in both these equations, we get
(21 4+ z1co80 — B3)(cos @ — 1) = sinf(—z; sinh — )
which after simplifying yields
Ba(1 — cosf) + f1sinf = 0.

Thus if By, By satisfy this equation, then the fixed point is a line, if not there
is no solution. If H(z) = az+ 3, with o # 1, § # 0, then either the fixed
points form a line, if 3, §; satisfies the above equation, or there is
none.
Here is the second solution.
We have that zy(cosf + isinf — 1) + f = z11(1 + cosf + isin ), where
B = 1 + if32. By separating real and imaginary parts, we get

z20c080 — zg+ 1 = —z18in6, zgsinf + Py = 21 + 21 cos
which corresponds to the following system of linear equations:
cosf —1 sin 6 20\ _ (B
sin —1 —cos# 2 ) By )

The determinant of the matrix is still the same, namely 0, but this time this
not clear that a solution always exists. If it does, then we know it is a line.
To know when there is no solution, we can use that a rank 1 matrix can be
written as the outer product of two vectors, namely

(0059—1 sin 6 >:_2 ( _Sg%%) ) (sin(6/2), — cos(8/2)).

sinf  —1—cosf
Here we use the trigonometric formulas for double/half-angles:
cos(2v) = 2cos?(y) — 1 = 1 — 2sin?(y), sin(27y) = 2sin(y) cos(y).

If (B1, B2) can be written as a multiple of

(o ).
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then the solution is a line, otherwise there is no solution. We can see that
both conditions are of course the same! Indeed if 8, = asin(0/2), B =
—acos(6/2), then

—cos(0/2)(1 — cos ) +sin(0/2) sinf = 0,

and vice-versa, if f3(1—cos )+ 1 siné = 0, then f, sin(0/2)+ 51 cos(6/2) = 0

and solutions are indeed of the right form. Now this tells us that
B =By +if> = |BI(sin(8/2) — icos(8/2)) = —i|Ble"’* = |Ble"* 2.

We now discuss another way of solving this exercise.

Solution. The case H(z) = az+ [ was less difficult, so we focus on the second
case

H(z)=az+ 0
with || = 1, which means that we can write o = €% for § some real number.
We now suppose that H has fixed points, and start with finding what 5 looks

like.
Suppose z is fixed by H, that is H(z) = z. Then

Therefore B
z=alaz+p)+p

and as |a| = aa = 1, this gives us
z=z4af+p

that is a3 = —f. We observe that the case 3 = 0 needs to be treated
separately, so let us assume that 3 # 0, so that we can conclude that o =
—3/B. Recall that a = ¢ and write similarly 8 = |3|e*’. Then

—et¥

619 2ip ez7r+2up

and we get
d=n+2p=¢=(0—m)/2

and we conclude that
B =|Ble =",
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We can check that this expression for [ is consistent with those we got earlier.

Now let us find the fixed points of H(z). Since f is linearly independent
from /2, when perceived as vectors in R? (in fact they are perpendicular),
we can write every complex number 2z as an R- linear combination:

2 =2 + ye?/?
where x,y € R are real scalars. Now let us solve
H(z)=az+ =12 < axf+ey) + =z + 2y,
Opening up the parentheses and recalling that o = €% we get
H(z) = B+ €%y + B = o + %y
from which we get )
z(af = B)+ B =0.

We solve .

=3/ af) = ——=
A YT
recalling the values of a, 3 we obtain in the denominator
1—af/B=1—¢%0 =1_—¢" =2
Hence x = 1/2 and y is free, and we obtain that the fixed line is

{8/2 + ye®? | y € R},

Exercises for Chapter 2

Exercise 6. Determine the symmetries of an isosceles triangle, and compute
the multiplication table of all its symmetries.

Solution. An isosceles triangle has two sides which are equal. Consider a line
that goes through the point where both equal sides touch, and crosses the
3rd side in a perpendicular manner. Denote by m the reflection through this
line. An isosceles triangle has only two symmetries, the identity map and m.
The multiplication table is thus
1 m
111 m
m|m 1
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Exercise 7. Determine the symmetries of an equilateral triangle, and com-
pute the multiplication table of all its symmetries.

Solution. Denote by m; the reflection that goes through the lower left-hand
corner of the triangle, by ms the reflection that goes through the lower right-
hand corner of the triangle, and by mg3 the vertical reflection. In addition,
we have a rotation r of 120 degrees counter clockwise, so that 72 is the
counter clockwise rotation of 240 degres, and finally 1 denotes the do nothing
symmetry.

The multiplication table is found below.

1 T r2 ms my Mo

1 T > ms my Mo

r r r? 1 my mg my

2l r2 1 r my my ms
ms | ms my me 1 v r?
my | mi me mg 12 1 T
Mg | My Mg My T r? 1

Exercise 8. Determine the symmetries of the following shape, and compute
the multiplication table of all its symmetries.

Solution. The symmetries of the shape are 1=do-nothing, r=rotation (coun-

terclockwise) of 120 degrees, r*=rotation (counterclockwise) of 240 degrees.
The table is then
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1 r r
111 r 72
rlr r? 1

r2lr2 1 r

Exercise 9. Let z = ¢27/3,

1. Show that 2* = 1.
2. Compute the multiplication table of the set {1, z, 2?}.

3. Compare your multiplication table with that of Exercise 2. What can
you observe? How would you interpret what you can see?

Solution. 1. We have

23 = (Hm/3)8 = i = 1,

2. The table is

1 z 22
111 =z 2?2
z |z 22 1

22122 1 =z

3. We observe that the two tables are the same. The interpretation is
that there is a bijection between the rotations of angle 120, 240 and
360 degrees and the powers of z, mapping the rotation r to z.

Exercise 10. In the notes, we computed the multiplication table for the
symmetries of the square. We used as convention that entries in the table
are of the form r*m’. Adopt the reverse convention, that is, write all entries
as m’r® and recompute the multiplication table. This is a good exercise if
you are not yet comfortable with these multiplication tables!

Solution. We build a new multiplication table. (1) You can first fill up the
first column and the first row (since multiplying by 1 does not change a
symmetry). (2) Then using r* = 1, you can fill the 4 x 4 upper left corner
involving only rotations, and (3) using that m? = 1, you can fill up the 5th
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row. (4) Now you can fill up the first 4 columns of rows 5, 6, 7 and 8, because
all the terms that appear are of the form m and then a power of r:

’ ‘1 ‘r ‘7‘2 ‘7“3 \m‘mr‘mrQ‘mr?"
1 1 r r? rs m | mr | mr? | mr3
T T r? rs 1
r? r? rs 1 T
rs rs 1 T r?

m |m |mr |[mr?im3 |1 | r | r? rs
mr | mr | mr? | mr|m

mr? | mr? | mr® |m | mr

mrs | mrd |m | mr | mr?

We now use that 73m = mr. Multiply both sides by r on the left, and r—*

on the right, to get

r(r*m)r~t = r(mr)r~t = mr~t = rm = = rm.

Now knowing that rm = mr3, by multiplying on the right by r, r? and 73,
we immediately get

rmr =mrt =m, rmr? = mr, rmr® = mr?

and we can fill the second line of the table (in blue).
We now need to compute r?m. We use that rm = mr?, and multiply on
the left by r:

2 3

r’m = rmr® = (rm)r’

= (mr®)r® = mr?

where we use a second time rm = mr®. Now knowing that r>m = mr?, by
multiplying on the right by r, r? and 73, we immediately get

T2m7" = mr3, r2mr2 =1m, r2mr3 =mr

and we can fill the third line of the table (in blue). Do the same for the 4rth
line!
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’ \1 \r \7“2 \7"3 \m \mr\mrﬂmr‘%‘
1 1 r r? r3 m mr | mr? | mr3
r r r? r3 1 mr3 | m mr | mr
r? r? r3 1 T mr? | mr3 | m mr
r3 r3 1 T r? mr | mr® | mrd | m
m m mr | mr? | mr’ |1 T r? rs
mr | mr | mr?|mr’ | m
mr? | mr? | mr® | m mr
mr3 | mr3 | m mr | mr?

To finish, we notice that (1) the 6th row is the second row multiplied by
m on the left, (2) the 7th row is the third row multiplied by m on the left,
and (3) that the 8th row is the 4rth row multiplied by m on the left:

’ ‘1 ‘7“ ‘rQ ‘7“3 ‘m ‘mr\mrz‘mrﬂ
1 1 T r? r3 m mr | mr® | mr
T T r? r3 1 mr3 | m mr | mr?
r? r? r3 1 T mr? | mr3 | m mr
r3 r3 1 r r? mr | mr? | mrd | m
m m | mr | mr? | mr |1 r r? rs
mr | mr | mr? | mr | m r3 1 r r?
mr? | mr? [mr3 |m | mr | r? r3 1 r
mrs | mr3 | m mr | mr®|r r? r3 1

Once you are done, make sure every symmetry appears on every row of
the table!

Exercises for Chapter 3

Before we give the solutions, it is useful to recall that to show that a set
equipped with a binary operation is a group, we need to check the property
of associativity. When the set is finite, it is always possible, though tedious,
to check all possible triples. We will thus adopt the following: associativity of
the addition and of the multiplication in R is considered as natural, thus we
do not have to prove it. Based on it, it is then possible to prove associativity
for addition and multiplication in C. Also, associativity is natural for the
composition of maps. It is always needed to mention associativity though,
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because you might encounter some non-associative map at some point of
time!

Exercise 11. In Exercise 7, you determined the symmetries of an equilateral
triangle, and computed the multiplication table of all its symmetries. Show
that the symmetries of an equilateral triangle form a group.

1. Is it abelian or non-abelian?

2. What is the order of this group?
3. Compute the order of its elements.
4. Is this group cyclic?

5. Can you spot some of its subgroups? When you encounter such a
question, it is enough to give an example of a subgroup which is not
{1}, assuming that such a subgroup exists! If we want all the subgroups,
then we will ask it explicitly!

Solution. For convenience, we recall the multiplication table:

1 v 2 ms mpg me

1 r 2 mg my me

ror2 1 ms msg my
r2 | r? 1 r o omp My M3
ms | ms m; moy 1 roor?
my | my me ms 12 1 r
my | my ms my r r? 1

where m; is the reflection that goes through the lower left-hand corner of the
triangle, my is the reflection that goes through the lower right-hand corner of
the triangle, mgs is the vertical reflection, and r is the rotation of 120 degrees
counter clockwise.

To show that the set G of symmetries of an equilateral triangle form a
group, we need to check:

e (& is closed under composition of symmetries, that is, combining two
symmetries give another symmetry. There are several ways to argue
that, for example: we know that this is the case for general isometries of
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Exercise 12. Let z = ¢

CHAPTER 13. SOLUTIONS TO THE EXERCISES

the plane, so this is true in particular for symmetries of the equilateral
triangle. In this case, since you also have a multiplication table, it can
be seen from the table, since every element within the table is part of
the group.

Associativity holds, because composition of maps is associative.
There is an identity element: 1=do-nothing.

Every element is invertible: this was shown for every isometry of the
plane, or can be shown from the multiplication table.

It is non-abelian (can be seen from the multiplication table which is not
symmetric), or just by giving one counter-example, say mimsy # mamy
where my is the mirror reflection going through the left corner, while
mes is the mirror reflection going through the right corner.

The order of the group is its cardinality, it is thus 6.

1=do-nothing has order 1, r and 7? have order 3, the 3 other elements
have order 2.

No, because no element has order 6.

. Every element of order 2 generates a cyclic group of order 2. The

rotation r generates a subgroup of order 3.

2m/3Show that {1, z, 22} forms a group.

1. Is it abelian or non-abelian?

2. What is the order of this group?

3. Compute the order of its elements.

4. TIs this group cyclic?

5. Can you spot some of its subgroups?

Solution. We show that {1, z, 22} forms a group.

e We have that 227 € {1,z2,2%} for any 4,57 € {0,1,2} thus we have

closure under multiplication.
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e Associativity holds, it is inherited from the associativity of multiplica-

5.

tion in C.
The identity element is 1.

Every element is invertible: 27* € {1, z, 2%} is the inverse of 2’ for every
i€{0,1,2}.

. It is abelian.

. It is 3.

1 is of order 1, z and 22 are of order 3.

Yes, since it contains an element of order 3, which is the order of the
group.

The only subgroups are the trivial subgroup {1} and the group itself.

Exercise 13. Let X be a metric space equipped with a distance d.

1.

2.

Show that the set of bijective isometries of X (with respect to the
distance d) forms a group denoted by G.

Let S be a subset of X. Define a symmetry f of S as a bijective
isometry of X that maps S onto itself (that is f(S) = 5). Show that
the set of symmetries of S is a subgroup of G.

Note that as a corollary of this general result, we can deduce that the
planar isometries form a group (where d is our usual distance), and the
symmetries of the different shapes we saw are all subgroups!)

Solution. 1. Let G be the set of bijective isometries of X.

e We check that G is closed under composition: let f,g be two
isometries, then

d(fg(x), f9(y)) = d(f(x), f(y)) = d(z,y)

where the first equality holds since g € G and the second because
f € G. Thus the composition of two isometries is an isometry.

e Associativity holds, because composition of maps is associative.



276 CHAPTER 13. SOLUTIONS TO THE EXERCISES

e The identity is the do-nothing isometry.

e Every f € G is invertible because f is a bijection. But we still
have to show that f~! belongs to G.

d(f~(2), f7H(y) = d(ff (@), [ () = d(z,y)

where the first equality holds because f is an isometry, and thus

fted.

2. To show that S is a subgroup, we need to check that it is a group under
the same binary operation as G.

e The composition of two symmetries is again a symmetry: indeed,
a symmetry f by definition maps S into itself, that is f(S) = 5,
so the composition of two symmetries f, g will map S into itself:
9f(8) =g(5) =S.

e Associativity holds, because the composition of maps is associa-
tive.

e 1=do-nothing is the identity.

e We have to show that every symmetry has an inverse. Let f € S
be a symmetry. We know it has an inverse f~! in GG, we have to
check that this inverse is in S, that is, f~! maps S to itself. Since
f(S) =S, we have f~1f(S) = f~1(S), that is S = f~1(9).

Exercise 14. Let G be a group. Show that right and left cancellation laws
hold (with respect to the binary group operation), namely:

9291 = g3 g1 = g2 = g3,
g3+ g1 = g3 g2 = g1 = go,
for any g1, 92,93 € G.
Solution. We have
G L =0s 1 =G g1 Gi =0g3-91-g1" = g2 = g3
using that every element is invertible, and that g;-g; ! is the identity element.
Similarly
93-91293~92:>g§1~93~g1 2951'93'92:>91=927

using again that every element is invertible, and that gs - g3 ' is the identity
element.
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Exercise 15. Let GG be an abelian group. Is the set
{reG, x=a""}
a subgroup of G7 Justify your answer.

Exercise 16. Let GG be a group, and let H be a subgroup of G. Consider
the set
gH = {gh, he€ H}.

1. Show that |[gH| = |H].
2. Is thet set
{9€G, gl = Hg}
a subgroup of G7

Exercise 17. Let G be a group, show that

(192) " =95 '91 ",

77'

for every g1, go € G. This is sometimes called the “shoes and socks property”!

Exercise 18. In a finite group G, every element has finite order. True or
false? Justify your answer.

Exercise 19. This exercise is to practice Cayley tables.

1. Suppose that G is a group of order 2. Compute its Cayley table.

Guided version.

e Since G is of order 2, this means it has two elements, say G =
{g1,92}. Decide a binary law, say a binary law that is written
multiplicatively.

e Now use the definition of group to identify that one of the two
elements must be an identity element 1. Then write the Cayley
table.

e Once you have written all the elements in the table, make sure
that this table is indeed that of group! (namely make sure that
you used the fact that every element is invertible).
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2. Suppose that G is a group of order 3. Compute its Cayley table.

Solution. 1. If G has order 2, then we can write G = {g1,92}. We sup-
pose that the binary law is written multiplicatively. We know that the
identity must be there, so we may assume that g; = 1 is the identity
element. We now write the table:

HERA
1 L9
g2 || 92 gg

but for this table to be a Cayley table of a group, we still need to see
what happens with ¢g3. It must be an element of the group as well by
closure. Now we know that g, must be invertible, which means that

95 =1

2. We repeat the same for a group of order 3. Suppose that G = {1, g2, g3}
since one element must be the identity element. We get

L I 1[e]gs]
1 1192193
g2 || 92
g3 || 93

Now using the closure property, g»g3 must be an element of the group.
It cannot be that gogs = ¢o or gs (use the fact that g, and g3 are
invertible to see that), thus gogs = 1, and by the same argument gsgs =

1. Thus

L 1]
1 1192193
92 || 92 1
93| g3 | 1

which shows that g5 = g3, and g3 = go, and we are done.

Exercise 20. Consider the set M, (R) of n x n matrices with coefficients in
R. For this exercise, you may assume that matrix addition and multiplication
is associative.

1. Show that M, (R) is a group under addition.

2. Explain why M, (R) is not a group under multiplication.
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3. Let GL,(R) be the subset of M, (R) consisting of all invertible matri-
ces. Show that GL,(R) is a multiplicative group. (GL,(R) is called a
General Linear group).

4. Let SL,(R) be the subset of GL,(R) consisting of all matrices with
determinant 1. Show that SL,(R) is a subgroup of GL,(R). (SL,(R)
is called a Special Linear group).

5. Explain whether SL,(R) is a subgroup of M, (R)

Solution. 1. Identity: The zero matrix is the identity element.
Associativity is ok by assumption (alternatively, it is inherited by as-
sociativity of addition of complex numbers).

Inverse of (A4;;) is (—A;;).
Closure: (A;;) + (Bi;) = Ci; with coefficient C;; = A;; + Bjj.

2. The zero matrix does not have a multiplicative inverse.

3. Identity: the identity matrix I,,.
Associativity is ok by assumption.
Inverse: by definition, all matrices in GL,(C) are invertible.

Closure: Multiplying two invertible matrices gives another invertible
matrix: (AB)™! = B 1AL

4. Identity : I,, € SL,(C), since certainly det([,) = 1.
Inverse: If det(A) = 1, then det(A™!) = 1/det(A) = 1, so the set
contains inverses.

Closure: if det(A) = det(B) = 1, then det(AB) = det(A) det(B) = 1.

5. No, it is not, since M,(C) is an additive group, while SL,(C) is not
closed under addition: det(l,, + I,) # 1.

Exercises for Chapter 4

Exercise 21. We consider the set C of complex numbers.
1. Is C a group with respect to addition?
2. Is C a group with respect to multiplication?

3. In the case where C is a group, what is its order?
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4. Can you spot some of its subgroups?

Solution. 1. Yes it is. The sum of two complex numbers is a complex
number. Addition is associative. The identity element is 0, and every
element x has an inverse —x, since x — x = 0.

2. No it is not, since 0 is not invertible. Indeed, the identity element is
now 1, but there is no complex number y such that y-0 = 1. However,
if you remove 0, then C without zero becomes a group! The product
of two complex numbers is again a complex number, multiplication
is associative, and every non-zero element x has an inverse x~! since
r-xl =1

3. It is infinite.

4. So we need to look at (C,+). For example, (R, +), (Q,+) and (Z, +)
are subgroups, all with identity element 0, and for x an inverse given by
—x. Associativity is inherited from C, and the closure under addition is
clear. Also the even integers form a subgroup, since the sum of two even
integers is even, the identity element is still 0, and 2y has for inverse
—2y. If one consider (C\{0}, -), we similarly have (R\{0}, ), (Q\{0}, ),
but Z does not work, since apart 41, integers are not invertible for
multiplication. In that case, nth roots of unity are also a subgroup of

(C\{0},-).

Exercise 22. Alice and Bob have decided to use Caesar’s cipher, however
they think it is too easy to break. Thus they propose to use an affine cipher
instead, that is

6]((?[7) = k’lfL‘ + kQ mod 26, K = (k)l,k’g).

Alice chooses K = (7,13), while Bob opts for K = (13,7). Which cipher do
you think will be the best? Or are they both equally good?

Solution. The best cipher is that of Alice. Indeed
ex(r) =Tr+13 mod 26
can be deciphered using

di(y) = 15y + 13 mod 26
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since
di(ex(x)) =15(Te+13)+13=15-Te+15-134+ 13 =2+26 =2 mod 26.
Now for the cipher of Bob, we have

ex(x) =13z +7 mod 26

and 13 is not invertible modulo 26. Thus to decipher, we get
di(y) = oy + B,
for some «, [, and
di(ex(z)) =a(13z+7)+ f =a- 13z + Ta + 6.

Now we must solve 13ax = z to find z, that is #(13ac — 1) = 0 and there is
no « satistfying this equation.

Exercise 23. Show that the map f : (R,+) — (R*,-), z — exp(z) is a
group homomorphism.

Solution. First we notice that (R,+) and (R\{0},-) are both well-defined
groups. Now we have to check the property of group homomorphism, namely

flx+y) = f(x)f(y).

Now
f(z+y) =exp(z +y) = exp(x) exp(y) = f(z)f(y).

Exercise 24. Show that a group homomorphism between two groups G and
H always maps the identity element 14 to the identity element 1.

Solution. You can show that using either additive or multiplication notation.
In additive notation, we have that f(a +b) = f(a) + f(b) thus take a = 0,
which gives

fO+b) = f(0) + f(b) = f(b) = f(0) + f(b) = 0 = f(0)

because f(b) is invertible. In multiplicative notation, we have that f(ab) =
f(a)f(b) thus take a = 1, which gives

f-b) = fF)F(0) = f(b) = f(1)f(0) = 1= f(1)

because f(b) is invertible.
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Exercise 25. In this exercise, we study a bit the invertible integers modulo
n.

1. Take n = 5, and compute the group of invertible integers modulo 5.
What is the order of this group? Can you recognize it? (in other

words, is this group isomorphic to one of the groups we have already
classified?)

2. Take n = 8, and compute the group of invertible integers modulo 8.
What is the order of this group? Can you recognize it? (in other words,
is this group isomorphic to one of the

groups we have already classified?)

Solution. 1. The integers invertible modulo 5 are those coprime to 5, that
is {1,2,3,4}, so the order of the group is 4. We notice that 2 for
example has order 4, since 2* = 16 = 1 mod 5, thus this is a cyclic
group of order 4, and since we know there is a unique cyclic group of
order 4 up to isomorphism, we can also say this is "the” cyclic group
of order 4.

2. The integers invertible modulo 8 are those coprime to 8, that is {1, 3,5, 7},
so the order of the group is also 4. However, 32 = 1 mod 8, 52 = 1
mod 8 and 72 =1 mod 8, thus it cannot be cyclic. In fact, every ele-
ment has order 2 but for the identity, so it follows easily that this group
is isomorphic to the Klein group, that is the group of isometries of the
rectange. To show formally the group isomorphism, one can define a
map f:{1,3,5,7} — {1,7,m,rm} where r is a rotation, m is a mirror
reflection, as defined in the notes, such that

f) =1, f3)=r f(5) =m, f(7) =rm.

We can check that f(3-5) = f(7) = rm = f(3)f(5) and similarly for
all the pairs. In fact, any map that sends an element of order 2 to an
element of order 2 will do!

Exercise 26. Let f be a group homomorphism f : G — H where G and H
are two groups. Show that

flo™) =Fflg™"
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Solution. We have already seen that a group homomorphism is mapping the
identity of G to the identity of H. To show the above property, we need to
understand what it means. It means that it maps the inverse of g to the
inverse of f(g). Now we have by definition of group homomorphism that

flo7l9) = flg ") f(g),

and
1y =f(le) = flg7'9) = flg")[f(9)

where we have added that f maps the identity of G' to the identity of H.
From this we can read what is written:

1y = f(g")f(9)

which means that f(g™!) is the inverse (we have checked only on the left) of
f(g), that is f(g7') = f(g)~'. To complete the proof, we actually also need
to check that f(g)f(g~') = 1, which can be done by replacing g~'g by gg~*
in the first equation, and derive everything again accordingly.

We have seen a few examples of group homomorphisms, or even group
isomorphisms. You can take these examples and easily check for yourself
that it works!

Exercise 27. Consider the group (Z,+) of integers under addition. Let H
be a subgroup of Z.

1. Show that H is of infinite order.

2. Use the Euclidean division algorithm to show that H is generated by
a single element.

3. Find a subset of Z which forms a multiplicative group.

Here is a guided version of this exercise. Please try to do the normal version
first!

1. Recall first what the order of a group is, to understand what it means
for H to be of infinite order. Once this is clear, you need to use one
of the properties of a group! If you cannot see which one, try each of
them (can you cite the 4 of them?) and see which one will help you!
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2. This one is more difficult. You will need to use a trick, namely use the

minimality of some element...In every subgroup of Z, there is a smallest
positive integer (pay attention to the word “subgroup” here, this does
not hold for a subset!).

. To have a multiplicative group (that is a group with respect to mul-

tiplication), you need to define a set, and make sure this set together
with multiplication satisfies the usual 4 properties of a group!

Solution. 1. Let h € H be an element other than the identity element.

Then all multiples of h are contained in H by closure. It will follow that
H is infinite once we show that all the multiples of A are distinct. To
that end, suppose to the contrary that mh = nh. Then (m —n)h = 0,
but that implies that m = n, since we assumed that h is not identity.

. Let m be the smallest integer contained in H. We claim that any other

element of H is a multiple of m. To that end, consider h € H. For
the sake of contradiction suppose h is not a multiple of m. Using the
Euclidean Division Algorithm, we have h = mq + r, r < m. But then
r =h—mq € H, and r is smaller than m, contradicting the minimality
of min H.

. Elements of a multiplicative group must have a multiplicative inverse.

The only invertible integers are {£1}, which form a group under mul-
tiplication.

Exercise 28. When we define a map on equivalence classes, the first thing
we must check is that the map is well defined, that is, the map is independent
of the choice of the representative of the equivalence class. In this exercise
we give an example of a map which is not well defined.

Recall the parity map sgn : Z — Z/2

sgn(2k+1) — 1

sgn(2k) — 0

Let Z/5Z be the group of integers modulo 5. Let us attempt to define the
map sgn : a — sgn(a). Show that sgn is not well-defined on Z/5Z.

Solution. sgn(1) = sgn(1) = 1 while sgn(6) = sgn(6) = 0. But 1 = 6, so
their image should be the same. Hence the map sgn is not well-defined.
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Exercises for Chapter 5

Exercise 29. Let G be a group and let H be a subgroup of G. Let gH be
a coset of H. When is gH a subgroup of G?

Solution. 1If g = 1, we see that gH = H and thus clearly H is a subgroup
of G. In fact, if ¢ € H (this includes ¢ = 1 in particular), we have that
gH = H. Indeed, gH C H, because every element of gH is of the form gh
with g and h in H, and since H is a subgroup of GG, it must be that gh € H.
Conversely, H C gH, since every element h in H can be written as h = gh’
with A’ = g~'h. We have thus shown that if g € H, then gH = H and thus
gH is a subgroup. Now if ¢g is not in H, gH cannot be a subgroup, because
1 does not belong to gH. Indeed, if 1 were to be in gH, then that means
that there is an element h € H such that gh = 1, which means that ¢ is the
inverse of h, but the inverse of h belongs to H, while we know that this is
not the case for g!

Exercise 30. As a corollary of Lagrange Theorem, we saw that the order
of an element of a group G divides |G|. Now assume that d is an arbitrary
divisor of |G|. Is there an element ¢ in G with order d?

Solution. In general the answer is no. There are many counter-examples. For
example, |G| itself always divides |G|, but there exists an element of order
|G| only when the group is cyclic!

Exercise 31. Take as group GG any group of order 50. Does it contain an
element of order 77

Solution. We have that |G| = 50. We know by Lagrange Theorem that the
order of an element of G has to divide 50. Since 7 does not divide 50, there
cannot be an element of order 7.

Exercise 32. Take as group G the Klein group of symmetries of the rectan-
gle. Choose a subgroup H of G, write G as a partition of cosets of H, and
check that the statement of Lagrange Theorem holds.

Solution. We can write the Klein group as G = {1, m,r,rm}. A subgroup is
for example H = {1, m} (or {1,r}, or {1,7m}). We have that

G=HUrH={1l,m}U{r,rm}.
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The number of cosets of H is called the index of H in G, given by |G : H| = 2.
The size of every coset is 2, and indeed

G| =[G H]|H|=2-2=4.

Exercise 33. This exercise looks at Lagrange Theorem in the case of an
infinite group. Take as group G = R and as subgroup H = Z. Compute the
cosets of H and check that the cosets of H indeed partition G. Also check
that the statement of Lagrange Theorem holds.

Solution. If G = R, and H = Z, cosets of Z are of the form x + Z, z € R.

Thus
R= |J (z+2)

0<z<1

and |R| = |Z| = cc.

Exercises for Chapter 6

Exercise 34. Show that any planar isometry of R? is a product of at most
3 reflections.

Solution. We know from Theorem 2 that any planar isometry is either
a) A rotation about a point in the plane

b) A pure translation

c) A reflection about a line in the plane

d) A reflection about a line in the plane and a translation along the same
line (glide reflection).

We consider each case.

a) A rotation about a point is a composition of two reflections about axes
that meet at the fixed point (center of the rotation).

b) We saw that if we have two reflections of the form

01:2—€NZ+ B, 002 — 2+ B,
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p20p1(2) =2+ Bie® + By
——
a translation vector

This shows that the composition of two glide reflections gives a trans-
lation, and in fact any translation can be obtained in that way.

Now we want to express a translation in terms of two pure reflections.
This means we need to consider extra constraints on (i, fs in terms
of 01,0,. To that end, recall that a glide reflection €z 4 3 is a pure
reflection (that is, a reflection of order 2) whenever either 5 = 0 or the
vector 3 is perpendicular to the reflection axis {€*/2z | z € R}. So, in
particular, for choices 81 = 0, B2 = w and 0/2 = arg(w)+m/2, the glide
reflections 1(2) = €z, po(2) = €z + w are in fact pure reflections
whose composition ¢y 0 ¢ = z + B + B, = z + w corresponds to
translation by w.

Geometrically, translation by w corresponds to reflection across the
line P, followed by reflection across line (P + w/2), where P is the line
through the origin perpendicular to vector w, (P 4 w/2) is the shift of
P by w/2.

c¢) A reflection is a composition of a single reflection (itself!)

d) A glide reflection is a composition of a reflection and a translation
(which is a composition of two reflections). As we have seen any com-
position of two reflections is always a rotation or a translation. A
reflection cannot be a glide reflection since it does not have fixed point.

Exercise 35. Look at the pictures on the wiki (available on edventure), and
find the symmetry group of the different images shown.

Exercises for Chapter 7

Exercise 36. Let o be a permutation on 5 elements given by o = (15243).
Compute sign(o) (that is, the parity of the permutation).

Solution. This permutation sends 12345 to 54132, thus first we need to switch
1 and 5. (15) : 12345 +— 52341. Now the first element is at the right
place, but the second element should 4, not 2, thus we exchange 4 and 2.
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(24)(15) : 12345 +— 54321. We continue and exchange 1 and 3: (13)(24)(15) :
12345 — 54123. Finally, we exchange 2 and 3, to get (23)(13)(24)(15) :
12345 > 54132. Thus sign(54132) = (—1)* = 1.

Exercise 37. 1. Show that any permutation of the form (i j k) is always
contained in the alternating group A4, n > 3.

2. Deduce that A, is a non-abelian group for n > 4.

Solution. 1. Any permutation of the form (i j k) can be written as (i j)(j k),
thus it is an even permutation, which belongs to A,, (n > 3 is needed
to have 3 elements to permute).

2. It is enough to notice that (1 2 3) and (1 2 4) do not commute, since
they are always contained in A,,, for n > 4.

Exercise 38. Let H = {0 € S5 | 0(1) =1, o(3) = 3}. Is H a subgroup of
S5?

Solution. We have that H is a subset of S5 and thus it inherits associativity
of composition from Ss. The identity (=do-nothing) permutation belongs to
H. Let 01,09 be two permutations in H. We have that

o1(o2(1)) = 01(1) =1, 01(02(3)) = 01(3) =3

thus o109 € H. Finally, we have to check that every element in H has an
inverse in H. Let 0 € H, then

which shows that H is indeed a subgroup.

Exercise 39. In the lecture, we gave the main steps to show that the group
Dg cannot be isomorphic to the group A4, though both of them are of order
12 and non-abelian. This exercise is about filling some of the missing details.

e Check that (1 2)(3 4) is indeed of order 2.
e Check that (1 2 3) is indeed of order 3.

e By looking at the possible orders of elements of Dg, prove that A, and
Dg cannot be isomorphic.
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Solution. e We have to check that (12)(34)(12)(34) = (). We have

(12)(34)(12)(34) : 1234 > 1243 — 2143 + 2134 — 1234.

In fact, we can observe that what happens is that the two permutations
are affecting disjoint subsets of indices, thus since we do (12) twice, and
(34) twice, we get back the identity permutation.

We compute (123)(123)(123):
(123)(123)(123) : 123 — 231 + 312 > 123,

In fact, every permutation is a shift of the 3 elements, and doing 3
shifts gives back the identity.

Dg contains a rotation r which is of order 6. We can check that no
element of A, has order 6 (they are of order 2 and 3 only, the list of
the elements and their order can be found in the lecture slide). Now if
there were a group isomorphism f from Dg to Ay, then f(r) should be
an element of order 6 in A4, since

fr)P=f(r%) = f(1) =1

and if there were a k < 6 such that f(r)* = 1, then f(r¥) = 1, a
contradiction. But there is no element of order 6 in Ay4.

Exercises for Chapter 8

Exercise 40. e Let G be the Klein group. Cayley’s Theorem says that

it is isomorphic to a subgroup of S4. Identify this subgroup.

e Let GG be the cyclic group Cy. Cayley’s Theorem says that it is isomor-
phic to a subgroup of S;. Identify this subgroup.

Solution. e Let us write the multiplication table of the Klein group.

I g1 9 g3

111 g1 92 g3
gla 1 g3 g
G292 95 1 &
93193 92 g1 1
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We now interpret this table in terms of permutations. Let us label
the elements of the group: 1 — 1, ¢y — 2, g0 — 3, g3 — 4. The
first row is then 1234, thus 1234 — 1234, the second row is 2143, thus
1234 — 2143, the third row is 3412 thus 1234 — 3412, finally the fourth
row is 4321, thus 1234 — 4321. In cycle notation, this gives

(), (12)(34), (13)(24), (14)(23).

Let us write the multiplication table of Cj.

01 2 3
0/j0 1 2 3
111 2 3 0
212 3 01
313 0 1 2

We now interpret this table in terms of permutations. The first row is
0123, thus 0123 — 0123, the second row is 1230, thus 0123 — 1230,
the third row is 2301 thus 0123 — 2301, finally the fourth row is 3012,
thus 0123 — 3012. In cycle notation, this gives

(), (0123), (02)(13), (0321)

but since we usually look at permutations on the elements {1,...,n},
we rewrite these permutations as

(), (1234), (13)(24), (1432).

Exercise 41. Show that any rearrangement of pieces in the 15-puzzle start-
ing from the standard configuration (pieces are ordered from 1 to 15, with
the 16th position empty) which brings the empty space back to its original
position must be an even permutation of the other 15 pieces.

Solution. We can view the overall puzzle as a permutation 7 in Sy, since the
empty space returns to its original position. We can repeat the proof we did
in the lecture, by replacing (14 15) by 7. Namely

7 = (a, 16)(a,—1 16)--- (az 16)(a; 16).

Now the left hand side is an even permutation in Sig since the blank space
16 is moved an even number of positions (because 16 returns to its original
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location, it has to move up and down, as well as right and left, an equal
number of times). The parity of a permutation in Sj5 is the same as its
parity when viewed as a permutation in Sig, so 7 is an even permutation of
the pieces 1,2,...,15.

Exercise 42. Has this following puzzle a solution? The rule of the game is

the same as the solitaire seen in class, and a win is a single marble in the
middle of the board. If a win is a single marble anywhere in the board, is
that any easier?

Solution. We can solve this puzzle the same way we did in the lecture, namely
by labeling the board with the Klein group G = {1, f, g, h} as follows: Now
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the total value of this board without the middle marble is

(fgh)?* = 1.

Since the total value is invariant by a move, whenever we move a marble and
remove another one, the total value stays 1. Since no label is 1, not only it
is impossible to finish with one marble in the center, but it is also impossible
to finish with one marble all together!

Exercises for Chapter 9

Exercise 43. Consider the Klein group G = {1, f, g, h}.
e What are all the possible subgroups of G?
e Compute all the possible quotient groups of G.

Solution. e First of all, by Lagrange Theorem, we know that subgroups
of G have possible orders 1,2 and 4.

— If the order of a subgroup is 1, then the subgroup is {1}.
— If the order of a subgroup is 4, then the subgroup is G.

We are left with the case where a subgroup has order 2. It will neces-
sarily have 1 as part of it. Then we are left with three possibilities:

{1 /1AL g} AL A}

Thus the list of all possible subgroups of G is:
{1141, rH AL, g} {1}, G.

e To compute a quotient group of GG, we need a subgroup H that satisfies
g+ H = H + g. Because G is abelian, every subgroup listed above
satisfies this property, thus we get 5 possible quotient groups:

G/} GAL Y G/{L g}, G{L hY, GG,

Since |G/{1}| = |G|, this group is G itself. Since |G/H| = 2 for every
subgroup of order 2, in this case we get Cs. Finally |G/G| = 1, thus
G/G ~ {1}.
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Exercise 44. Consider the dihedral group D,. What are all the possible
quotient groups of D47

Solution. Recall that the group D, is given by
Dy={r,m|r*=m?=1, mr=r"tm} = {1,r,7%7*, m,rm,r*m,r*m}.

There are two ways of solving this exercise. One way is to list all the possible
subgroups, and then check those which are normal. Since this can be quite
tedious when the size of the dihedral group grows, we give a more theoretical
argument. Recall that we found one subgroup that yields a quotient group
in the lecture.

e Let r be a rotation. Then
(r'm)r" =i (mr') = I (r~'m) = r " (r'm).
This shows that gH = Hg for every g € Dy and H = (r).

e The same property will thus be true for every subgroup of H! Here
there is only one subgroup of H which is not {1} or H, namely {1, r%}.

So we have exhausted all the choices where the subgroup we consider contains
only rotations. What if it contains a term of the form r*m? (with i possibly
0). Note that gH = Hg <= gHg ' = H. Thus if H contains an element
rim, it must also contain g(r‘m)g~! where g = rm or g = r/ is an element
of Dy. All right, let us thus compute g(rim)g=!. If i = 0, then

(rFm)m(r'm)~" = (FPm)ymm™'r 7 = r’mr™ =r¥m,

and A ' '
(rYm(r?) ™ = r¥m,

Now what is 7%m? Well j can take any value from 0 to 3. While j goes from
0 to 3, what are the values taken by 257 They are 0,2,0,2! (Note that this is
happening because 4 is even). If i = 1, we can redo the same computations
with rm instead of m, namely:

(r'm)rm(r’m)~" = rimrmmlr ™ = pmrr™ = 97 hm = 0%,

and

(rYrm(r)) ™t = rirrim = r¥m,
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When j takes values from 0 to 3, both 25 — 1 and 25 + 1 take values 3,1,3,1.

We can do the same computations for r‘m, where i is either even or odd. In

summary, we have two cases: if we have r'm with i even, then g(r‘m)g~' =

r?/m, while if we have rm with i odd, then g(r‘m)g=' = r*~'m.

e If i is even, we thus know that H contains not only rm but also 7%m =
{m,r*m}. Thus H further contains r* and

H = {1,m,r*m,r*}.

e If i is odd, we similarly know that H contains not only r'm but also
r2=m = {rm,r3m}. Thus H further contains rmr? 3 2

m=7rr°=r
and
H = {1,rm,7* r*m}.
This gives the following list of subgroups that will yield a quotient group:
{3, {1,723, {1, e, e, 72 {1, my r?my 2, {1, rm, % rm), Dy,
The corresponding quotient groups are
Dy, Dy/{1,7%}, Dy/{1, 7,7, 7*} ~ Co, Dy/{1,m,r*m,7*} ~ Cy, Dy/{1,rm,r* r*m} ~ Cy, {1}.
Note that |D,/{1,r*}| = 4, thus it could be either C; or the Klein group.
Exercise 45. Consider A the set of affine maps of R, that is
A={f:o—ax+0b, a €R", beR}
1. Show that A is a group with respect to the composition of maps.

2. Let
N={g:z—x+0b, beR}.

Show that the set of cosets of N forms a group.

3. Show that the quotient group A/N is isomorphic to R*.

Solution. 1. Let f,g € A. Then

(fog)(x) = flax +b) =d'(ax+b) +V = dax +adb+ ¥,
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where a’a € R* thus the closure property is satisfied. The composition
of maps is associative. The identity element is given by the identity
map since

Idof= fold=f.

Finally, we need to show that every f € A is invertible. Take f~!(x) =
a 'z —a~'b. Then

flof(x)=fYax+b) =a(ax +b) —a 'b=um.
. We first notice that N is a subgroup of A (we need to check the usual

things: closure, identity, inverse. Associativity is inherited.) Let g € N
and let f € A. We have to show that fN = Nf. Let us take f(z) =

ar+b€ Aand g(x) =x+V € N. We have
foglx)=fo(x+V)=alx+V)+b=azx+ab +b.
On the other hand, define ¢'(z) = z + ab/, we have
g of(x)=g(ax+b)=ar+b+al,

and f o g(x) = ¢' o f(x).

. Elements of A/N are cosets of the form fN = {fg,g € N}, with
f(x) = ax + b, thus fg(z) = fog(x) = f(x + ¢) = ax + ac + b, with
g(x) =z + c. Also consider f'(z) = a’z + b'. Define the map

p:A/N - R* fN — a.
It is a group homomorphism since

P(fNFN)=(ff'N) =aa"=o(f)e(f"),

where the 2nd equality follows from ff'(z) = f(d'z+V') = a(d’x+b) +
b = ad'x + ab+ b. To show that we have an isomorphism, we are left
with 2 things to check

e the map is a bijection (which is clear)

e the map is well-defined, namely it does not depend on the choice
of the coset representative f,
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from which we conclude that
A/N ~ R

Let us spend a minute to understand the interpretation of this result:
when we look at all affine maps, and we take the quotient by those
of the form x + b, that means that we consider as the same all maps
whose coefficient in x is 1 no matter what is the constant term. Thus
if the constant term does not matter, what is left that matters is the
coefficient in x, that we denoted by a, which is why the quotient is in
fact isomorphic to R*!
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Exercises for Chapter 10

Exercise 46. e Show that the complex numbers C form a vector space

over the reals.

e (Give a basis of C over the reals.

e In the lecture, we saw for R? that we can obtain a new group, called a

lattice, by keeping a basis of R? but instead considering integer linear
combinations instead of real linear combinations. What happens for C
if we do the same thing? (namely consider integer linear combinations).

Solution. e A complex number is of the form a + b, thus it can be seen

as a vector (a,b) over the reals. We need to check that vectors form an
abelian group, which is clear: 0 is the identity element, (a, b) has an in-
verse given by (—a, —b) for every vector (a,b), addition of vectors gives
a vector, so closure is satisfied, as is associativity. The other properties
for scalars are also clearly satisfied: distributivity of scalar multiplica-
tion with respect to vector and field (here the reals) addition, respect
of scalar multiplication and identity element of scalar multiplication.

We can write C = {a +ib, a,b € R} = {(a,b), a,b € R} = {a(1,0) +
b(0,1), a,b € R}. A natural basis is {(0,1),(1,0)}.

By keeping the natural basis {(0, 1), (1,0)} we obtain the set
{a +ib, a,b e Z}

which is usually denoted by Z[i]. It is also an abelian group, it is
isomorphic to Z?!

Exercise 47. Consider the set My (R) of 2 x 2 matrices with real coefficients.

1.
2.

Show that My (R) forms a vector space over the reals.
Deduce that it has an abelian group structure.
Give a basis of My(R) over the reals.

What happens for Ms(R) if we keep a basis over the reals and consider
only integer linear combinations instead of real linear combinations?
Do we also get a new group? If so, describe the group obtained.
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Solution. 1. Matrices correpond to the vectors, we have to show they form
an abelian group. The sum of two matrices is again a matrix (closure is
satisfied), associativity holds. The identity element is the zero matrix.
Let M € My(R), then —M is its inverse. The other properties for
scalars are also clearly satisfied.

2. Once we have a vector space, we know that the vectors form an abelian
group (here we actually showed the abelian group structure above).

3. A natural basis is the matrices E;;, 7,7 = 1,2, where E;; denotes a
matrix with zero everywhere but in the ¢th row, jth column, where
there is a 1.

4. By keeping the natural basis Fiy, F1a, Eo1, E9g, we get the set of ma-
trices My(Z). It is also an abelian group.
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Exercises for Chapter 12

Exercise 48. Lagrange Theorem is likely to be the most important theorem
of group theory, so let us revise it! Here is a bit of theory first:

e Can you remember what it states?

e The proof of Lagrange Theorem relies on a counting argument, based
on the fact that cosets partition the group. Can you remember what
cosets partition the group mean? If so, can you rederive the counting
argument that proves Lagrange Theorem?

Now some more practice on how to use Lagrange Theorem!

e How many groups of order 5 do we have (up to isomorphism)?

e Consider the group of permutations S5. Does S5 contain a permutation
of order 77

e Suppose there exists an abelian group G of order 12 which contains a
subgroup H of order 4. Show that the set of cosets of H forms a group.
What is the order of G/H? Deduce what group G/H is.

Solution. e It states that [G : H||H| = |G| where H is a subgroup of the
group G, and [G : H| denotes the number of cosets of H.

e (Cosets partition the group mean that the union of cosets if the whole
group, but the intersection of two cosets is either the whole coset or
empty. Thus when we count how many elements we have in G, it is
the same thing as counting how many cosets we have, times how many
elements in each coset.

e Only 1. If the order is a prime, we know from Lagrange that the group
has to be cyclic, thus up to isomorphism there is only the cyclic group
of order 5.

e No, if there were, then 7 should divide |S5| by Lagrange, but |S5| = 5!
which is not divisible by 7.

e The set of cosets always forms a group when G is abelian! The order
of |G/H| is |G|/|H| by Lagrange, which is 3, thus G/H is the cyclic
group of order 3.
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Exercise 49. At the beginning of the class, we started by studying structure
of geometric figures. We have seen shapes, and been asked what is their group
of symmetries.

e Can you remember some of the shapes we studied, and what is the
corresponding group of symmetries?

e Do you remember what are all the possible groups arising as symmetries
of planar shapes?

e Let us do the reverse exercise: think of a symmetry group, and try to
draw a figure that has this symmetry group.

Solution. e For example, the rectangle with the Klein group, or the square
with the dihedral group D,.

e This is Leonardo Theorem: cyclic and dihedral groups.
e Hmm, that’s thougher to give a solution to that!
Exercise 50. Let us remind a few things about permutations.
e What is the formal definition of a permutation?
e What is the parity of a permutation?
e Consider the permutation ¢ that maps:
1—=2,2—=1,3—54—3,5—6,6—47—7.
Compute its parity.

e We have studied that the group of symmetries of a planar shape can
be seen as a group of permutations. Do you remember how that works
(either in general or on an example?)

Solution. e [t is a bijection.

e Write the permutation as a product of transpositions, count how many
there are, and compute (-1) to the power the number of transpositions.

e This permutation can be written (12)(3564) or for example (12)(34)(36)(35)
(there are many ways of writing it) so its parity is (—1)* = 1.
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We take the Cayley table of the group, and rewrite every row of the
table as a permutation.

Exercise 51. Let us remember that planar isometries are either of type I:
H(z)=az+p, |a|=1orof type II: H(z) = az + 3, |a] = 1.

Solution.

Show that the isometries of type I form a subgroup H of the group G
of planar isometries.

Show that G/H is a quotient group of order two.

e (1) We need to check that the closure property is satisfied:
take Hy(2) = a1z + b1, |ag| =1, Ha(2) = aez + B2, || = 1, then

Hy(Hy(2)) = Hi(ooz + B2) = aq(apz + B2) + B
showing that
Hi(Hy(2)) = (a102)2 + (1 f2 + B1)

with |ajas| = 1 (and similarly for Ho(H;(2))). (2) Associativity of
maps holds. (3) The identity map is of the right form (take 5 = 0 and
a=1). 4 IfHz) =az+0, |a| =1, then H'(2) = a2z — a1
Indeed

H'H(z)=H Y az+B8)=z+a 'f—a'B==z

In order to show that we indeed have a quotient group G/H, where G
is the group of planar isometries and H is the group of type I planar
isometries, we need to show that H is a normal subgroup of GG, namely,
gH = Hgfor all g € G. We observe that G is partitioned into two parts:
type I and type II. The type I planar isometries form the subgroup H
and the type II planar isometries form a left coset of H in G. Indeed,
take any two type II planar isometries fi(z) = a1z + 1 and fa(z) =
9% + 3. We can show that fiH = foH, or equivalently, fio f, ' € H:

. - 1 B
fiofs l(z) = fi(fs 1(2)) = fi(=z - :2) =az+ f,
(6% (0]
where o and  can be computed to confirm that || = 1, verifying

fiofy' € H. A similar argument will give that the type II planar
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isometries form a right coset of H in G. Now we have obtained two
partitions of G: G = H|JfH and G = H|JHf, where f is a type
IT planar isometry. Since H = H, we must have fH = Hf. We have
shown that H is normal in G. (Note: this also shows that subgroups
of index 2 are always normal.)

Finally, the quotient group is the cyclic group Cy because the index of
H in G is 2 and there is only one group of order 2.
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