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Chapter 1

Isometries of the Plane

“For geometry, you know, is the gate of science, and the gate is
so low and small that one can only enter it as a little child.” (W.
K. Clifford)

The focus of this first chapter is the 2-dimensional real plane R2, in which
a point P can be described by its coordinates:

P ∈ R2, P = (x, y), x ∈ R, y ∈ R.

Alternatively, we can describe P as a complex number by writing

P = (x, y) = x+ iy ∈ C.

The plane R2 comes with a usual distance. If P1 = (x1, y1), P2 = (x2, y2) ∈
R2 are two points in the plane, then

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2.

Note that this is consistent with the complex notation. For P = x+ iy ∈ C,

recall that |P | =
√

x2 + y2 =
√
PP , thus for two complex points P1 =

x1 + iy1, P2 = x2 + iy2 ∈ C, we have

d(P1, P2) = |P2 − P1| =
√

(P2 − P1)(P2 − P1)

= |(x2 − x1) + i(y2 − y1)| =
√

(x2 − x1)2 + (y2 − y1)2,

where ( ) denotes the complex conjugation, i.e. x+ iy = x− iy.
We are now interested in planar transformations (that is, maps from R2

to R2) that preserve distances.
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Definition 1. A map ϕ from R2 to R2 which preserves the distance between
points is called a planar isometry. We write that

d(ϕ(P1), ϕ(P2)) = d(P1, P2)

for any two points P1 and P2 in R2.

What are examples of such planar isometries?

1. Of course, the most simple example is the identity map! Formally, we
write

(x, y) 7→ (x, y)

for every point P = (x, y) in the plane.

2. We have the reflection with respect to the x-axis:

(x, y) 7→ (−x, y).

3. Similarly, the reflection can be done with respect to the y-axis:

(x, y) 7→ (x,−y).

4. Another example that easily comes to mind is a rotation.

Let us recall how a rotation is defined. A rotation counterclockwise
through an angle θ about the origin (0, 0) ∈ R2 is given by

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ).

This can be seen using complex numbers. We have that |eiθ| = 1, for θ ∈ R,
thus

|(x+ iy)eiθ| = |x+ iy|
and multiplying by eiθ does not change the length of (x, y). Now

(x+ iy)eiθ = (x+ iy)(cos θ + i sin θ)

= (x cos θ − y sin θ) + i(x sin θ + y cos θ)

which is exactly the point (x cos θ − y sin θ, x sin θ + y cos θ).
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In matrix notation, a rotation counterclockwise through an angle θ about
the origin (0, 0) ∈ R2 maps a point P = (x, y) to P ′ = (x′, y′), where P ′ =
(x′, y′) is given by

[
x′

y′

]

=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]

. (1.1)

We denote the rotation matrix by Rθ:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]

.

Intuitively, we know that a rotation preserve distances. However, as a
warm-up, let us prove that formally. We will give two proofs: one in the
2-dimensional real plane, and one using the complex plane.

First proof. Suppose we have two points P1 = (x1, y1), P2 = (x2, y2) ∈ R2.
Let d(P1, P2) be the distance from P1 to P2, so that the square distance
d(P1, P2)

2 can be written as

d(P1, P2)
2 = (x2 − x1)

2 + (y2 − y1)
2

= (x2 − x1, y2 − y1)

[
x2 − x1
y2 − y1

]

=

([
x2
y2

]

−
[
x1
y1

])T ([
x2
y2

]

−
[
x1
y1

])

,

where ()T denotes the transpose of a matrix.
Now we map two points P1, P2 to P ′

1 and P ′
2 via (1.1), i.e.

[
x′i
y′i

]

=

[
cos θ − sin θ
sin θ cos θ

] [
xi
yi

]

= Rθ

[
xi
yi

]

, i = 1, 2.

Hence we have
[
x′2
y′2

]

−
[
x′1
y′1

]

= Rθ

([
x2
y2

]

−
[
x1
y1

])

,

and

d(P ′
1, P

′
2)

2 =

([
x′2
y′2

]

−
[
x′1
y′1

])T ([
x′2
y′2

]

−
[
x′1
y′1

])

=

([
x2
y2

]

−
[
x1
y1

])T

RT
θ Rθ

([
x2
y2

]

−
[
x1
y1

])

.
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But

RT
θ Rθ =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]

=

[
1 0
0 1

]

which establishes that d(P ′
1, P

′
2) = d(P1, P2).

Second proof. Let P1 = x1 + iy1, P2 = x2 + iy2 be two points in C, with
distance

d(P1, P2) = |P2 − P1| =
√

(P2 − P1)(P2 − P1).

Since a rotation of angle θ about the origin is represented by a multiplication
by eiθ, we have

d(P ′
1, P

′
2) = |P ′

2 − P ′
1| =

∣
∣eiθP2 − eiθP1

∣
∣ =

∣
∣eiθ(P2 − P1)

∣
∣

=
∣
∣eiθ

∣
∣ |P2 − P1| = |P2 − P1| = d(P1, P2).

An arbitrary planar transformation maps P = (x, y) to P ′ = (ϕ(x, y), ψ(x, y)),
or in complex notation, P = x+ iy to P ′ = ϕ(x, y) + iψ(x, y) = H(P ).

We are interested in special planar transformations, those which preserve
distances, called isometries. We gave a few examples of planar isometries,
we will next completely classify them.

To do so, we will work with the complex plane, and write an isometry as
H(z), z ∈ C, such that

|z1 − z2| = |H(z1)−H(z2)| .

We shall show that

Theorem 1. If |H(z1)−H(z2)| = |z1 − z2| , for all z1, z2 ∈ C, then H(z) =
αz + β or H(z) = αz + β with |z| = 1, i.e. α = eiθ for some θ.

The theorem says that any function that preserves distances in R2 must
be of the form

[
x′

y′

]

=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]

+

[
tx
ty

]

or [
x′

y′

]

=

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
x
y

]

+

[
tx
ty

]

.



12 CHAPTER 1. ISOMETRIES OF THE PLANE

Rotations are Isometries: complex proof 

                                                                           |eθiP2-eθiP1| 

                                                                                  

                                                                          |eθi| |P2-P1|                                    

   

P1                      P2                                       P1’                         P2’ 
 

X1+iy1             x2+iy2             rotate         x1’+iy1’                x2’+iy2’ 

=
 

=
 

=
 =
 

             d(P1,P2)                             =                   d(P1’,P2’Ϳ         
? 

=
 

=
 

=
 

 |P2-P1|                            =  

Classification of Isometries of the plane 

• Consider an arbitrary planar transformation map H, which 

maps a point P=x+iy to H(P). 

• We are interested in classifying the maps H which are 

isometries, that is maps H satisfying |H(z1)-H(z2)|=|z1-z2|. 
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Notice what we recognize the reflections with respect to both the x- and
y-axis, rotations around the origin, as well as translations.

In order to prove the theorem, we need the following cute lemma.

Lemma 1. An isometry which maps (0, 0) to (0, 0), (1, 0) to (1, 0), and (0, 1)
to (0, 1), i.e. (0 to 0 ∈ C, 1 to 1 ∈ C, and i to i ∈ C) must be the identity
map (x, y) → (x, y).

Proof. The proof is done by identifying R2 with the complex plane. Let h(z)
be a planar isometry satisfying the assumptions of the lemma, in particular,
h(z) satisfies

|h(z1)− h(z2)| = |z1 − z2| ∀z1, z2 ∈ C.

We then have
|h(z)− h(0)| = |z − 0|,

also
|h(z)− h(0)| = |h(z)− 0|

by assumption that h(0) = 0, thus

|h(z)− h(0)| = |h(z)− 0| = |z − 0|.

Using the fact that
h(1) = 1, h(i) = i,

we similarly get

|h(z)− 0| = |h(z)| = |z − 0| = |h|
|h(z)− h(1)| = |h(z)− 1| = |z − 1|
|h(z)− h(i)| = |h(z)− i| = |z − i| .

This shows that

h(z)h(z) = zz

(h(z)− 1)(h(z)− 1) = (z − 1)(z − 1)

(h(z)− i)(h(z)− i) = (z − i)(z − i).

We now multiply out

(h(z)−1)(h(z)− 1) = h(z)h(z)−h(z)−h(z)+1 = (z−1)(z − 1) = zz̄−z−z̄+1,
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3)                      |z-i|2=|H(z)-H(i)|2=|H(z)-i|2  

2)                        |z-1|2=|H(z)-H(1)|2=|H(z)-1|2  

1)              |z|2 = |H(z)-H(0)|2 = |H(z)|2  

A Lemma (I) 

Lemma An isometry which maps 0 to 0, 1 to 1 and i to i must be 

the identity map. 
 

 ))(( iziz

 )1)(1( zz

zz )()( zHzH

)1)()(1)((  zHzH

))()()(( izHizH 

 H isometry H(0)=0 

 H isometry 
H(1)=1 

 H isometry H(i)=i 

Proof 

Let H be an isometry: |H(z1)-H(z2)|2=|z1-z2|2 for every z1, z2.  

By assumption H(0)=0, H(1)=1, H(i)=i. 

A Lemma (II) 

Proof (next) 

From 2) :                 -H(z)-         +1 =     - z-     +1 → H;zͿ+       =z+ 

    

 

 

From 3) :                 +iH(z)-i        +1=      +zi-i   +1 → H;zͿ-         =z-   

 

We sum the last two equations to get H(z)=z. 

 

                                                                                                          QED 

 

 

 

)()( zHzH )(zH zz z )(zH z

)()( zHzH )(zH zz z )(zH z

     A point P which is fixed by a transformation f of the plane ,  

that is a point such that f(P)=P is called a fixed point.  
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which can be simplified using that h(z)h(z) = zz, and similarly multiply-
ing out (h(z)− i)(h(z)− i) = (z − i)(z − i), we obtain

h(z) + h(z) = z + z

h(z)− h(z) = z − z.

By summing both equations, we conclude that h(z) = z.

In words, we have shown that if h(z) has the same distances to 0, 1, i as
z then h(z) and z must be the same. This technique of looking at points
which are fixed by a given planar transformation is useful and we will see it
again later. It is thus worth giving a name to these special fixed points.

Definition 2. Let ϕ be a planar transformation. Then a point P in the
plane such that ϕ(P ) = P is called a fixed point of ϕ.

We are now ready to classify planar isometries, that is to prove Theorem 1.

Proof. Given H(z), an isometry H : C → C, define

β = H(0),

α = H(1)−H(0)

(|α| = |H(1)−H(0)| = |1− 0| = 1).

Now consider a new function

K(z) =
H(z)−H(0)

H(1)−H(0)
= α−1(H(z)− β).

Note the denominator is non-zero! Claim: K(z) is also an isometry. Indeed,
for every z, w ∈ C, we have

|K(z)−K(w)| =

∣
∣
∣
∣

H(z)− β

α
− H(w)− β

α

∣
∣
∣
∣

=

∣
∣
∣
∣

H(z)−H(w)

α

∣
∣
∣
∣
=

|H(z)−H(w)|
|α|

= |H(z)−H(w)| = |z − w| .
Now

K(0) =
H(0)−H(0)

H(1)−H(0)
= 0

K(1) =
H(1)−H(0)

H(1)−H(0)
= 1.
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Main Result (I) 

Theorem   An isometry H of the complex plane is necessarily of 

the form  

• H(z)= αz + β, or 

• H(z)=αz ̅ + β 

with |α|=1 and some complex number β. 

Proof Given H an isometry, define  

 β=H(0) 

 α=H(1)-H(0) 

Note that |α|=|H(1)-H(0)|=|1-0|=1 as stated. 

Theorem statement claims 

|α|=1, needs a check!  

H isometry 

Main Result (II) 

• Consider a new function K(z)=(H(z)-H(0))/(H(1)-H(0)) 

 

 

• We have K(z)=α-1 (H(z)-β)  

 

• K(z) is an isometry: 

     |K(z)-K(w)| = | α-1 ||(H(z)-β)-(H(w)-β)| = |H(z)-H(w)|=|z-w|. 

β=H(0), α=H(1)-H(0) 

|α|=1 H isometry 
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Then

|K(i)| = |i| = 1

|K(i)− 1| = |i− 1| =
√
2.

These two equations tell us that K(i) is either i or −i. This can be seen from
a geometric point of view, by noticing that K(i) is both on the unit circle
around the origin 0 and on a circle of radius

√
2 around 1. Alternatively,

multiplying out (K(i) − 1)(K(i)− 1) = 2 and simplifying the expression
obtained with K(i)K(i) = 1 leads to the same conclusion.

If K(i) = i, then by Lemma 1, we have that

K(z) = z ⇒ H(z) = αz + β.

If instead K(i) = −i, then K(z) is an isometry that fixes 0, 1, i hence

K(z) = z ⇒ K(z) = z, ∀z ∈ C,

and in this case
H(z) = αz + β.

Let us stare at the statement of the theorem we just proved for a little bit.
It says that every planar isometry has a particular form, and we can recognize
some of the planar isometries that come to our mind (rotations around the
origin, reflections around either the x- and y-axis, translations,...). But then,
since we cannot think of other transformations, does it mean that no other
exists? One can in fact prove the following:

Theorem 2. Any planar isometry is either

1. a pure translation,

2. a pure rotation about some center z0,

3. a reflection about a general line,

4. a glide reflection (that is, a reflection followed by a translation).

We will come back to this theorem later! (in Chapter 6.)
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Main Result (III) 

 

• K(0)=α-1 (H(0)-β) =0 

 

• K(1)=α-1 (H(1)-β) =1 

• K(i) =?  

• We know:|K(i)|=|i|=1 

 

• We also know |K(i)-1|=|i-1|=√Ϯ    

                   K(i)=i or -i. 

 

β=H(0) 

β=H(0), α=H(1)-H(0) 
Why are we computing 

that? Remember the 

leŵŵa… K isometry 

K isometry 

Main  Result (IV) 

• If K(i)=i, then by the previous lemma, we know that K(z)=z. 

• K(z)= α-1 (H(z)-β) =z             H(z) =αz+β 

• If K(i)=-i, then                                        

• Also                                                       

• Again by the previous lemma, we know that                 

• Equivalently : K(z)=    

•  K(z)= α-1 (H(z)-β) =             

              H(z)= α    +β.     

 

                                                                                                      QED                  

,)( iiK  0)0(,1)1(  KK

|||)()(||)()(| wzwKzKwKzK 
zzK )(

z

z

z
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Next we shall show an easy consequence.

Theorem 3. Any planar isometry is invertible.

Proof. We check by direct computation that both possible formulas for isome-
tries, namely

H(z) = αz + β and H(z) = αz + β, α = eiθ, β ∈ C

are invertible. If z′ = H(z) = αz + β, then

z = H−1(z′) =
z′ − β

α
= e−iθ(z′ − β).

If instead z′ = H(z) = αz + β, then

z =
z′ − β

α
= e−iθ(z′ − β)

and
z = H−1(z′) = e−iθ(z′ − β).

Remark. It is important to note that we have shown that a planar isometry
is a bijective map. In general, one can define an isometry, but if it is not
planar (that is, not from R2 to R2), then the definition of isometry usually
includes the requirement that the map is bijective by definition. Namely a
general isometry is a bijective map which preserves distances.

We now show that we can compose isometries, i.e. apply them one after
the other, and that the result of this combination will yield another isometry,
i.e., if H1 and H2 are two isometries then so is H2H1.

Here are two ways of doing so.

First proof. We can use the definition of planar isometry. We want show
that H2H1 is an isometry. We know that

|H2(H1(z))−H2(H1(w))| = |H1(z)−H1(w)|,
because H2 is an isometry, and furthermore

|H1(z)−H1(w)| = |z − w|,
this time because H1 is an isometry. Thus

|H2(H1(z))−H2(H1(w))| = |z − w|,
for any z, w ∈ C which completes the proof.
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Corollary 

Corollary Any planar isometry is invertible. 

 

Proof We know by the theorem: every isometry H is of the form 

• H(z)= αz + β, or 

• H(z)=α    + β. 

Let us compute H-1 in the first case.  

• Define H-1(y)=(y-β)α-1  

• Check! H(H-1(y))=H((y-β)α-1)=y. 

• Other case is done similarly!          

                                                                                                     QED  
 

 

 

z

Combining Isometries 

• The composition of two isometries is again an isometry! 

• Let H and F be two isometries, then F(H(z)) is the composition 

of F and H.  

• We have |F(H(z))-F(H(w))|=|H(z)-H(w)|=|z-w|. 

  F isometry  H isometry 
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Second proof. Alternatively, since H1, H2 both have two types (we know
that thanks to Theorem 1), there are 4 cases to be verified.

1. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2),

2. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2),

3. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2),

4. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2).

In every case, we notice thatH2H1 is either of the form α′z+β′, or of the form
α′z̄ + β′, which shows that H1H2 is an isometry. Indeed, if H(z) = α′z + β′,
then |H(z)−H(y)| = |α′||z−y| = |z−y| (and similarly for H(z) = α′z̄+β′).

Note that isometries do not commute in general, that is

H2(H1(z)) 6= H1(H2(z))

since for example α2β1 + β2 6= α1β2 + β1.
But we do have associativity, i.e.

H3(H2(H1(z))) = (H3H2)(H1(z)) = H3(H2H1(z)).

We also see that the identity map 1 : z 7→ 1(z) = z is an isometry, and when
any planar isometry H is composed with its inverse, we obtain as a result
the identity map 1:

H(H−1(z)) = 1(z)

H−1(H(z)) = 1(z).

What we have proved in fact is that planar isometries form a set of maps
which, together with the natural composition of maps, have the following
properties:

1. associativity,

2. existence of an identity map (that is a map 1 such that when combined
with any other planar isometry H does not change H: H(1(z)) =
1(H(z)) = z),

3. inverse for each map.

As we shall see later, this proves that the set of isometries together with
the associative binary operation of composition of isometries is a group.
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Exercises for Chapter 1

Exercise 1. Let X be a metric space equipped with a distance d. Show that
an isometry of X (with respect to the distance d) is always an injective map.

Exercise 2. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H has only one fixed point which is 1+i,
and H sends 1− i to 3 + i, then H(z) = .

Guided version.

1. Recall the general formula that describes isometries H of the complex
plane. We saw that an isometry of the complex plane can take two
forms, either H(z) = . . ., or H(z) = . . .

2. You should have managed to find the two formulas, because they are
in the lecture notes! Now you need to use the assumptions given. First
of all, we know that H has only one fixed point, which is 1 + i. Write
in formulas what it means that 1 + i is a fixed point of H (write it for
both formulas).

3. Now you must have got one equation from the previous step. Use the
next assumption, namely write in formulas what it means that H sends
1− i to 3 + i, this should give you a second equation.

4. If all went fine so far, you must be having two equations, with two
unknowns, so you are left to solve this system!

5. Once the system is solved, do not forget to check with the original
question to make sure your answer is right!

Exercise 3. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H fixes the line y = x+1 (identifying the
complex plane with the 2-dimensional real plane), then H(z) = .

Exercise 4. Show that an isometry of the complex plane that fixes three
non-colinear points must be the identity map.

Exercise 5. In this exercise, we study the fixed points of planar isometries.
Recall that a planar isometry is of the form H(z) = αz + β, H(z) = αz̄ + β,
|α| = 1. Determine the fixed points of these transformations in the different
cases that arise:
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1. if H(z) = αz + β and α = 1,

2. if H(z) = αz + β and α 6= 1

3. if H(z) = αz̄ + β and α = 1, further distinguish β = 0 and β 6= 0,

4. if H(z) = αz̄ + β and α 6= 1, further distinguish β = 0 and β 6= 0.
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Chapter 2

Symmetries of Shapes

“Symmetries delight, please and tease !” (A.M. Bruckstein)

In the previous chapter, we studied planar isometries, that is maps from
R2 to R2 that are preserving distances. In this chapter, we will focus on
different sets of points in the real plane, and see which planar isometries are
preserving them.

We are motivated by trying to get a mathematical formulation of what
is a “nice” regular geometric structure. Intuitively we know of course! We
will see throughout this lecture that symmetries explain mathematically the
geometric properties of figures that we like.

Definition 3. A symmetry of a set of points S in the plane is a planar
isometry that preserves S (that is, that maps S to itself).

Note that “symmetries” also appear with letters and numbers! For ex-
ample, the phrase

NEV ER ODD OR EV EN
✲ ✛

reads the same backwards! It is called a palindrome.
The same holds for the number 11311 which happens to be a prime num-

ber, called a palindromic prime.
Palindromes can be seen as a conceptual mirror reflection with respect to

the vertical axis, which sends a word to itself.

25
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What is structure? 

One intuitiǀely knows … 

that this is structured…                                  and this is randoŵ. 

Symmetry 

     A symmetry of a set of points S is a planar isometry that 

preserves the set S (that is, that maps S to itself).         

Among planar isometries, which can be symmetries of finite sets?  

• Translations 

• Rotations 

• Reflections 

• The identity map! 

• Combinations of the above 
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Recall from Theorem 2 that we know all the possible planar isometries,
and we know the composition of planar isometries is another planar isometry!
All the sets of points that we will consider are finite sets of points centered
around the origin, thus we obtain the following list of possible symmetries:

• the trivial identity map 1 : (x, y) 7→ (x, y),

• the mirror reflections mv : (x, y) 7→ (−x, y), mh : (x, y) 7→ (−x, y)
with respect to the y-axis, respectively x-axis, and in fact any reflection
around a line passing through the origin,

• the rotation rω about 0 counterclockwise by an angle ω

rω : (x, y) 7→
[
cosω − sinω
sinω cosω

] [
x
y

]

= (x cosω − y sinω, x sinω + y cosω) .

Translations are never possible! Consider first the set of points

S = {(a, 0), (−a, 0)}
(shown below) and let us ask what are the symmetries of S.

✻

✲

✧✦
★✥

x

y

✈ (a, 0)✈(−a, 0)

Clearly the identity map is one, it is a planar isometry and 1S = S.
The mirror reflection mv with respect to the y-axis is one as well, since
mv is a planar isometry, and

mv(a, 0) = (−a, 0), mv(−a, 0) = (a, 0) ⇒ mv(S) = S,

that is S, is invariant under m. Now choosing ω = π, we have

rπ(x, y) = (x cos π − y sin π, x sin π + y cos π) = (−x,−y) ,
and

rπ(a, 0) = (−a, 0), rπ(−a, 0) = (a, 0) ⇒ rπ(P ) = mv(P )

for both points P ∈ S, which shows formally that rotating counterclockwise
these two points by π about 0 is the same thing as flipping them around the
y-axis.
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Symmetries of Two Aligned Points (I) 

Consider the set of points 

S={(a,0),(-a,0)}. 

What are its symmetries? 

 

1. The identity map 1 is a 

trivial symmetry of S! 

2. Reflection mv with respect 

to the y-axis 

     ;a,0Ϳ→;-a,0),(-a,0Ϳ→;a,0Ϳ 

(a,0) (-a,0) 

Symmetries of Two Aligned Points (II) 

Have we found all its symmetries?  

 

(a,0) (-a,0) 

YES! 

1 m 

1 1 m 

m m 1=m2    

Combining these symmetries does not give 

a new symmetry! We  summarize these 

symmetries using a multiplication table. 
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We have identified that the set S = {(a, 0), (−a, 0)} has 2 symmetries.
These are 1 and mv, or 1 and rπ. We know that planar isometries can be
composed, which yields another planar isometry. Then symmetries of S can
be composed as well, and here we might wonder what happens if we were to
compose mv with itself:

mv(mv(x, y)) = mv(−x, y) = (x, y)

which shows that mv(mv(x, y)) = 1(x, y). We summarize the symmetries of
S = {(a, 0), (−a, 0)} using a multiplication table:

1 mv

1 1 mv

mv mv 1 = m2
v

The multiplication table is read from left (elements in the column) to right
(elements in the row) using as operation the composition of maps.

Let us collect what we have done so far. We defined a set of points
S = {(a, 0), (−a, 0)} and we looked at three transformations 1,mv and rπ
which leave the set of points of S ∈ R2 invariant:







1S = S
mvS = S
rπS = S

(2.1)

We saw that for this particular choice of S, we have that rπ(P ) = mv(P ) for
both points P ∈ S.

The transformations are however different if we look at a “test point”
(x0, y0) /∈ S







1(x0, y0) → (x0, y0)
m(x0, y0) → (−x0, y0)
rπ(x0, y0) → (−x0,−y0)

In fact, one may wonder what happens if we choose for S other sets of
points, for example, different polygons. As our next example, we will look
at a rectangle S. We write the rectangle S as

S = {(a, b), (−a, b), (−a,−b), (a,−b)} , a 6= b, a, b 6= 0. (2.2)

(It is important that a 6= b! see (2.3 if a = b).)
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Symmetries of different shapes… 

• Let us start with geometric objects: 

Symmetries of the Rectangle (I) 

• Let m be the vertical mirror reflection. 

• Let r be a rotation of 180 degrees. 

• Let 1 be the do-nothing symmetry. 

• What is rm?  

 

 

 

a b 

c d 

a b 

c d 

c 

a b 

d 

This is the 

horizontal 

mirror 

reflection! 
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Let us apply mv on S:

mv(a, b) = (−a, b), mv(−a, b) = (a, b),

mv(−a,−b) = (a,−b), mv(a,−b) = (−a,−b)
as well as rπ:

rπ(a, b) = (−a,−b), rπ(−a, b) = (a,−b),
rπ(−a,−b) = (a, b), rπ(a,−b) = (−a, b).

These two maps are different and have different effects on S since rπ(a, b) =
(−a,−b) 6= (−a, b) = mv(a, b). We now try to compose them. We already
have mv(mv(x, y)) = 1(x, y), and

rπ (rπ(x, y)) = rπ(−x,−y) = (x, y) = 1(x, y).

We continue with

rπ (mv(x, y)) = rπ(−x, y) = (x,−y), mv (rπ(x, y)) = mv(−x,−y) = (x,−y)
which both give a horizontal mirror reflection mh, also showing that

rπmv = mvrπ = mh,

i.e., the transformations rπ and mv commute. In turn, we immediately have

(rπmv)
2 = rπmvrπmv = rπmvmvrπ = rπ1rπ = rπrπ = 1.

The rules for combining elements from {1,mv, rπ,mvrπ}






mv1 = mv = 1mv

rπ1 = rπ = 1rπ
m2
v = 1

r2π = 1
mvrπ = rπmv

show that no new transformations will ever be obtained since we have

r(αi)
π = rαi mod 2

π , m(βi)
v = mβi mod 2

v , πα1mβ1
v r

α2
π m

β2
v · · · = r(

∑

αi) mod 2
π m(

∑

βi) mod 2
v .

Hence we have obtained a complete set of transformations for the shape S
summarized in its multiplication table (we write m = mv for short):

1 m rπ mrπ

1 1 m rπ mrπ
m m 1 mrπ rπ
rπ rπ mrπ 1 m
mrπ mrπ rπ m 1
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Symmetries of the Rectangle (II) 

We thus have identified 4 symmetries: 

• 1=the identity map 

• m=vertical mirror reflection 

• r=rotation of 180 degrees 

• rm=horizontal mirror reflection 

 

Note that 

• m2=1 

• r2=1 

• (rm)2=1 

• rm=mr 

 

 

Symmetries of the Rectangle (III) 

1 r m rm 

1 1 r m rm 

r r 1 rm m 

m m rm 1 r 

rm rm m r 1 
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We next study the symmetries of a square, that is we consider the set

S4 : {(a, a), (−a, a), (a,−a)(−a,−a)} (2.3)

(this is the case where a = b in (2.2)).
As for the two previous examples, we first need to see what are all the

planar isometries we need to consider. There are four mirror reflections that
map S4 to itself:

m1 = mv : (x, y) 7→ (−x, y) with respect to the y-axis

m2 : (x, y) 7→ (y, x) with respect to the line y = x

m3 = mh : (x, y) 7→ (x,−y) with respect to the x-axis

m4 : (x, y) 7→ (−y,−x) with respect to the line y = −x

Note that
mi(mi(x, y)) = 1(x, y), i = 1, 2, 3, 4.

There are also three (counterclockwise) rotations (about the origin 0=(0,0)):

rπ/2 : (x, y) 7→ (x cos π/2− y sin π/2, x sin π/2 + y cos π/2) = (−y, x)
rπ : (x, y) 7→ (x cos π − y sin π, x sin π + y cos π) = (−x,−y)

r3π/2 : (x, y) 7→ (x cos 3π/2− y sin 3π/2, x sin 3π/2 + y cos 3π/2) = (y,−x)

and r2π = 1. Rotations are easy to combine among each others! For example

rπ = rπ/2rπ/2

r3π/2 = rπ/2rπ/2rπ/2

and we can give the part of the multiplication table which involves only
rotations. We summarize all the rotations by picking one rotation r whose
powers contain the 4 rotations rπ/2, rπ, r3π/2, 1. We can choose r = rπ/2 and
r = r3π/2, though in what follows we will focus on r = r3π/2 = r−π/2, the
rotation of 90 degrees clockwise, or 270 degrees counterclockwise:

1 r r2 r3

1 1 r r2 r3

r r r2 r3 1
r2 r2 r3 1 r
r3 r3 1 r r2
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Let us try to compose mirror reflections with rotations. For that, we pick
first

m = mh : (x, y) 7→ (x,−y), r = r3π/2 : (x, y) 7→ (y,−x),
and compute what is rm and mr (you can choose to do the computations
with another reflection instead of mh, or with r = rπ/2 instead of r = r3π/2.)
We get

r(m(x, y)) = r(x,−y) = (−y,−x), m(r(x, y)) = m(y,−x) = (y, x)

and since S4 = {(a, a), (−a, a), (a,−a)(−a,−a)}, we see that for example

r(m(a, a)) = (−a,−a), m(r(a, a)) = (a, a)

and these two transformations are different! We also notice something else
which is interesting:

rm = m4 = reflection with respect to the line y = −x
and

mr = m2 = reflection with respect to the line y = x.

Since rm 6= mr and we want to classify all the symmetries of the square S4,
we need to fix an ordering to write the symmetries in a systematic manner.
We choose to first write a mirror reflection, and second a rotation (you could
choose to first write a rotation and second a mirror reflection, what matters
is that both ways allow you to describe all the symmetries, as we will see
now!) This implies that we will look at all the possible following symmetries,
written in the chosen ordering:

rm, r2m, r3m.

We have just computed rm, so next we have

r2m(x, y) = r2(x,−y) = r(−y,−x) = (−x, y) (2.4)

and by applying r once more on (2.4) we get

r3m(x, y) = r(−x, y) = (y, x)

showing that

r2m = reflection with respect to the y−axis
and

r3m = mr = reflection with respect to the line y = x.
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Symmetries of the Square (III) 

a b 

c 

c d 

a b 

d 

a 

c 

b 

d a 

a 

a 

b 

b 

b 

c 

c 

c 

d 

d 

d 

= rm 

= mr 

• The composition of two symmetries = another symmetry! 

• r=rotation of 90 deg (CW) or 270 deg (CCW), m=horizontal 

reflection 

m4 

m2 

Symmetries of the Square (IV) 

So what is mr? 
c 

a b 

d a 

b 

c 

d 

a b 

c d a 

c 

b 

d 

a 

b 

c 

d 

= r3 m 

•  We saw that mr is not equal to rm.  

•  Thus we need to decide an ordering to write the  symmetries.     

•  We choose rm,r2m,r3m. 
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It is a good time to start summarizing all what we have been doing!
Step 1. We recognize that among all the planar isometries, there are 8 of
them that are symmetries of the square S4, namely:

1. m1= reflection with respect to the y-axis,

2. m2= reflection with respect to the line y = x,

3. m3= reflection with respect to the x-axis,

4. m4= reflection with respect to the line y = −x,

5. the rotation rπ/2,

6. the rotation rπ,

7. the rotation r3π/2,

8. and of course the identity map 1!

Step 2. We fixed m = m3 and r = r3π/2 and computed all the combinations
of the form rimj, i = 1, 2, 3, 4, j = 1, 2, and we found that

rm = m4

r2m = m1

r3m = m2

which means that we can express all the above 8 symmetries of the square
as rimj, and furthermore, combining them does not give new symmetries!

We can thus summarize all the computations in the following multiplica-
tion table.

1 m r r2 r3 rm r2m r3m

1 1 m r r2 r3 rm r2m r3m
m m 1 r3m r2m rm r3 r2 r
r r rm r2 r3 1 r2m r3m m
r2 r2 r2m r3 1 r r3m m rm
r3 r3 r3m 1 r r2 m rm r2m
rm rm r m r3m r2m 1 r3 r2

r2m r2m r2 rm m r3m r 1 r3

r3m r3m r3 r2m rm m r2 r 1



38 CHAPTER 2. SYMMETRIES OF SHAPES

Symmetries of the Square (V) 

1 m r r2 r3 rm r2m r3m 

1 1 m r r2 r3 rm r2m r3m 

m m 1 r3m r2m rm r3 r2 r 

r r rm r2 r3 1 r2m r3m m 

r2 r2 r2m r3 1 r r3m m rm 

r3 r3 r3m 1 r r2 m rm r2m 

rm rm r m r3m r2m 1 r3 r2 

r2m r2m r2 rm m r3m r 1 r3 

r3m r3m r3 r2m rm m r2 r 1 

Symmetries and Structure 

A figure with many symmetries looks more structured! 
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In the first chapter, we defined and classified planar isometries. Once
we know what are all the possible isometries of plane, in this chapter, we
focus on a subset of them: given a set of points S, what is the subset of
planar isometries that preserves S. We computed three examples: (1) the
symmetries of two points, (2) the symmetries of the rectangle, and (3) that
of the square. We observed that the square has more symmetries (8 of them!)
than the rectangle (4 of them). In fact, the more “regular” the set of points
is, the more symmetries it has, and somehow, the “nicer” this set of points
look to us!
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Exercises for Chapter 2

Exercise 6. Determine the symmetries of an isosceles triangle, and compute
the multiplication table of all its symmetries.

Exercise 7. Determine the symmetries of an equilateral triangle, and com-
pute the multiplication table of all its symmetries.

Exercise 8. Determine the symmetries of the following shape, and compute
the multiplication table of all its symmetries.

Exercise 9. Let z = e2iπ/3.

1. Show that z3 = 1.

2. Compute the multiplication table of the set {1, z, z2}.

3. Compare your multiplication table with that of Exercise 8. What can
you observe? How would you interpret what you can see?

Exercise 10. In the notes, we computed the multiplication table for the
symmetries of the square. We used as convention that entries in the table
are of the form rimj. Adopt the reverse convention, that is, write all entries
as mjri and recompute the multiplication table. This is a good exercise if
you are not yet comfortable with these multiplication tables!



Chapter 3

Introducing Groups

“We need a super-mathematics in which the operations are as un-
known as the quantities they operate on, and a super-mathematician
who does not know what he is doing when he performs these oper-
ations. Such a super-mathematics is the Theory of Groups.” (Sir
Arthur Stanley Eddington, physicist)

The first two chapters dealt with planar geometry. We identified what
are the possible planar isometries, and then, given a set S of points in the
plane, we focused on the subset of planar isometries that preserves this given
set S. These are called symmetries of S. We saw that planar isometries,
respectively symmetries, can be composed to yield another planar isometry,
respectively symmetry. Every planar isometry is invertible. Every symmetry
of a given set S is invertible as well, with as inverse another symmetry of S.

We now put a first step into the world of abstract algebra, and introduce
the notion of a group. We will see soon that groups have close connections
with symmetries!

Definition 4. A group G is a set with a binary operation (law) · satisfying
the following conditions:

1. For all g1, g2 ∈ G⇒ g1 · g2 ∈ G.

2. The binary law is associative.

3. There is an identity element e in G, such that g · e = e · g = g, ∀g ∈ G.

4. Every element g ∈ G has an inverse g−1, such that g ·g−1 = g−1 ·g = e.

41
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Definition of Group 

    A group G is a set with a binary operation · which maps a pair 

               (g,h) in GxG  to g·h in G,               

     which satisfies:  

• The operation is associative, that is to say (f·g)·h=f·(g·h) for 

any three (not necessarily distinct) elements of G. 

• There is an element e in G, called an identity element, such 

that g·e=g=e·g for every g in G. 

• Each element g of G has an inverse g-1  which belongs to G and 

satisfies g-1 ·g=e=g·g-1   .     

Notations! 

• The binary operation can be written multiplicatively, 

additively, or with a symbol such as *. 

• We used the multiplicative notation. 

• If multiplicatively, the identity element is often written 1. 

• If additively, the law is written +, and the identity element is 

often written 0. 
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There are many things to comment about this definition! We understand
what a set G means. Now we consider this set together with a binary opera-
tion (also called binary law). This binary operation can be different things,
depending on the nature of the set G. As a result, this operation can be
denoted in different ways as well. Let us see some of them. We will write
the set and the law as a pair, to make explicit the binary operation:

• In multiplicative notation, we write (G, ·), and the identity element is
often written 1, or 1G if several groups and their identity elements are
involved.

• In additive notation, we write (G,+), and the identity element is often
written 0, or 0G.

• There could be more general notations, such as (G, ∗), when we want
to emphasize that the operation can be very general.

The multiplicative notation really is a notation! For example, ifm denotes
a mirror rotation and r a rotation, the notation r ·m (or in fact rm for short)
means the composition of maps, since multiplying these maps does not make
sense! It is thus important to understand the meaning of the formalism that
we are using!

There are 4 key properties in the definition of group. Let us use the
multiplicative notation here, that is we have a group (G, ·).

1. If we take two elements in our group G, let us call them g1, g2, then
g1 · g2 must belong to G.

2. The binary operation that we consider must be associative.

3. There must exist an identity element.

4. Every element must have an inverse.

If any of these is not true, then we do not have a group structure.
It is interesting to notice that the modern definition of group that we just

saw was in fact proposed by the mathematician Cayley, back in 1854!
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To get used to the formalism of the group definition, let us try to make
a small proof.

Proposition 1. Let (G, ·) be a group, with identity element e. Then this
identity element is unique.

Proof. To prove that e is unique, we will assume that there is another identity
element e′, and show that e = e′. Let us thus do so, and assume that both e
and e′ are identity elements of G.

We now recall what is the definition of an identity element. If e is an
identity element, then it must satisfy

e · g = g · e = g (3.1)

for every element g of G, and e′ must similarly satisfy

e′ · g = g · e′ = g (3.2)

for every element g of G.
Now we know that (3.1) is true for every element in G, thus it is true for

e′ as well, and
e · e′ = e′.

We redo the same thing with e′. Because (3.2) is true for every element in
G, then it is true for e, which gives

e · e′ = e.

Now we put these two equations together, to obtain

e · e′ = e′ = e⇒ e′ = e.

A group becomes much simpler to understand if its binary operation is
in fact commutative. We give such groups a particular name.

Definition 5. Let (G, ·) be a group. If the binary operation · is commutative,
i.e., if we have

∀g1, g2 ∈ G, g1 · g2 = g2 · g1,
then the group is called commutative or abelian (in honor of the mathe-
matician Abel (1802-1829)).

When a group is abelian, its binary operation is often denoted additively,
that is (G,+).
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A first proof 

• To get used to some group formalism, let us try to prove that 
the identity element of a group is unique. 

 

• Proof  Suppose by contradiction that there are two elements  
e and e’ which are ďoth an identity eleŵent.  

    Because e is an identity element, we have 

                           e·e’=e’. 
 

    Because e’ is also an identity eleŵent, we haǀe  
                          e·e’ =e. 
 

     Hence  e·e’ = e’ =e , which concludes the proof. 
 

 

Commutativity? 

Niels Henrik Abel  

(1802 – 1829) 

•     Let G be a group. If for every g,h in G, we have g·h = h·g, 

we say that G is commutative, or abelian.  

•      Otherwise, we say that G is non-

commutative or non-abelian. 
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Suppose we have a group with a given binary operation. We now look at
subsets of this group, which also have a group structure with respect to the
same binary operation!

Definition 6. If (G, ·) is a group and H is a subset of G, so that (H, ·) is a
group too, we shall call (H, ·) a subgroup of G.

Note again that the above definition can be written in additive notation.
We may consider the subgroup H = G as a subgroup of G. Another

example of subgroup which is always present in any group G is the trivial
subgroup formed by the identity element only!

Let us use the multiplicative notation, and let (G, ·) be a group with
identity element 1. Now we need to check that H = {1} is indeed a subgroup
of G. It is of course a subset of G, so we are left to check that it has a group
structure. Well, all we need to know here is that 1 · 1 = 1, which is true from
the fact that G is a group. This shows at once that (1) combining elements
of H gives an element in H, (2) there is an identity element in H, and (3)
the element of H is invertible (it is its own inverse in fact). There is no need
to check the associativity of the binary law here, since it is inherited from
that of G.

If H is a subgroup of G, they are both groups, and the size of H is always
smaller or equal to that of G. The size of a group G has a name, we usually
refer to it as being the order of the group G.

Definition 7. If (G, ·) is a group, the number of elements of G (i.e., the
cardinality of the set G) is called the order of the group G. It is denoted by
|G|.

For example, to write formally that the size of a subgroup H of G is
always smaller or equal to that of G, we write: |H| ≤ |G|.

A group G can be finite (|G| < ∞) or infinite (|G| = ∞)! We will see
examples of both types.

Be careful here: the word “order” means two different things
in group theory, depending on whether we refer to the order of a group,

or to the order of an element!!

We next define the order of an element in a group.
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A Group inside a Group 

• If G is a group, and H is a subset of G which is a group with 

respect to the binary operation of G, then H is called a 

subgroup of G. 

(H =G is a subgroup of G.) 

The trivial Group 

• The set containing only the identity element is a group, 

sometimes called the trivial group. 

 

• It is denoted by 

– {0} (additive notation)  

–  {1} (multiplicative notation) . 

 

• Every group contains the trivial group as a subgroup. 
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From now on, we will adopt the multiplicative notation, and very often
when things are clear enough even remove the · notation. For example, we
will write g1g2 instead of g1 · g2.

Definition 8. Let G be a group with identity element e. The order of an
element g in G is the smallest positive integer k such that

ggg · · · g
︸ ︷︷ ︸

k times

= gk = e.

Note that such a k might not exist! In that case, we will say that g has
an infinite order. The notation for the order of an element g varies, it is
sometimes denoted by |g|, or o(g).

One might wonder why we have two concepts of order, with the same
name. It suggests they might be related, and in fact they are, but this is
something we will see only later!

Let (G, ·) be a group whose order is |G| = n, that is G contains a finite
number n of elements. Suppose that this group G contains an element g
whose order is also n, that is an element g such that

gn = e

and there is no smaller positive power k of g such that gk = e. Then

g, g2, . . . , gn−1, gn = e

are all distinct elements of G. Indeed should we have some gs = gs+t for
t < n then by multiplying both sides with g−s, we would get that gt = 1 for
t < n, a contradiction to the minimality of n!

But the group, by assumption, has only n distinct elements, hence we
must have that

G = {1, g, g2, . . . , gn−1}.
If this is the case, we say that (G, ·) is generated by g, which we write
G = 〈g〉.

These types of groups are very nice! In fact they are the simplest form
of groups that we will encounter. They are called cyclic groups.
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Order of a Group/Order of an Element 

     The cardinality of a group G is called the order of G and is 
denoted by |G|. 
 

 

 
• A group can be finite or infinite.  

The order of an element g in G is the smallest positive integer k 

such that gk=1. If no such k exist, the order is ∞. 

•  Does having the same name mean that there is a link between   

the order of a group and order of an element?  

• Actually yes….ďut not so easy to see… 

When order of element = order of group 

• Let G be a group of finite order n (|G|=n). 

• What happens if there exists an element g in the group G such 

that the order of g =n? 

• This means gn=1, and there is no k>0 smaller such that gk=1. 

• This means that G is exactly described by G={1,g,g2,g3,…,gn-1}. 

• In this case, we say that G is a cyclic group. 
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Definition 9. A group G will be called cyclic if it is generated by an element
g of G, i.e.,

G = 〈g〉 = {gm|m ∈ Z}.

Notice that this definition covers both the case of a finite cyclic group (in
that case, gn = e for some n, and this set is indeed finite) and of an infinite
cyclic group.

To start with, cyclic groups have this nice property of being abelian
groups.

Proposition 2. Cyclic groups are abelian.

Proof. To show that a group is abelian, we have to show that

g1g2 = g2g1

for any choice of elements g1 and g2 in G. Now let G be a cyclic group. By
definition, we know that G is generated by a single element g, that is

G = 〈g〉 = {gn|n ∈ Z}.

Thus both g1 and g2 can be written as a power of g:

g1 = gi, g2 = gj

for some power i and j, and thus, thanks to the associativity of the binary
operation

g1g2 = gigj = gi+j = gjgi = g2g1

which concludes the proof.

Let us summarize what we have been doing so far in this chapter.

• We defined this abstract notion of group.

• Using it, we defined more abstract things: an abelian group, the order
of a group, the order of an element of a group, the notion of subgroup,
and that of cyclic group.

• We also saw that based only on these definitions, we can start proving
results, such as the uniqueness of the identity element, or the fact that
cyclic groups are abelian.
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Cyclic Group 

     A group G is said to be cyclic if it is generated by one element 

g in G. It is written G=<g>. 

 
• If G=<g>, we have in multiplicative notation G={1,g,g2,g3,…,gn-1}, 

while in additive notation G={0,g,2g,...,(n-1)g} with ng=0.  

• A cyclic group is abelian. 

• Proof: gigj=gjgi 

 

g g2 =1 
A cyclic group of order 2 

for all g,h in G, we have g·h = h·g 

Associativity! 

What  we did so far… 

• We stated an abstract definition of group. 

• Based on it only, we built new abstract objects (abelian group, 

subgroup and cyclic group) and definitions (order of group 

and element). 

GROUP 

ABELIAN 

GROUP 
SUBGROUP 

GROUP 

ORDER 

ELEMENT 

ORDER 

CYCLIC 

GROUP 
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This might look really abstract, which is somewhat normal since this is a
first step into abstract algebra. However, you already know all these abstract
objects, because you saw them already in the two previous chapters! These
definitions are abstracting mathematical properties that we observed. We
will spend the rest of this chapter to convince you that this is indeed the
case.

We will use a lot the notion of multiplication table for the rest of this
chapter. We note that they are sometimes called Cayley tables.

Recall from the previous chapter that we have obtained the complete set
of symmetries for a rectangle, whose multiplication table we recall below (we
write m = mv for the vertical mirror reflection):

1 m rπ mrπ

1 1 m rπ mrπ
m m 1 mrπ rπ
rπ rπ mrπ 1 m
mrπ mrπ rπ m 1

First of all, let us see that the symmetries of a rectangle form a group G,
with respect to the binary operation given by the composition of maps.

• Composition of symmetries yields another symmetry (this can be ob-
served from the multiplication table).

• Composition of symmetries is associative.

• There exists an identity element, the identity map 1.

• Each element has an inverse (itself!) This can be seen from the table
as well!

This shows that the set of symmetries of a rectangle forms a group. Note
that this group is abelian, which can be seen from the fact that the multipli-
cation table is symmetric w.r.t. the main diagonal.

Of course, that the set of symmetries of a rectangle forms an abelian
group can be shown without computing a multiplication table, but since we
know it, it gives an easy way to visualize the group structure.



54 CHAPTER 3. INTRODUCING GROUPS

What’s the link? 

Where is the connection 

with what we did in 

the first chapter ?? 

These definitions are 

abstracting 

mathematical 

properties we 

already observed! 

Recall: Symmetries of the Rectangle  

1 r m rm 

1 1 r m rm 

r r 1 rm m 

m m rm 1 r 

rm rm m r 1 

• Let m be the vertical mirror reflection. 

• Let r be a reflection of 180 degrees. 

• Let 1 be the do-nothing symmetry. 

• rm is the horizontal mirror reflection. 

 

 

a b 

c d 

Cayley 

Table 
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The group of symmetries of the rectangle has order 4.
Let us look at the order of the elements:

m2 = 1, r2 = 1, (rm)2 = 1,

thus these elements have order 2.
We next look at the subgroups:

• The trivial subgroup {1} is here.

• We have that {1, r} forms a subgroup of order 2.

• Similarly {1,m} forms a subgroup of order 2.

• Finally {1, rm} also forms a subgroup of order 2.

We can observe that these are the only subgroups, since by adding a 3rd
element to any of them, we will get the whole group! Let us illustrate this
claim with an example. Let us try to add to {1, r}, say m. We get H =
{1, r,m} but for this set H to be a group, we need to make sure that the
composition of any two maps is in H! Clearly rm is not, so we need to add
it if we want to get a group, but then we get G!

We further note that all the subgroups are cyclic subgroups! For example,
{1,m} = 〈m〉. But G itself is not a cyclic group, since it contains no element
of order 4.

Let us summarize our findings:

Let G be the group of symmetries of the rectangle.

1. It is an abelian group of order 4.

2. Apart from the identity element, it contains 3 elements of order 2.

3. It is not a cyclic group.

4. It contains 3 cyclic subgroups of order 2.
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Group of Symmetries of the Rectangle  

• The symmetries of the rectangle form a group G, with respect 

to composition: 

     G={1,r,m,rm} 

 

 

 

• The identity element 1 is the do-nothing symmetry. 

• It is a group of order 4. 

• It is an abelian group. (the multiplication table is symmetric) 

Check List: 

 closed under binary operation  

 associativity 

Identity element 

Inverse 
 

Subgroups and Orders 

1 r m rm 

1 1 r m rm 

r r 1 rm m 

m m rm 1 r 

rm rm m r 1 

• Can you spot subgroups?  

• {1,m}, {1,r}, {1,rm}  are subgroups. 

 

• They are all cyclic subgroups! 

• All elements have order 2 (but 1=do -nothing). 

 

 

 

Order of group =2, there is an 

element of order 2 
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Let us now look at our second example, the symmetries of the square.
We recall that there are 8 symmetries:

1. m1= reflection with respect to the y-axis,

2. m2= reflection with respect to the line y = x,

3. m3= reflection with respect to the x-axis,

4. m4= reflection with respect to the line y = −x,

5. the rotation rπ/2,

6. the rotation rπ,

7. the rotation r3π/2,

8. and of course the identity map 1!

By fixing m = m3 and r = r3π/2, we also computed that

rm = m4

r2m = m1

r3m = m2

which allowed us to compute the following multiplication (Cayley) table.

1 m r r2 r3 rm r2m r3m

1 1 m r r2 r3 rm r2m r3m
m m 1 r3m r2m rm r3 r2 r
r r rm r2 r3 1 r2m r3m m
r2 r2 r2m r3 1 r r3m m rm
r3 r3 r3m 1 r r2 m rm r2m
rm rm r m r3m r2m 1 r3 r2

r2m r2m r2 rm m r3m r 1 r3

r3m r3m r3 r2m rm m r2 r 1
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Recall: Symmetries of the Square  

1. Do-nothing 

2. Reflection in mirror m1 

3. Reflection in mirror m2 

4. Reflection in mirror m3 

5. Reflection in mirror m4 

6. Rotation of 90 degrees 

7. Rotation of 180 degrees 

8. Rotation of 270 degrees 

m1 

m2 

m3 

m4 

Multiplication Table 

1 m r r2 r3 rm r2m r3m 

1 1 m r r2 r3 rm r2m r3m 

m m 1 r3m r2m rm r3 r2 r 

r r rm r2 r3 1 r2m r3m m 

r2 r2 r2m r3 1 r r3m m rm 

r3 r3 r3m 1 r r2 m rm r2m 

rm rm r m r3m r2m 1 r3 r2 

r2m r2m r2 rm m r3m r 1 r3 

r3m r3m r3 r2m rm m r2 r 1 

Cayley 

Table 
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Let us check that the symmetries of the square form a group. We consider
the set

G = {1, r, r2, r3,m,mr,mr2,mr3}
together with the composition of maps as binary law. Then we have

• closure under the binary composition, that is the composition of two
symmetries is again a symmetry,

• the composition is associative,

• there exists an identity element,

• each element has an inverse (this can be seen in the table, since every
row has a 1!)

We just showed that G is a group.
It is a group of order 8, which is not abelian, since rm 6= mr. Note that

as a result G cannot be cyclic, since we proved that every cyclic group is
abelian!

We next look at possible subgroups of G. Let us try to spot some of
them.

• We have that {1,m} forms a subgroup of order 2. It contains an element
m of order 2, thus it is cyclic!

• Another subgroup can be easily spotted by reordering the rows and
columns of the Cayley table. This is {1, r, r2, r3}, which is a subgroup
of order 4. It contains one element of order 4, that is r, and thus it is
cyclic as well! It also contains one element of order 2, that is r2. The
element r3 also has order 4.

• The subgroup {1, r, r2, r3} itself contains another subgroup of order 2,
given by {1, r2}, which is cyclic of order 2.

We have now spotted the most obvious subgroups, let us see if we missed
something.
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Group of Symmetries of the Square 

• The  set of symmetries of the square form a group G, with 

respect to composition. 

      G={1,m,r, r2,r3, rm, r2m, r3m}. 

 

 

 

 

• The identity element 1 is the do-nothing symmetry. 

• It is a group of order 8. 

• It is a non-abelian group. 

Check List: 

 closed under binary operation 

 associativity 

Identity element 

Inverse 
 

Can you spot Subgroups? (I)  

1 m r r2 r3 rm r2m r3m 

1 1 m r r2 r3 rm r2m r3m 

m m 1 r3m r2m rm r3 r2 r 

r r rm r2 r3 1 r2m r3m m 

r2 r2 r2m r3 1 r r3m m rm 

r3 r3 r3m 1 r r2 m rm r2m 

rm rm r m r3m r2m 1 r3 r2 

r2m r2m r2 rm m r3m r 1 r3 

r3m r3m r3 r2m rm m r2 r 1 

 

 closed under binary operation 

 associativity 

Identity element 

Inverse 
 

<m> is a cyclic group of order 2! 
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If we take the subgroup {1, r, r2, r3} and try to add one more element,
say m, we realize that rm, r2m,... must be there as well, and thus we get
the whole group G.

Let us try to add some more elements to the subgroup {1,m}. If we add
r, then we need to add all the power of r, and we obtain the whole group G
again.

Alternatively we could try to add r2 to {1,m}. Then we get H =
{1,m, r2, r2m,mr2}, and this we have that r2m = mr2. Thus we managed to
find another subgroup, this time of order 4. It contains 3 elements of order
2.

We had identified the subgroup {1, r2}. If we addm, we find the subgroup
H again. If we add rm, we find another subgroup given by {1, r2, rm, r3m}.

Finally, we had mentioned at the beginning that {1,m} forms a subgroup
of order 2. But this is true for every mirror reflection, and we have more
than one such reflection: we know we have 4 of them! Thus to each of them
corresponds a cyclic subgroup of order 2.

We list all the subgroups of G that we found.

LetG be the group of symmetries of the square. Here is a list of its subgroups.

1. Order 1: the trivial subgroup {1}.

2. Order 2: the cyclic groups generated by the 4 reflections, that is {1,m},
{1, rm}, {1, r2m} and {1, r3m}, together with {1, r2}.

3. Order 4: we have {1, r, r2, r3} which is cyclic, and {1,m, r2, r2m,mr2}
together with {1, r2, rm, r3m} which are not cyclic.

It is interesting to recognize the group of symmetries of the rectangle, which
makes sense, since a square is a special rectangle.

You are right to think that finding all these subgroups is tedious! In fact,
finding the list of all subgroups of a given group in general is really hard.
However there is nothing to worry about here, since we will not try for bigger
groups, and for the symmetries of the square, it was still manageable.
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 closure under binary operation  

 associativity 

Identity element 

Inverse 
 

Can you spot Subgroups? (II) 

1 r r2 r3 m rm r2m r3m 

1 1 r r2 r3 m rm r2m r3m 

r r r2 r3 1 rm r2m r3m m 

r2 r2 r3 1 r r2m r3m m rm 

r3 r3 1 r r2 r3m m rm r2m 

m m r3m r2m rm 1 r3 r2 r 

rm rm m r3m r2m r 1 r3 r2 

r2m r2m rm m r3m r2 r 1 r3 

r3m r3m r2m rm m r3 r2 r 1 

<r> is a cyclic group of order 4! 

 

 closure under binary operation 

 associativity 

Identity element 

Inverse 
 

Can you spot Subgroups? (III) 

1 r2 rm r3m r r3 m r2m 

1 1 r2 rm r3m r r3 m r2m 

r2 r2 1 r3m rm r3 r r2m m 

rm rm r3m 1 r2 m r2m r r3 

r3m r3m rm r2 1 r2m m r3 r 

r r r3 r2m m r2 1 rm r3m 

r3 r3 r m r2m 1 r2 r3m rm 

m m r2m r3 r r3m rm 1 r2 

r2m r2m m r r3 rm r3m r2 1 

<r2> is a cyclic group of order 2! 
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We finish this example by summarizing all that we found about the group
of symmetries of the square.

Let G be the group of symmetries of the square.

1. It is a group of order 8.

2. Apart from the identity element, it contains 7 elements, 5 of order 2,
and 2 of order 4.

3. It is not a cyclic group.

4. In fact, it is not even an abelian group.

5. It contains 5 cyclic subgroups of order 2, 1 cyclic subgroup of order
4, and 2 subgroups of order 4 which are not cyclic, for a total of 8
non-trivial subgroups.

In the first two chapters, we explained mathematically nice geometric
structures using the notion of symmetries. What we saw in this chapter is
that symmetries in fact have a nice algebraic structure, that of a group. What
we will do next is study more about groups! Once we have learnt more, we
will come back to symmetries again, and see that we can get a much better
understanding thanks to some group theory knowledge.
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Can you spot Subgroups? (IV) 

1 r2 rm r3m r r3 m r2m 

1 1 r2 rm r3m r r3 m r2m 

r2 r2 1 r3m rm r3 r r2m m 

rm rm r3m 1 r2 m r2m r r3 

r3m r3m rm r2 1 r2m m r3 r 

r r r3 r2m m r2 1 rm r3m 

r3 r3 r m r2m 1 r2 r3m rm 

m m r2m r3 r r3m rm 1 r2 

r2m r2m m r r3 rm r3m r2 1 

 

 closed under binary operation  

 associativity 

Identity element 

Inverse 
 

Is this group cyclic? What is it? 

Group of symmetries of the rectangle! 

Subgroups and Orders 

    In our group G ={1,m,r, r2,r3, rm, r2m, r3m} we have harvested 

as subgroups: 

• The obvious subgroups: G and {1}  

• The cyclic subgroups: <m> and <r2> of order 2, <r> of order 4 

• More difficult : the group of symmetries of the rectangle 

 

• Orders of elements: r of order 4, m of order 2, r2 of order 2 

• Do you notice? 4 and 2 are divisors of |G| (not a 

coincidence…ŵore laterͿ 
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Exercises for Chapter 3

Exercise 11. In Exercise 7, you determined the symmetries of an equilateral
triangle, and computed the multiplication table of all its symmetries. Show
that the symmetries of an equilateral triangle form a group.

1. Is it abelian or non-abelian?

2. What is the order of this group?

3. Compute the order of its elements.

4. Is this group cyclic?

5. Can you spot some of its subgroups?

Exercise 12. Let z = e2iπ/3. Show that {1, z, z2} forms a group.

1. Is it abelian or non-abelian?

2. What is the order of this group?

3. Compute the order of its elements.

4. Is this group cyclic?

5. Can you spot some of its subgroups?

Exercise 13. Let X be a metric space equipped with a distance d.

1. Show that the set of bijective isometries of X (with respect to the
distance d) forms a group denoted by G.

2. Let S be a subset of X. Define a symmetry f of S as a bijective
isometry of X that maps S onto itself (that is f(S) = S). Show that
the set of symmetries of S is a subgroup of G.

Exercise 14. Let G be a group. Show that right and left cancellation laws
hold (with respect to the binary group operation), namely:

g2 · g1 = g3 · g1 ⇒ g2 = g3,

g3 · g1 = g3 · g2 ⇒ g1 = g2,

for any g1, g2, g3 ∈ G.
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Exercise 15. Let G be an abelian group. Is the set

{x ∈ G, x = x−1}

a subgroup of G? Justify your answer.

Exercise 16. Let G be a group, and let H be a subgroup of G. Consider
the set

gH = {gh, h ∈ H}.

1. Show that |gH| = |H|.

2. Is thet set
{g ∈ G, gH = Hg}

a subgroup of G?

Exercise 17. Let G be a group, show that

(g1g2)
−1 = g−1

2 g−1
1 ,

for every g1, g2 ∈ G. This is sometimes called the “shoes and socks property”!

Exercise 18. In a finite group G, every element has finite order. True or
false? Justify your answer.

Exercise 19. This exercise is to practice Cayley tables.

1. Suppose that G is a group of order 2. Compute its Cayley table.

Guided version.

• Since G is of order 2, this means it has two elements, say G =
{g1, g2}. Decide a binary law, say a binary law that is written
multiplicatively.

• Now use the definition of group to identify that one of the two
elements must be an identity element 1. Then write the Cayley
table.

• Once you have written all the elements in the table, make sure
that this table is indeed that of group! (namely make sure that
you used the fact that every element is invertible).
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2. Suppose that G is a group of order 3. Compute its Cayley table.

Exercise 20. Consider the set Mn(R) of n× n matrices with coefficients in
R. For this exercise, you may assume that matrix addition and multiplication
is associative.

1. Show that Mn(R) is a group under addition.

2. Explain why Mn(R) is not a group under multiplication.

3. Let GLn(R) be the subset of Mn(R) consisting of all invertible matri-
ces. Show that GLn(R) is a multiplicative group. (GLn(R) is called a
General Linear group).

4. Let SLn(R) be the subset of GLn(R) consisting of all matrices with
determinant 1. Show that SLn(R) is a subgroup of GLn(R). (SLn(R)
is called a Special Linear group).

5. Explain whether SLn(R) is a subgroup of Mn(R)
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Chapter 4

The Group Zoo

“The universe is an enormous direct product of representations
of symmetry groups.” (Hermann Weyl, mathematician)

In the previous chapter, we introduced groups (together with subgroups,
order of a group, order of an element, abelian and cyclic groups) and saw as
examples the group of symmetries of the square and of the rectangle. The
concept of group in mathematics is actually useful in a variety of areas beyond
geometry and sets of geometric transformation. We shall next consider many
sets endowed with binary operations yielding group structures. We start
with possibly the most natural example, that of real numbers. Since both
addition and multiplication are possible operations over the reals, we need
to distinguish with respect to which we are considering a group structure.

Example 1. We have that (R,+) is a group.

• R is closed under addition, which is associative.

• ∀x ∈ R, x+ 0 = 0 + x = x, hence 0 is the identity element.

• ∀x ∈ R, ∃(−x) ∈ R, so that x+ (−x) = 0.

Example 2. We have that (R∗, ·), where R∗ = R\{0}, forms a group:

• R∗ is closed under multiplication, which is associative.

• ∀x ∈ R∗, x · 1 = 1 · x = x, hence 1 is the identity element.

• ∀x ∈ R∗, ∃x−1 = 1
x
, so that x · ( 1

x
) = ( 1

x
) · x = 1.

Both (R,+) and (R∗, ·) are abelian groups, of infinite order (|R| = ∞,
|R∗| = ∞).
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Consider the set of integers Z.

Definition 10. We say that a, b ∈ Z are congruent modulo n if their differ-
ence is an integer multiple of n. We write

a ≡ b mod n⇔ a− b = t · n, t ∈ Z.

Example 3. Here are a few examples of computation.

• 7 ≡ 2 mod 5 because 7− 2 = 1 · 5,

• −6 ≡ −1 mod 5 because −6− (−1) = (−1) · 5,

• −1 ≡ 4 mod 5 because −1− 4 = (−1) · 5,

• −6 ≡ 4 mod 5 because 4− (−6) = 2 · 5.
We are of course interested in finding a group structure on integers

mod n. To do so, we first need to recall what are equivalence classes.

Proposition 3. Congruence mod n is an equivalence relation over the
integers, i.e., it is a relation that is reflexive, symmetric and transitive.

Proof. We need to verify that congruence mod n is indeed reflexive, symmet-
ric, and transitive as claimed.

Reflexive: it is true that a ≡ a mod n since a− a = 0 · n.

Symmetric: we show that if a ≡ b mod n then b ≡ a mod n. Now a ≡ b
mod n ⇐⇒ a− b = tn ⇐⇒ b− a = (−t)n ⇐⇒ b ≡ a mod n.

Transitive: we show that if a ≡ b mod n and b ≡ c mod n then a ≡
c mod n. Now if a − b = t1n and b − c = t2n, then a − c = a − b + b − c =
(t1 + t2)n, showing that a ≡ c mod n.

Given an equivalence relation over a set, this relation always partitions it
into equivalence classes. In particular, we get here:

Theorem 4. Congruence mod n partitions the integers Z into (disjoint)
equivalence classes, where the equivalence class of a ∈ Z is given by

ā = {b ∈ Z, a ≡ b mod n}.
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More Numbers : Integers mod n 

    For a positive integer n, two integers a and b are said to be 

congruent modulo n if their difference a − b is an integer 

multiple of n: 

                     a = b mod n. 
 
 
 

 

Example: 

          7 = 2 mod 5  

    since 7-2 is a multiple of 5. 

We have a =b mod n   a-b = 0 mod n  n | a-b  a-b =nq 

 a =nq +b 
 

Integers mod 12 

• Integers mod 12 can be represented by 

{0,1,2,3,4,5,6,7,8,9,10,11}  

• Suppose it is 1pm, add 12 hours, this gives 1 am. 

6 5 
4 

3 

2 

1 

7 

12 

8 

9 

10 

11 
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Proof. Recall first that a “partition” refers to a disjoint union, thus we have
to show that

Z =
⋃

a∈Z

ā =
⋃

a∈Z

{b ∈ Z, a ≡ b mod n}

where ā ∩ ā′ is empty if ā 6= ā′. Since a runs through Z, we already know
that Z =

⋃

a∈Z ā, thus the real work is to show that two equivalence classes
are either the same or disjoint. Take

ā = {b ∈ Z, a ≡ b mod n}, ā′ = {b′ ∈ Z, a′ ≡ b′ mod n}.
If the intersection ā ∩ ā′ is empty, the two sets are disjoint. Let us thus
assume that there is one element c which belongs to the intersection. Then

c ≡ a mod n and c ≡ a′ mod n⇒ c = a+ tn = a′ + sn

for some integers s, t. But this shows that

a− a′ = sn− tn = (s− t)n⇒ a ≡ a′ mod n

and we concluce that the two equivalence classes are the same.

Note that a ≡ b mod n ⇐⇒ a − b = t · n ⇐⇒ a = b + tn, which
means that both a and b have the same remainder when we divide them by n.
Furthermore, since every integer a ∈ Z can be uniquely represented as a =
tn+r with r ∈ {0, 1, 2, . . . , (n−1)}, we may choose r as the representative
of a in its equivalence class under congruence mod n, which simply means
that integers mod n will be written {0̄, 1̄, 2̄, . . . , n− 1}.

Let us define now addition of integers mod n:

(a mod n) + (b mod n) ≡ (a+ b) mod n.

When we write a mod n, we are chosing a as a representative of the equiva-
lence class ā, and since the result of the addition involves a, we need to make
sure that it will not change if we pick a′ as a representative instead of a!

Proposition 4. Suppose that a′ ≡ a mod n, and b′ ≡ b mod n, then (a′ mod
n)± (b′ mod n) ≡ (a± b) mod n.

Proof. Since a′ ≡ a mod n, and b′ ≡ b mod n, we have by definition that

a′ = a+ qn, b′ = b+ rn, q, r ∈ Z

hence

a′ ± b′ = (a+ qn)± (b+ rn) = (a± b) + n(q ± r) ≡ a± b mod n.
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Equivalence Relation 

Being congruent mod n is an equivalence relation. 

• It is reflexive: a = a mod n 

• It is symmetric: if a=b mod n, then b=a mod n. 

• It is transitive: if a=b mod n and b=c mod n, then a=c mod n 
 

 

What it ŵeaŶs: ǁe ideŶtifǇ all eleŵeŶts ǁhiĐh aƌe ͞the 
saŵe͟ as oŶe eleŵeŶt, aŶ eƋuiǀaleŶt Đlass! 

Thus if a = b mod n, they are in the same equivalence class. 

We work with a representative of an equivalence class, it does 

not matter which (typically between 0 and n-1). 

Addition modulo n 

    Let us define addition mod n: 

    (a mod n) + (b mod n) = (a+b) mod n 

 

 
 
 
 

Take  a’ = a ŵod Ŷ, ď’=ď ŵod Ŷ,  theŶ it ŵust ďe tƌue that ;a’ 
ŵod ŶͿ + ;ď’ ŵod ŶͿ = ;a+b) mod n. 

a’ =a ŵod Ŷ  a’ = a +qn for some q 

ď’ =ď  ŵod Ŷ  ď’ = b+rn for some r 

Thus (a+qn)+(b+rn) = (a+b) + n(q+r) = a+b mod n. 

Pƌoďleŵ: giǀeŶ a aŶd Ŷ, theƌe aƌe ŵaŶǇ a’ suĐh that a = a’ 
ŵod Ŷ, iŶ faĐt, all the a’ iŶ the equivalence class of a. 

Thus additioŶ should ǁoƌk iŶdepeŶdeŶtlǇ of the ĐhoiĐe of a’, 
that is, independently of the choice of the representative! 
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All this work was to be able to claim the following:
The integers mod n together with addition form a group G,

where by integers mod n we mean the n equivalence classes

G = {0, 1, 2, . . . , n− 1},
also denoted by Z/nZ, and by addition, the binary law

a+ b = (a+ b) mod n.

We indeed fullfil the definition of a group:

• Closure: since (a+ b) mod n ∈ G.

• Associativity.

• The identity element is 0, since a+ 0 = a mod n = a.

• The inverse of a is n− a, since a+ n− a = n mod n = 0.

We further have that G is commutative. Indeed a1 + a2 = a2 + a1 (by
commutativity of regular addition!).

Therefore G is an abelian group of order n. The group G of integers mod
n has in fact more properties.

Proposition 5. The group G of integers mod n together with addition is
cyclic.

Proof. We have that G has order |G| = n. Recall that for a group to be
cyclic, we need an element of G of order n, that is an element ā such that
(in additive notation)

ā+ . . . ā = nā = 0̄.

We take for ā the element 1, which when repeatedly composed with itself
will generate all the elements of the group as follows:







1 + 1 = 2

1 + 1 + 1 = 3

...

1 + 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

(n−1) times

= n− 1

1 + 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n times

= n = 0.
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Example 4. The group (Z/2Z,+) of integers mod 2 has Cayley table

0 1

0 0 1
1 1 0

and forms a cyclic group of order 2 (Z/2Z = 〈1〉, 12 = 1 + 1 = 0).

Example 5. The group (Z/3Z,+) of integers mod 3 has Cayley table

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

This is a cyclic group of order 3: Z/3Z = 〈1〉 = 〈2〉.
Example 6. The Cayley table of the group (Z/4Z,+) of integers mod 4 is

0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

This is a cyclic group: (Z/4Z,+) = 〈1〉 = 〈3〉. The subgroup 〈2〉 = {0, 2} of
(Z/4Z,+) has a Cayley table quite similar to that of (Z/2Z,+)!

0 2

0 0 2
2 2 0

A “historical” use of integers modulo n is credited to the Roman emperor
Julius Caesar (100 BC 44 BC), who apparently was communicating with his
army generals using what is now called Caesar’s cipher. A modern way of
explaining his cipher is to present it as an encryption scheme eK defined by

eK(x) = x+K mod 26, K = 3

where x is an integer between 0 and 25, corresponding to a letter in the
alphabet (for example, 0 7→A,...,25 7→Z). This is a valid encryption scheme,
because it has a decryption function dK such that dK(eK(x)) = x for every
integer x mod 26.
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Integers mod 4  

0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 

 

 

 

• Integers mod 4 = { 0,1,2,3} (choice of representatives!) 

• Order of the elements?  

 
0 has order 1 

1 has order 4 

2 has order 2 

3 has order 4 

It is a cyclic 

group! 

Can you spot a subgroup? 

0 2 1 3 

0 0 2 1 3 

2 2 0 3 1 

1 1 3 2 0 

3 3 1 0 2 

 

 

 

 

• {0,2} is a subgroup of order 2. It is cyclic! 
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After studying integers modulo n with respect to addition, we consider
multiplication. First, we check that

(a mod n) · (b mod n) ≡ (a · b) mod n

does not depend on the choice of a representative in a mod n and b mod n.

Proposition 6. Suppose that a′ ≡ a mod n and b′ ≡ b mod n, then (a′

mod n) · (b′ mod n) ≡ (a · b) mod n.

Proof. We write a′ = a+qn, b′ = b+rn and compute a′·b′ = (a+qn)(b+rn) =
ab+ n(ar + qb+ n) as needed!

This operation obeys (1) closure, (2) associativity, and (3) there exists an
identity element 1̄: a · 1̄ = a. But not every a has an inverse! For an inverse
ā−1 of ā to exist, we need aa−1 = 1 + zn, where z ∈ Z.

Example 7. If n = 4, 2 cannot have an inverse, because 2 multiplied by any
integer is even, and thus cannot be equal to 1 + 4z which is odd.

To understand when an inverse exists, we will need the Bézout’s Identity.

Theorem 5. Let a, b be integers, with greatest common divisor gcd(a, b) = d.
Then there exist integers m,n such that

am+ bn = d.

Conversely, if am′ + bn′ = d′ for some integers m′, n′, then d divides d′.

Proof. Recall that the Euclidean Algorithm computes gcd(a, b)! Suppose
b < a. Then we divide a by b giving a quotient q0 and remainder r0:

a = bq0 + r0, r0 < b. (4.1)

Next we divide b by r0: b = r0q1+r1, r1 < r0, and r0 by r1: r0 = r1q2+r2, r2 <
r1 and we see the pattern: since rk+1 < rk, we divide rk by rk+1

rk = rk+1qk+2 + rk+2, rk+2 < rk+1. (4.2)

Each step gives us a new nonnegative remainder, which is smaller than the
previous one. At some point we will get a zero remainder: rN = rN+1qN+2+0.



80 CHAPTER 4. THE GROUP ZOO

Caesar’s Cipher 

To send secrete messages to his generals, Caesar is said to 

have used the following cipher. 

eK: ǆ → eK(x)=x+K mod 26, K=3 

Map A to Ϭ,…,) to Ϯϱ aŶd deĐipheƌ this 
message from Caesar:  YHQL YLGL YLFL 

It is a well-defined cipher because 

there is a function dK   such that 

dK(eK (x))=x for every x integer 

mod 26.                                  

Integers mod n and Multiplication? 

Are integers mod n a group under multiplication? 

• No! not every element is invertible. 

• Example: 2 is not invertible mod 4 

Etienne Bezout  

(1730 –1783) 

Proof.  Bezout’s identity! There are integers x,y such that 

ax+ny=gcd(a,n), and if aǆ’+ŶǇ’=d theŶ gcd(a,n)|d. 

• If gcd(a,nͿ =ϭ → ax+ny =1 for some x,y → aǆ =ϭ ŵod Ŷ→ a iŶǀeƌtiďle.  

Invertible elements mod n are those integers 

modulo n which are coprime to n. 

• If a iŶǀeƌtiďle → aǆ=ϭ ŵod Ŷ foƌ soŵe ǆ → ax+ny=1 for some y 

   → gcd(a,nͿ|ϭ → gcd(a,n)=1 

Need to check well 

defined, like for addition! 



81

We now show inductively that d = gcd(a, b) is equal to rN+1. The line
(4.1) shows that gcd(a, b) divides r0. Hence gcd(a, b) | gcd(b, r0). Sup-
pose that gcd(a, b) | gcd(rN−1, rN). Since rN−1 = rNqN+1 + rN+1, we have
that gcd(rN−1, rN) divides both rN+1 and rN thus it divides gcd(rN+1, rN).
Thus gcd(a, b)| gcd(rN−1, rN)| gcd(rN , rN+1) = rN+1. On the other hand,
backtracking, we see that rN+1 divides a, b: rN+1 | rN thus since rN−1 =
rNqN+1 + rN+1, we have rN+1 | rN−1, . . .

To show Bézout’s identity, we write d = rN+1 = rN−1− rNqN+1, and sub-
stitute for each remainder its expression in terms of the previous remainders

rk+2 = rk − rk+1qk+2

all the way back until the only terms involved are a, b. This gives that
d = rN+1 = am+ bn for some m,n ∈ Z, as desired.

Conversely, let d′ be a positive integer. Suppose that am′ + bn′ = d′ for
some integers m′, n′. By definition of greatest common divisor, d divides a
and b. Thus there exist integers a′, b′ with a = da′ and b = db′, and

da′m′ + db′n′ = d′.

Now d divides the two terms of the sum, thus it divides d′.

We are ready to characterize integers mod n with a multiplicative inverse.

Corollary 1. The integers mod n which have multiplicative inverses are
those which are coprime to n, i.e. , {ā, | gcd(a, n) = 1}.
Proof. If gcd(a, n) = 1, Bézout’s identity tells us that there exist x, y ∈ Z

such that ax+ ny = 1. Thus ax = 1 + (−y)n and x is the inverse of a.
Conversely, if there is an x such that ax = 1̄ then ax = 1 + yn ⇐⇒

ax − yn = 1 for some y ∈ Z. By Bézout’s identity, we have gcd(a, n) | 1,
showing that gcd(a, n) = 1.

The set (Z/nZ)∗ of invertible elements mod n forms a group under multiplication.

Indeed (a) closure holds: (ab)−1 = (b
−1
)(a−1) ∈ (Z/nZ)∗, (b) associativity

holds, (c) the identity element is 1̄, (d) every element is invertible (we just
proved it!).

What is the order of this group?

|(Z/nZ)∗| = #{a ∈ {0, 1, 2, . . . , (n− 1)} | gcd(a, n) = 1} = ϕ(n),

where ϕ(n) is a famous function called the Euler totient, which by definition
counts the number of positive integers coprime to n.
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Group of Invertible modulo n 

     The set of invertible elements mod n form a group under 

multiplication. 

•  This group is closed: the product of two invertible elements is 

invertible. 

•  Multiplication is associative, the identity element is 1 (the    

equivalence class of 1). 

•  Every element has an inverse.   

Its order is the Euler totient function            

By definition it counts how many integers are coprime to n. 

Roots of Unity 

    We call a complex number z an nth root of unity if z n =1. 

     Thus z= e2iπ/n is an nth root of unity because (e2iπ/n )n=1. 

     An nth root of unity z is called primitive if n is the smallest 
positive integer such that zn=1. 

 

Example: 

We have that i is a 4rth root of unity, because i4=1. 

Also -1 is  a 4rth root of unity, because (-1)4=1. 

Now i is primitive, because i2 ≠ 1, i3 ≠ 1. 
But (-1) is not primitive because (-1)2=1. 
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Let us see one more example of a group. From the complex numbers, a
very special discrete set is that of nth roots of unity, which by definition is

ω(n) = {w ∈ C | wn = 1} = {ei 2πn k, k = 1, 2, . . . , n},
since (ei

2π
n
k)n = ei2πk = 1 for any k ∈ Z. Note that the polynomialXn−1 = 0

has at most n roots, and we found already n of them, given by ei
2π
n
k, k =

1, . . . , n, thus there is no another nth root of unity.

The set ω(n) of nth roots of unity forms a group under multiplication.

Indeed, (a) closure is satistifed: ei
2π
n
k1ei

2π
n
k2 = ei

2π
n
(k1+k2) ∈ ω(n), (b) as is

associativity. (c) The identity element is 1. Finally (d) every element in ω(n)

is invertible: (ei
2π
n
k1)−1 = ei

2π
n
(−k1).

We also have commutativity since ei
2π
n
k1ei

2π
n
k2 = ei

2π
n
(k1+k2) = ei

2π
n
k2ei

2π
n
k1 .

An nth root of unity ω is said to be primitive if n is the smallest positive
integer for which ωn = 1. But then, since ω(n) has n elements, all the nth
roots of unity are obtained as a power of ω! For example, take ω = ei

2π
n (you

may want to think of another example of primitive nth root of unity!), then

{ωk = ei
2π
n
k, k = 1, . . . , n} = ω(n).

We just proved the following:

Proposition 7. The group (ω(n), ·) of nth roots of unity is a cyclic group of

order n generated by a primitive nth root of unity, e.g. ω = ei
2π
n .

Example 8. Consider (ω(3), ·) = ({1, ei 2π3 , ei 2π3 2}, ·). There are two primitive

roots of unity. Set ω = ei
2π
3 . The Cayley table of (ω(3), ·) is

1 ω ω2

1 1 ω ω2

ω ω ω2 1
ω2 ω2 1 ω

Example 9. Consider (ω(4), ·) = ({1, i,−1,−i}, ·), with Cayley table

1 i -1 −i
1 1 i -1 −i
i i -1 −i 1
-1 -1 −i 1 i
−i −i 1 i -1

So i is a primitive 4th root of unity since i 6= 1, i2 = −1, i3 = −i, i4 = 1
and 〈i〉 = ω(4), but −1 is not a primitive root because (−1)2 = 1.
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So far we have seen many examples of groups: integers mod n with addi-
tion, invertible integers mod n with multiplication, nth roots of unity with
multiplication, R with addition, R∗ with multiplication, and all those groups
we saw as symmetries (that of the square, of the rectangle, of triangles...)
with composition. Among them, some were infinite, some were finite, some
were cyclic, some not, some of the groups were abelian, some were not.

The time has come (“the Walrus said” . . .) to sort things out a bit, and
try to ”quantify” the similarity or dissimilarity of the group structures we
encountered in our “group zoo”.

We start here to develop tools for analyzing and classifying group struc-
ture. Suppose we are given two groups (G, ·) and (H, ∗) with possibly differ-
ent sets G, H and respective binary operation · and ∗.

Definition 11. A map f : G→ H which obeys

f(gl · gk
︸ ︷︷ ︸

in G

)

︸ ︷︷ ︸

in H

= f(gl) ∗ f(gk)
︸ ︷︷ ︸

in H

, for all gk, gl ∈ G

is called a group homomorphism.

Recall that a map f : G→ H which takes elements of the set G and pairs
them with elements of H is called

• injective or one-to-one, if no two different elements g1, g2 of G map to
the same h ∈ H, i.e., f(g1) 6= f(g2) if g1 6= g2.

• surjective or onto if for all h ∈ H, there exists g ∈ G so that f(g) = h.

• bijective if it is both injective and surjective.

Definition 12. If f : G→ H is a group homomorphism and also a bijection,
then it is called a group isomorphism. We then say that G and H are
isomorphic, written G ≃ H.

Maybe it will be easier to remember this word by knowing its origin:
iso ≡ same, morphis ≡ form or shape. Let us see a first example of group
homomorphism.
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Example 10. Consider the group (Z/4Z,+) of integers mod 4, as in Exam-
ple 6, with Cayley table

0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

and the group (ω(4), ·) of 4rth roots of unity whose Cayley table

1 i -1 −i
1 1 i -1 −i
i i -1 −i 1
-1 -1 −i 1 i
−i −i 1 i -1

was computed in Example 9. These two groups are isomorphic, which can
be seen on the Cayley tables, because they are the same, up to a change of
labels (1 ↔ 0,i↔ 1,−1 ↔ 2,−i↔ 3). Formally, we define a map

f : (Z/4Z,+) → (ω(4), ·), m 7→ im.

Firstly, we need to check that it is well defined, that is, if we choose m′ ≡ m
mod 4, then f(m′) = f(m) :

f(m′) = f(m+ 4r) = im+4r = im, r ∈ Z.

It is a group homomorphism, since f(n+m) = im+n = inim = f(n)f(m). It
is also a bijection: if f(n) = f(m), then in = im and n ≡ m mod 4, which
shows injectivity. The surjectivity is clear (check that every element has a
preimage, there are 4 of them to check!)
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4rth roots of unity vs Integers mod 4 

0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

1 i -1 -i 

1 1 i -1 -i 

i i -1 -i 1 

-1 -1 -I 1 i 

-i -i 1 i -1 

The tǁo taďles aƌe the saŵe, up to a ĐhaŶge of laďels: ϭ ↔ Ϭ,i↔ϭ,-ϭ ↔Ϯ,-i ↔ϯ 

Let us defiŶe a ŵap f: {iŶtegeƌs ŵod ϰ} → {ϰƌth ƌoot of uŶitǇ}, Ŷ → in 

• It is a group homomorphism: f(n+m)= im +n= im in = f(n)f(m). 

• It is a bijection: if f(n)=f(m) then in =im → Ŷ=ŵ ŵod ϰ shoǁs injectivity. This is 

clearly surjective. 

Integers mod 4 vs Rotation of 2∏/4 

0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

1 r r2 r3 

1 1 r r2 r3 

r r r2 r3 1 

r2 r2 r3 1 r 

r3 r3 1 r r2 

The tǁo taďles aƌe the saŵe, up to a ĐhaŶge of laďels: ϭ ↔ Ϭ,ƌ↔ϭ, r2↔Ϯ, r3↔ϯ 

Let us defiŶe a ŵap f: {iŶtegeƌs ŵod ϰ} → {ƌotatioŶ of Ϯπ/ϰ}, Ŷ → rn 

• It is a group homomorphism: f(n+m)= rm +n= rm rn = f(n)f(m). 

• It is a bijection: if f(n)=f(m) then rn =rm → Ŷ=ŵ ŵod ϰ shoǁs injectivity. This is 

clearly surjective. 
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Example 11. Similarly, we can show that the group (Z/4Z,+) is isomorphic
to the group of rotations by an angle of 2π/4, whose Cayley table is

1 r r2 r3

1 1 r r2 r3

r r r2 r3 1
r2 r2 r3 1 r
r3 r3 1 r r2

by considering the map

f : (Z/4Z,+) → (rotations of the square, ◦), n 7→ rn.

It is well-defined (as in the above example) and is a group homomorphism,
since f(n + m) = rm+n = rnrm = f(n)f(m). It is also a bijection: if
f(n) = f(m), then rn = rm and n ≡ m mod 4, which shows injectivity. The
surjectivity is clear as above.

Let us summarize briefly what happened in this chapter. In the first
half, we showed that we already know in fact more groups than we thought!
The list includes the integers modulo n with addition, the invertible integers
modulo n with multiplication, the roots of unity, etc

We then decided to start to classify a bit all these groups, thanks to the
notion of group isomorphism, a formal way to decide when two groups are
essentially the same! We then showed that integers mod 4, 4rth roots of
unity, and rotations of the square are all isomorphic! We will see more of
group classification in the coming chapters!
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Exercises for Chapter 4

Exercise 21. We consider the set C of complex numbers.

1. Is C a group with respect to addition?

2. Is C a group with respect to multiplication?

3. In the case where C is a group, what is its order?

4. Can you spot some of its subgroups?

Exercise 22. Alice and Bob have decided to use Caesar’s cipher, however
they think it is too easy to break. Thus they propose to use an affine cipher
instead, that is

eK(x) = k1x+ k2 mod 26, K = (k1, k2).

Alice chooses K = (7, 13), while Bob opts for K = (13, 7). Which cipher do
you think will be the best? Or are they both equally good?

Exercise 23. Show that the map f : (R,+) → (R∗, ·), x 7→ exp(x) is a
group homomorphism.

Exercise 24. Show that a group homomorphism between two groups G and
H always maps the identity element 1G to the identity element 1H .

Exercise 25. In this exercise, we study a bit the invertible integers modulo
n.

1. Take n = 5, and compute the group of invertible integers modulo 5.
What is the order of this group? Can you recognize it? (in other
words, is this group isomorphic to one of the groups we have already
classified?)

2. Take n = 8, and compute the group of invertible integers modulo 8.
What is the order of this group? Can you recognize it? (in other words,
is this group isomorphic to one of the

groups we have already classified?)
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Exercise 26. Let f be a group homomorphism f : G→ H where G and H
are two groups. Show that

f(g−1) = f(g)−1.

Exercise 27. Consider the group (Z,+) of integers under addition. Let H
be a subgroup of Z.

1. Show that H is of infinite order.

2. Use the Euclidean division algorithm to show that H is generated by
a single element.

3. Find a subset of Z which forms a multiplicative group.

Here is a guided version of this exercise. Please try to do the normal version
first!

1. Recall first what the order of a group is, to understand what it means
for H to be of infinite order. Once this is clear, you need to use one
of the properties of a group! If you cannot see which one, try each of
them (can you cite the 4 of them?) and see which one will help you!

2. This one is more difficult. You will need to use a trick, namely use the
minimality of some element...In every subgroup of Z, there is a smallest
positive integer (pay attention to the word“subgroup” here, this does
not hold for a subset!).

3. To have a multiplicative group (that is a group with respect to mul-
tiplication), you need to define a set, and make sure this set together
with multiplication satisfies the usual 4 properties of a group!

Exercise 28. When we define a map on equivalence classes, the first thing
we must check is that the map is well defined , that is, the map is independent
of the choice of the representative of the equivalence class. In this exercise
we give an example of a map which is not well defined .

Recall the parity map sgn : Z → Z/2

sgn(2k + 1) 7→ 1

sgn(2k) 7→ 0

Let Z/5Z be the group of integers modulo 5. Let us attempt to define the
map sgn : ā 7→ sgn(a). Show that sgn is not well-defined on Z/5Z.
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Chapter 5

More Group Structures

“The theory of groups is a branch of mathematics in which one
does something to something and then compares the results with
the result of doing the same thing to something else, or something
else to the same thing. Group theory lets you see the similarities
between different things, or the ways in which things can’t be dif-
ferent, by expressing the fundamental symmetries.”(J. Newman,
Mathematics and the Imagination.)

In the 4 previous chapters, we saw many examples of groups, coming from
planar isometries and from numbers. In Chapter 4, we started to classify a
bit some of our examples, using the notion of group isomorphism. The goal
of this chapter is to continue this classification in a more systematic way!

What happened in Examples 10 and 11 is that the three groups considered
(the integers mod 4, the 4rth roots of unity, and the rotations of the square)
are all cyclic of order 4. As we shall see next, all cyclic groups of a given
order are in fact isomorphic. Hence, from a structural point they are the
same. We shall call the equivalent (up to isomorphism) cyclic group of order
n, or the infinite cyclic group, as respectively

the cyclic group Cn of order n if n <∞, or the infinite cyclic group C∞ otherwise.

Theorem 6. Any infinite cyclic group is isomorphic to the additive group
of integers (Z,+). Any cyclic group of order n is isomorphic to the additive
group (Z/nZ,+) of integers mod n.

Before starting the proof, let us recall that (Z,+) is cyclic, since Z =
〈1〉 = 〈−1〉. Its order is |Z| = ∞.

93
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The Cyclic Group Cn 

• We just saw 3 cyclic groups of order 4, all of them with same 

ŵultipliĐatioŶ taďle. TheǇ aƌe esseŶtiallǇ the ͞same group ,͟ 
thus to analyze them, there is no need to distinguish them. 

Theorem. An infinite cyclic group is isomorphic to the additive 

group of integers, while a cyclic group of order n is isomorphic 

to the additive group of integers modulo n. 

This is also saying that there is exactly one cyclic group (up 

to isomorphism) whose order is n, denoted by Cn and there 

is exactly one infinite cyclic group. 

Proof of Theorem 

Part 1 

• Let G be an infinite cyclic group, G=<x>, g of order infinite. 

Define the map f:{group of integers}→G, f;ŶͿ=xn. 

• This is a group homorphism: f(m+n)= xn+m = xn xm=f(m)f(n). 

• This is a bijection, thus we have a group isomorphism. 

 

 

 

 

A cyclic group is generated by one 

element (multiplicative notation) 

Part 2 

•  Let G be a cyclic group of order n, G=<x>, with g of order n.  

    Define the map f:{group of integers mod n}→G, f;ŶͿ= xn. 

•  This is a group homorphism: f(m+n)= xn+m = xn xm=f(m)f(n). 

•  This is a bijection, thus we have a group isomorphism. 
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Proof. Let G be a cyclic group. Whether it is finite or not, a cyclic group is
generated by one of its elements g, i.e., 〈g〉 = G. Define the map

{
f : Z → G, k 7→ f(k) = gk if |G| = ∞
f : Z/nZ → G, k 7→ f(k) = gk if |G| = n <∞.

Note that f : Z/nZ → G is well-defined, since it does not depend on the
choice of k as a representative of the equivalence class of k mod n. Indeed,
if k′ ≡ k mod n, then k′ = k + sn for some integer s, and

f(k′) = f(k + sn) = gk+sn = gkgsn = gk.

This map is bijective (one-to-one and onto) and

f(k + l) = gk+l = gk · gl = f(k) · f(l),

hence it is a homomorphism that is bijective. It is then concluded that f is
an isomorphism between the integers and any cyclic group.

Example 12. With this theorem, to prove that the integers mod 4, the 4rth
roots of unity, and the rotations of the square are isomorphic, it is enough
to know that are all cyclic of order 4. Thus

C4 ≃ (Z/4Z,+) ≃ (ω(4), ·) ≃ (rotations of the square, ◦).

We can summarize the cyclic groups encountered so far:

group Cn order n
integers mod n (+) Cn order n
nth roots of unity (·) Cn order n
rotations of regular polygons with n sides Cn order n
symmetries of isosceles triangles C2 order 2
(Z,+) C∞ infinite order

Now that we know that cyclic groups are all just instances of the abstract
cyclic group Cn for some n ∈ N or n = ∞, we can ask ourselves how much
structure exists in Cn as a function of the properties of the number n ∈ N.
This is important, because every instance of Cn will naturally inherit the
structure of Cn! We start with the subgroups of Cn.
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Idea of the Proof 

1=g0 g-1 g1 g2 g-2 

-2                -1              0               1                2 

integers 

cyclic group 
         <g> 

f 

Cyclic Groups seen so far 

Group order Cn 

integers mod n n Cn 

nth roots of unity n Cn 

Symmetries of the 

isosceles triangle 

2 C2 

 

Subgroup of rotations of 90 

degrees of the square 

4 C4 

 

Subgroup {0,2} of the 

integers mod 4 

2 C2 
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Theorem 7. Subgroups of a cyclic group are cyclic.

Proof. Let (G, ·) be a cyclic group, denoted multiplicatively, finite or infinite.
By definition of cyclic, there exists an element g ∈ G so that G = 〈g〉. Now
let H be a subgroup of G. This means that H contains 1. If H = {1}, it is a
cyclic group of order 1. If H contains more elements, then necessarily, they
are all powers of g. Let m be the smallest positive power of g that belongs
to H, i.e., gm ∈ H (and g, g2, . . . , gm−1 /∈ H). We must have by closure
that 〈gm〉 is a subgroup of H. Assume for the sake of contradiction that
there exists gt ∈ H, t > m and gt /∈ 〈gm〉. Then by the Euclidean division
algorithm,

t = mq + r, 0 < r < m− 1.

Therefore
gt = gmq+r = gmqgr ∈ H,

and since gmq is invertible, we get

g−mq
︸︷︷︸

∈H

gt
︸︷︷︸

∈H

= gr ⇒ gr ∈ H.

But r is a positive integer smaller than m, which contradicts the minimality
of m. This shows that g must belong to 〈gm〉 (i.e., r = 0) and hence 〈gm〉
will contain all elements of the subgroup H, which by definition is cyclic and
generated by g.

We next study the order of elements in a cyclic group.

Theorem 8. In the cyclic group Cn, the order of an element gk where 〈g〉 =
Cn is given by |gk| = n/ gcd(n, k).

Proof. Recall first that g has order n. Let r be the order of gk. By definition,
this means that (gk)r = 1, and r is the smallest r that satisfies this. Now
we need to prove that r = n/ gcd(n, k), which is equivalent to show that (1)
r| n

gcd(n,k)
and (2) n

gcd(n,k)
|r.

Step 1. We know that gkr = 1 and that g has order n. By definition of
order, kr ≥ n. Suppose that kr > n, then we apply the Euclidean division
algorithm, to find that

kr = nq + s, 0 ≤ s < n⇒ gkr = gnqgs = gs ∈ G

and s must be zero by minimality of n. This shows that n | rk .
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Subgroups of a Cyclic Group 

Proposition  

Subgroups of a cyclic group are cyclic. 

Proof.  G is a cyclic group, so G=<x>. Let H be a subgroup of G. If 

H={1}, then it is cyclic. Otherwise, it contains some powers of x.  

We denote by m the smallest power of x in H, and <xm> ≤ H. 

<xm> subgroup 

of H 

Let us assume that there is some other xi in H, then 

by minimality of m, i>m, and we can compute the 

Euclidean division of i by m: xi = xmq+r, Ϭ ≤ƌ<ŵ.  

Thus xr in H and by minimality of m, r=0, so that xi = xmq and 

every element in H is in <xm> . 

A cyclic group is generated by one 

element (multiplicative notation) 

Order of  Elements in a Cyclic Group 

Proposition. Let G be a cyclic group of order n, generated by g.  

Then the order of gk  is |gk|=n/gcd(n,k).  

Before we start the proof, let us check this statement makes sense! 

  If k =n, then gk = gn =1 and n/gcd(n,k)=n/n=1 thus |1|=1. 

  If k=1, then gk =g and n/gcd(n,k)=n thus |g|=n. 

Recall that G is cyclic generated by g means that G={1, g, g2,…, 
gn-1}, and gn=1. 

Order is the smallest positive 

integer r such that (gk)r is 1 
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Step 2. Using
gcd(n, k)|n and gcd(n, k)|k,

with n|kr, we get n
gcd(n,k)

| k
gcd(n,k)

r.

Step 3. But gcd( n
gcd(n,k)

, k
gcd(n,k)

) = 1 from which we obtain n
gcd(n,k)

|r
which conclude the proof of (2)! We are now left with (1), namely show that
r must divide n/ gcd(n, k).
Step 4. Note that

(gk)n/ gcd(n,k) = (gn)k/ gcd(n,k) = 1.

Now we know that r is the smallest integer that satisfies (gk)r = 1 thus
n/ gcd(n, k) ≥ r, and using again the Euclidean division algorithm as we did
in Step 1, we must have that

n

gcd(n, k)
= qr + s⇒ (gk)

n
gcd(n,k) = (gk)qr+s, 0 ≤ s < r.

This would imply
1 = 1 · gs ⇒ s = 0.

Hence r| n
gcd(n,k)

.

Example 13. The order of 1 is |1| = |gn| = n
gcd(n,n)

= 1, and the order of g

is |g| = n
gcd(n,1)

= n.

Combining the fact that a cyclic group of order n has cyclic subgroups
generated by its elements {gk}, and the fact that the orders of these elements
are |gk| = n/ gcd(n, k), we can prove one more result regarding the order of
subgroups in a cyclic group.

Theorem 9. The order of a (cyclic) subgroup of a group Cn divides the order
of the group.

Proof. We have seen in Theorem 7 that if G = 〈g〉 and H is a subgroup of
G, then

H = 〈gm〉
for some m. We have also seen in Theorem 8 that |gm| is n/ gcd(n,m), hence
|H| = |gm| = n

gcd(n,m)
. Now by definition,

n

gcd(n,m)
|n.
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Proof of the Proposition 

• Given gk, we have to check that its order r is n/gcd(k,n). This is 

equivalent to show that r| n/gcd(k,n) and n/gcd(k,n) | r. 

•   Step 1 : gk  has order r means gkr = 1, which implies n | kr. 

•  Step 2:  gcd(k,n) |k and gcd(k,n)|n thus n/gcd(k,n) | (k/ gcd(k,n))r. 

•  Step 3 : n/gcd(k,n)  and k/gcd(k,n) are coprime thus n/gcd(k,n)|r. 

•  Step 4: only left to show that r | n/gcd(k,n). But (gk )n/gcd(k,n)=1 

thus r | n/gcd(k,n) [if you understood Step 1, this is the same 

argument!]   

n is the smallest integer such that gn =1, thus if gkr =1, kr>n and by Euclidean 

division, kr =nq+s, Ϭ ≤s<Ŷ. But theŶ ϭ=gk r= gnq+s = gs showing that s=0 my 

minimality of n.    

Order of Subgroups in a Cyclic Group 

• We have seen: every subgroup of a cyclic group is cyclic, and if 

G is cyclic of order n generated by g, then gk  has order 

n/gcd(k,n). 

• What can we deduce on the order of subgroups of G? 

•Let H be a subgroup of G. Then H is cyclic by the first result. 

•Since H is cyclic, it is generated by one element, which has to be 

some power of g, say gk. 

•Thus the order of H is the order of its generator, that is n/gcd(n,k). 
 

In particular, the order of a subgroup divides 

the order of the group! 
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The beauty of these results is that they apply to every instance of the
cyclic group Cn. One may work with the integers mod n, with the nth roots
of unity, or with the group of rotations of a regular polygon with n sides, it
is true for all of them that

• all their subgroups are cyclic as well,

• the order of any of their elements is given by Theorem 8,

• and the size of every of their subgroups divides the order of the group.

If we think of the type of searches we did in the first chapters, where we were
looking for subgroups in the Cayley tables, it is now facilitated for cyclic
groups, since we can rule out the existence of subgroups which do not divide
the order of the group!

Example 14. Let us see how to use Theorem 8, for example with 4rth roots
of unity. We know that −1 = i2, thus n = 4, k = 2, and the order of −1 is

n

gcd(n, k)
=

4

2
= 2,

as we know!

Example 15. Let us see how to use Theorem 8, this time with the integers
mod 4. Let us be careful here that the notation is additive, with identity
element 0. Recall that the integers mod 4 are generated by 1. Now assume
that we would like to know the order of 3 mod 4. We know that k = 3 and
n = 4, thus

n

gcd(n, k)
=

4

1
= 4,

and indeed

3+3 = 6 ≡ 2 mod 4, 3+3+3 = 9 ≡ 1 mod 4, 3+3+3+3 = 12 ≡ 0 mod 12.

This might not look very impressive because these examples are small
and can be handled by hand, but these general results hold no matter how
big Cn is!
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Examples 

   Thus these results apply to all the cyclic groups we have seen: 

• nth roots of unity  

• integer mod n 

• rotations of 2π/n 

4rth root of unity/ Integers mod 4 

• We saw that i is a primitive root, thus it generates the cyclic 

group of 4rth roots of unity. 

• To determine the order of -1, we notice that -1= i2.  

• Now we only need to compute n/gcd(n,k)=4/gcd(4,2)=2. 

• What is the order of 3 mod4 ? 

• We recall that the integers mod 4 are generated by 1. 

• Thus 3=k, n=4, and we compute n/gcd(k,n)=4/gcd(3,4)=4. 
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We will now start thinking the other way round! So far, we saw many
examples, and among them, we identified several instances of the cyclic group
Cn (integers mod n with addition, nth roots of unity with multiplication,
rotations of regular polygons with n sides...). We also saw that Cn exists for
every positive integer n. Surely, there are more groups than cyclic groups,
because we know that the group of symmetries of the equilateral triangle
seen in the exercises (let us call it D3 where 3 refers to the 3 sides of the
triangle) and the group of symmetries of the square (let us call it D4, where
4 again refers to the 4 sides of the square) are not cyclic, since they are not
abelian! (and we proved that a cyclic group is always abelian...) The “D”
in D3 and D4 comes from the term “dihedral”.

order n abelian non-abelian
1 C1 ≃ {1}
2 C2

3 C3

4 C4

5 C5

6 C6 D3

7 C7

8 C8 D4

The next natural question is: what are possible other groups out there?
To answer this question, we will need more tools.

Definition 13. Let (G, ·) be a group and let H be a subgroup of G. We call
the set

gH = {gh|h ∈ H}
a left coset of H.

We have that gH is the set of elements of G that we see when we multiply
(i.e., combine using the group operation ·) the specific element g ∈ G with
all the elements of H. Similarly, a right coset of H is given by

Hg = {hg|h ∈ H}.

If the group is not abelian, there is a need to distinguish right and left cosets,
since they might not be the same set!
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It might help to think of a coset as a “translation of a subgroup H” by
some element g of the group.

Example 16. Let G be the group of integers mod 4, and let H be the
subgroup {0, 2}. The coset 1 +H is 1 +H = {1, 3}.

Example 17. Let G be the group of symmetries of the square, denoted by
D4, and let H be the subgroup {1, r, r2, r3} of rotations. The coset Hm is
Hm = {m, rm, r2m, r3m}.

Let us see a few properties of cosets.

Lemma 2. Let G be a group, and H be a subgroup.

1. For every g ∈ G, g ∈ gH and g ∈ Hg.

2. We have gH = H if and only if g ∈ H.

Proof. 1. Since H is a subgroup, 1 ∈ H, hence g · 1 ∈ gH that is g ∈ gH.
Similarly 1 · g ∈ Hg showing that g ∈ Hg.

2. Suppose first that g ∈ H. Then gH consists of elements of H, each
of them multiplied by some element g of H. Since H is a subgroup,
gh ∈ H and gH ⊂ H. To show that H ⊆ gH, note that

g−1h ∈ H ⇒ g(g−1h) ∈ gH ⇒ h ∈ gH

for every h ∈ H!
Conversely, if gH = H, then gh ∈ H for every h, and g · 1 ∈ H.

The next lemma tells us when two cosets are the same set!

Lemma 3. Let G be a group with subgroup H. Then

g1H = g2H ⇐⇒ g−1
1 g2 ∈ H, g1, g2 ∈ G.

Proof. If g1H = g2H, then {g1h|h ∈ H} = {g2h|h ∈ H} and there exists an
h ∈ H such that g1h = g2 · 1, which shows that h = g−1

1 g2 ∈ H.
Conversely, if g−1

1 g2 ∈ H, then g−1
1 g2 = h ∈ H and g2 = g1h which shows

that g2H = g1hH = g1H, where the last equality follows from the above
lemma.



106 CHAPTER 5. MORE GROUP STRUCTURES

How to Visualize Cosets? 

     Write a left coset using the additive notation of the binary 

operation of the group, that is  

                                    g+H={g+h, h in H}. 

      Then a coset of H can be seen as a translation of H! 

 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G. 

The coset 1+H  = {1,3}. 
 

G 
0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G. 

The coset <r>m={m,rm,r2m,r3m} 

D4 
1  r  r2  r3 

m  rm  r2m  r3m 

Same Cosets? 

Again G= {0,1,2,3} integers modulo 4, with subgroup H={0,2}. 

 

 

 All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} . 
 

Some cosets are the same! When does it happen? 

Lemma. We have g1H=g2H if and only if  g1
-1 g2 is in H. 

Proof. If g1H=g2H then g1 ·1 = g2h that is h -1 =g1
-1 g2 which shows 

that g1
-1 g2  is in H.   H is a subgroup! 

Conversely, if g1
-1 g2 is in H, then g1

-1 g2 =h for some h in H, and  

g2 = g1h which shows that g2H= g1
 hH = g1H. 
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We next show that cosets of a given subgroup H of G have the property
of partitioning the group G. This means that G can be written as a disjoint
union of cosets! That

G =
⋃

gH

comes from the fact that g runs through every element of G (and g ∈ gH),
thus the union of all cosets gH will be the group G. To claim that we have a
partition, we need to argue that this is a disjoint union, namely that cosets
are either identical or disjoint.

Proposition 8. Let G be a group with subgroup H, and let g1, g2 be two
elements of G. Then either g1H = g2H or g1H ∩ g2H = ∅.

Proof. If the intersection of g1H and g2G is empty, we are done. So suppose
there exists an element g both in g1H and in g2H. Then

g = g1h = g2h
′

thus
g1hH = g2h

′H ⇒ g1H = g2H,

using Lemma 2.

Example 18. We continue Example 16. Let G be the group of integers mod
4, and let H be the subgroup {0, 2}. The cosets of H are 1+H = {1, 3} and
0 +H = {0, 2}. We have

G = (1 +H) ∪ (0 +H).

Example 19. . We continue Example 17. Let G be the group of symmetries
of the square, denoted by D4, and let H be the subgroup {1, r, r2, r3} of rota-
tions. The cosets of H are Hm = {m, rm, r2m, r3m} and H = {1, r, r2, r3}.
We have

D4 = Hm ∪H.

We need a last property of cosets before proving a fundamental theorem
of group theory!
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Cosets partition the Group! 

     Let G be a group, with subgroup H, and take all the cosets gH of H.  

     Since g takes every value in G, and H contains 1, the union of all 

cosets is the whole group: G= U gH. 

We now prove that two cosets g1H and g2H  are either identical or 

disjoint!  

Suppose there exists an element g both in g1H and in g2H, then g = 

g1h =g2h’. Thus g1hH = g1H = g2h’ H=g2H. 

Cosets partition the Group: Examples 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G. 

The coset 1+H  = {1,3}. 
 

G 

0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G. 

The coset <r>m={m,rm,r2m,r3m} 

D4 
1  r  r2  r3 

m  rm  r2m  r3m 

G = {0,2} U {1, 3} = H U (1+H) 
 D4 = {1,r,r2,r3} U {m  rm  r2m  r3m} 

      = <r> U <r>m 
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Proposition 9. Let G be a group with subgroup H. Then

|H| = |gH|, g ∈ G.

In words, cosets of H all have the same cardinality.

Proof. To prove that the two sets H and gH have the same number of ele-
ments, we define a bijective map (one-to-one correspondence) between their
elements. Consider the map:

λg : H → gH, h 7→ λg(h) = gh.

This map is injective (one to one): indeed

λg(h1) = λg(h2) ⇒ gh1 = gh2

and since g is invertible, we conclude that h1 = h2.
This map is surjective (onto): indeed, every element in gH is of the form

gh, and has preimage h.

Example 20. We continue Example 18. Let G be the group of integers mod
4, and let H be the subgroup {0, 2}. We have

|1 +H| = |{1, 3}| = 2

|H| = |{0, 2}|.

Example 21. We continue Example 19. Let G be the group of symmetries
of the square, denoted by D4, and let H be the subgroup {1, r, r2, r3} of
rotations. We have

|Hm| = |{m, rm, r2m, r3m}| = 4,

|H| = |{1, r, r2, r3}|.

We are finally ready for Lagrange Theorem!
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Cardinality of a Coset 

     We have |gH|=|H| (the cardinality of a coset of H is the 

cardinality of H). 

The two sets gH and H are in bijection.  

Indeed, consider the map λg:H→ gH, that sends h to gh. 

•  for every gh in gH, there exists a preimage, given by h. 

•  if two eleŵents h and h’ are ŵapped to the saŵe eleŵent, 
then gh=gh’, and it ŵust ďe that h=h’. 

Both steps rely on g 

being invertible! 

Cardinality of a Coset: Examples 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G.  
 

G 

0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G.  

D4 
1  r  r2  r3 

m  rm  r2m  r3m 

| H |= |1+H| =2 
 |<r>| = |<r>m| 
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Theorem 10. Let G be a group and H be a subgroup of G. Then

|G| = [G : H]|H|

where [G : H] is the number of distinct left (or right) cosets of H in G. If
|G| is finite, then

[G : H] =
|G|
|H|

and |H| divides |G|.

Note that this also shows that the number of distinct left or right cosets
is the same. It is called the index of H in G.

Proof. We know that the cosets of H partition G, that is

G =
r⋃

k=1

gkH,

where r = [G : H] is the number of distinct cosets of H.
We have also seen that |gH| = |H| in Proposition 9, i.e., all the cosets

have the same cardinality as H. Therefore

|G| =
r∑

k=1

|gkH| = r|H| = [G : H]|H|.

Example 22. We finish Example 16. Let G be the group of integers mod 4,
and let H be the subgroup {0, 2}. The cosets of H are 1 +H = {1, 3} and
0 +H = {0, 2}. Then [G : H] = 2 and

|G| = [G : H]|H| = 2|H| = 4.

Example 23. We also finish Example 17. Let G be the group of symmetries
of the square, denoted by D4, and let H be the subgroup {1, r, r2, r3} of rota-
tions. The cosets of H are Hm = {m, rm, r2m, r3m} and H = {1, r, r2, r3}.
Then [G : H] = 2 and

|D4| = [G : H]|H| = 2|H| = 8.
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Lagrange Theorem 

Joseph Louis Lagrange 

(1736 – 1813) 

Lagrange Theorem.  Let G be a group, 

then |G| =[G:H] |H|. If |G|<∞, then 
|G|/|H|=[G:H] that is  the order of a 

subgroup divides the order of the group. 

The number of cosets of H in G is called the index of H in G , 

denoted by [G:H]. 

Proof.  The cosets of H partition G, thus  

|G| = Σ |gH|. Since |gH|=|H|, we have  

|G| = Σ |H|, and thus |G|=|H|·(number of 

terms in the sum)= |H| [G:H]. 

Lagrange Theorem: Examples 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G.  
 

G 

0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G.  

D4 
1  r  r2  r3 

m  rm  r2m  r3m 

|G|=4= [G:H]|H|=Ϯ∙Ϯ 
 |D4|=ϴ = [G:H]|H|=Ϯ∙4 
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Lagrange Theorem has many consequences.

Corollary 2. Let G be a finite group. For any g ∈ G, the order |g| of g
divides the order of the group |G|.

Proof. Consider the subgroup of G generated by g:

〈g〉 = {g, g2, · · · , g|g| = 1}.

The order of this subgroup is |g|. Hence by Lagrange Theorem, we have

|g| divides |G|.

This for example explains why the group of symmetries of the square
contains only elements of order 1,2, and 4!

Corollary 3. A group of prime order is cyclic.

Proof. Let G be a group of order p, for a prime p. This means elements of G
can only have order 1 or p. If g is not the identity element, then g has order
p, which shows that G is cyclic.

Let us now go back to our original question about finding new groups.
What we just learnt is that if the order is a prime, then there is only the
cyclic group Cp. Thus (boldface means that the classification is over for this
order):

order n abelian non-abelian
1 C1 ≃ {1} x
2 C2 x
3 C3 x
4 C4

5 C5 x
6 C6 D3

7 C7 x
8 C8 D4
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Corollary 1of Lagrange Theorem 

     Corollary. Let G be a finite group. The order of an element of 

G divides the order of the group. 

Proof.  Let g be an element of G. Then H=<g> is a subgroup of G, 

with order the order of g (by definition of cyclic group!). Since the 

order of H divides |G|, the order of g divides |G|. 

Example. D4 ={1, r,r2,r3,m,rm,r2m,r3m}.  

Since |D4 |=8, elements of D4 have order 1, 2, 4 (it cannot be 8 

because this is not a cyclic group!)  We also know  it for 

cyclic groups! 

|gk|=n/gcd(n,k).  

Corollary 2 of Lagrange Theorem 

Corollary. If |G| is a prime number, then G is a cyclic group. 

Proof. If |G| is a prime number p, then we know that the order 

of an element must divide p, and thus it must be either 1 or p, by 

definition of prime number. Thus every element g which is not 

the identity has order p, and G=<g>. 

Example. If |G|=3, then G must be the cyclic group C3. 
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Since we cannot find any new group of order 2 or 3, let us look at order
4.

We can use a corollary of Lagrange Theorem that tells us that in a group
of order 4, elements can have only order 1, 2 or 4.

• If there exists an element of order 4, then we find the cyclic group C4.

• If there exists no element of order 4, then all elements have order 2
apart the identity. Thus we have a group G = {1, g1, g2, g3}. Let us
try to get the Cayley table of this group. For that, we need to know
whether g1g2 is the same thing as g2g1...But g1g2 is an element of G by
closure, thus it has order 2 as well:

(g1g2)
2 = g1g2g1g2 = 1 ⇒ g1g2 = g−1

2 g−1
1 .

But now, because every element has order 2

g21 = 1 ⇒ g−1
1 = g1, g

2
2 = 1 ⇒ g−1

2 = g2

and we find that
g1g2 = g2g1.

Furthermore, g1g2 is an element of G, which cannot be 1, g1 or g2, thus
it has to be g3.

Let us write the Cayley table of the group of order 4 which is not cyclic.

1 g1 g2 g1g2

1 1 g1 g2 g1g2
g1 g1 1 g1g2 g2
g2 g2 g1g2 1 g1
g1g2 g1g2 g2 g1 1

We recognize the table of the symmetries of the rectangle! This group is
also called the Klein group.
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We can update our table of small groups:

order n abelian non-abelian
1 C1 ≃ {1} x
2 C2 x
3 C3 x
4 C4, Klein group x
5 C5 x
6 C6 D3

7 C7 x
8 C8 D4

Good news: we have progressed in our list of small groups, but we still
have not found a group which is not a group of symmetries (up to isomor-
phism!). We will get back to this question in the next chapter. For now, let
us see a few more applications of Lagrange Theorem.

Corollary 4. Let G be a finite group. Then

g|G| = 1

for every g ∈ G.

Proof. We have from Lagrange Theorem that |g| | |G|, thus |G| = m|g| for
some integer m and hence:

g|G| = (g|g|)m = 1m = 1.
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We continue and prove a result from number theory, known as Euler
Theorem.

Theorem 11. Let a and n be two integers. Then

aϕ(n) ≡ 1 mod n

if gcd(a, n) = 1.

Proof. If gcd(a, n) = 1, then a is invertible modulo n, and we know that the
order of the group of integers mod n under multiplication is ϕ(n). By the
previous result

a|G| = aϕ(n) ≡ 1 mod n.

Finally, another nice theorem from number theory is obtained, called
Fermat little theorem.

Corollary 5. For every integer a and every prime p, we have ap ≡ a mod p.

Proof. Just replace n by a prime p in Euler Theorem, and recall that ϕ(p) =
p− 1 by definition of ϕ(p).

The key result of this chapter is really Lagrange Theorem! Thanks to this
result and its corollaries, we have learnt a lot about the structure of a group:
(1) that the order of a subgroup always divides the order of the group, (2)
that the order of an element always divides the order of the group. We also
obtained some partial classification of groups of small orders: we showed that
for every order we have a cyclic group, and that all the groups we have seen
so far are isomorphic to groups of symmetries!

The group structure of integers modulo n, and that of invertible elements
modulo n are important in practice in the areas of coding theory and cryp-
tography. A famous example coming from cryptography is the cryptosystem
called RSA.



120 CHAPTER 5. MORE GROUP STRUCTURES

Corollary 4 of Lagrange Theorem 

Euler Theorem. We have that a            =1 mod n if gcd(a,n)=1.  

Proof. Take G the group of invertible 

elements mod n. We know that its order 

is           , because a is invertible mod n if 

and only if gcd(a,n)=1. We also know 

that a|G| =1 by the previous corollary!  

Leonhard Euler 

(1707 – 1783)  

Corollary 5 of Lagrange Theorem 

Little Fermat Theorem. We have ap-1 =1 ŵod p for a ≠Ϭ. 

Proof.  Take n=p a prime in Euler 

Theorem. 

Pierre de Fermat 

(1601 –1665)  
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Exercises for Chapter 5

Exercise 29. Let G be a group and let H be a subgroup of G. Let gH be
a coset of H. When is gH a subgroup of G?

Exercise 30. As a corollary of Lagrange Theorem, we saw that the order
of an element of a group G divides |G|. Now assume that d is an arbitrary
divisor of |G|. Is there an element g in G with order d?

Exercise 31. Take as group G any group of order 50. Does it contain an
element of order 7?

Exercise 32. Take as group G the Klein group of symmetries of the rectan-
gle. Choose a subgroup H of G, write G as a partition of cosets of H, and
check that the statement of Lagrange Theorem holds.

Exercise 33. This exercise looks at Lagrange Theorem in the case of an
infinite group. Take as group G = R and as subgroup H = Z. Compute the
cosets of H and check that the cosets of H indeed partition G. Also check
that the statement of Lagrange Theorem holds.
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Chapter 6

Back to Geometry

“The noblest pleasure is the joy of understanding.” (Leonardo da
Vinci)

At the beginning of these lectures, we studied planar isometries, and
symmetries. We then learnt the notion of group, and realized that planar
isometries and symmetries have a group structure. After seeing several other
examples of groups, such as integers mod n, and roots of unity, we saw
through the notion of group isomorphism that most of the groups we have
seen are in fact cyclic groups. In fact, after studying Lagrange Theorem,
we discovered that groups of prime order are always cyclic, and the only
examples of finite groups we have seen so far which are not cyclic are the
Klein group (the symmetry group of the rectangle) and the symmetry group
of the square. We may define the symmetry group of a regular polygon more
generally.

Definition 14. The group of symmetries of a regular n-gon is called the
Dihedral group, denoted by Dn.

In the literature, both the notation D2n and Dn are found. We use Dn,
where n refers to the number of sides of the regular polygon we consider.

Example 24. If n = 3, D3 is the symmetry group of the equilateral triangle,
while for n = 4, D4 is the symmetry group of the square.

123
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Recall  so far 

 We studied planar isometries. 

 We extracted the notion of groups. 

 We saw several examples of groups: integer mod n, roots of 

unity,… 

 But after defining group isomorphism, we saw that many of 

them were just the same group in disguise: the cyclic group. 

 

 

 

 

 

 

Cyclic groups are nice, but 

haǀen’t we seen soŵe other 
groups? 

The Dihedral Group Dn 

    For n >2, the dihedral group is defined as the rigid motions of 

the plane preserving a regular n-gon, with respect to 

composition. 

We saw 

 D3= group of symmetries of the equilateral triangle 

 D4= group of symmetries of the square 

(In the literature, the notation Dn  and D2n   are equally used.) 
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Recall that the group of symmetries of a regular polygon with n sides
contains the n rotations {rθ, θ = 2πk/n, k = 0, . . . , n − 1} = 〈r2π/n〉,
together with some mirror reflections. We center this regular n-sided polygon
at (0, 0) with one vertex at (1, 0) (we might scale it if necessary) and label
its vertices by the nth roots of unity: 1, ω, ω2, . . . , ωn−1, where ω = ei2π/n.
Now all its rotations can be written in the generic form of planar isometries
H(z) = αz + β, |α| = 1 as

H(z) = αz, α = ωk = ei2πk/n, k = 0, . . . , n− 1.

We now consider mirror reflections about a line l passing through (0, 0) at
an angle ϕ0, defined by l(λ) = λeiϕ0 , λ ∈ (−∞,+∞). To reflect a complex
number z = ρeiϕ about the line l, let us write zR = ρRe

iϕR for the complex
number z after being reflected. Since a reflection is an isometry, ρR = ρ. To
compute ϕR, suppose first that ϕR ≤ ϕ0. Then ϕR = ϕ+2(ϕ0−ϕ). Similarly
if ϕR ≥ ϕ0, ϕR = ϕ− 2(ϕ− ϕ0), showing that in both cases ϕR = 2ϕ0 − ϕ.
Hence

zR = ρeiϕR = ρei2ϕ0−iϕ = ei2ϕ0ρe−iϕ = ei2ϕ0z.

We now consider not any arbitrary complex number z, but when z is a
root of unity ωk. Mirror reflections that leave {1, ω, ω2, . . . , ωn−1} invariant,
that is which map a root of unity to another, will be of the form

H(ωt) = eiθω−t = ωk

where θ = 2ϕ0 depends on the reflection line chosen. Then eiθ = ωk+t =
ω(k+t)mod n = ωs, and we find the planar isometries

H(z) = ωsz̄, s = 0, 1, . . . , n− 1.

Hence, given a vertex wt, there are exactly two maps that will send it to a
given vertex wk: one rotation, and one mirror reflection. This shows that
the order of Dn is 2n.

Furthermore, defining a rotation r and a mirror reflection m by

r : z 7→ ei2π/nz = ωz, m : z 7→ z

we can write all the symmetries of a regular n-gon as

Dn = {r0 = 1, r, r2, . . . , rn−1,m, rm, rm, . . . , rn−1m}.

In particular, ωsz = rsm(z).
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These symmetries obey the following rules:

• rn = 1, that is r is of order n, and 〈r〉 is a cyclic group of order n,

• m2 = 1, that is m is of order 2, as z = z,

• rsm is also of order 2, as (rsm)(rsm)(z) = ωsωsz = ωsω−sz = z.

Sincem and rsm are reflections, they are naturally of order 2, since repeating
a reflection twice gives the identity map. Now

rsmrsm = 1 ⇒ mrsm = r−s, ∀s ∈ {0, 1, . . . , n− 1}.

The properties
rn = 1,m2 = 1,mrm = r−1

enable us to build the Cayley table of Dn. Indeed ∀s, t ∈ {0, 1, . . . , n− 1}

rtrs = rt+s mod n, rtrsm = rt+sm = rt+s mod nm,

and

mrs = r−sm = rn−sm, rtmrsm = rtr−s = rt−s mod n, rtmrs = rtr−sm = rt−s mod nm.

We see that Dn is not an Abelian group, since rsm 6= mrs. Hence we shall
write

Dn = {〈r,m〉|m2 = 1, rn = 1,mr = r−1m},
that is, the group Dn is generated by r,m via concatenations of r’s and m’s
reduced by the rules rn = 1,m2 = 1,mrm = r−1 or mr = r−1m.

Proof. Consider any string of r’s and m’s

rr · r
︸ ︷︷ ︸

s1

mm · · ·m
︸ ︷︷ ︸

t1

rr · · · r
︸ ︷︷ ︸

s2

mm · · ·m
︸ ︷︷ ︸

t2

· · ·

=rs1mt1rs2mt2rs3mt3 · · · rskmtk .

Due to m2 = 1 and rn = 1 we shall reduce this immediately to a string of

rα1mrα2m · · · rαkm

where αi ∈ {0, 1, · · · , n − 1}. Now using mrsm = r−s gradually reduce all
such strings, then we are done.
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The Dihedral Group D8 

Description of the Dihedral Group 

• The rotation r:z→ wz generates a cyclic group <r> of order n. 

• The reflection ŵ: z→ z̅ is in the dihedral group but not in <r>. 

• Thus Dn = <r> U <r>m. 

• Furthermore: mrm-1(z) =mrm(z)= mr(z ̅)=m(wz̅)=w ̅z=w-1z= r-1(z)  

That is mrm-1 =r-1 

This shows that:  

m2=1 m(z)=z̅ r(z)=wz w root of 1 

Dn ={ <r,m> | m2=1, rn=1, mr =r-1m} 

Indeed: we know we get 2n terms with <r> and <r>m, and any 

term of the form mri can be reduced to an element in <r> or 

<r>m using mr =r-1m: mri = (mr)ri-1  = r-1mri-1  = r-1(mr)ri-2  etc 
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What happens if n = 1 and n = 2? If n = 1, we have r1 = 1, i.e., the
group D1 will be D1 = {1,m} with m2 = 1, with Cayley table

1 m

1 1 m
m m 1

This is the symmetry group of a segment, with only one reflection or one
180◦ rotation symmetry.

If n = 2 we get D2 = {1, r,m, rm}, with Cayley table

1 r m rm

1 1 r m rm
r r 1 rm m
m m rm 1 r
rm rm m r 1

This is the symmetry group of the rectangle, also called the Klein group.
Let us now look back.

• Planar isometries gave us several examples of finite groups:

1. cyclic groups (rotations of a shape form a cyclic group)

2. dihedral groups (symmetry group of a regular n-gon)

• Let us remember all the finite groups we have seen so far (up to iso-
morphism): cyclic groups, the Klein group, dihedral groups.

These observations address two natural questions:

Question 1. Can planar isometries give us other finite groups (up to
isomorphism, than cyclic and dihedral groups)?

Question 2. Are there finite groups which are not isomorphic to
subgroups of planar isometries?

We start with the first question, and study what are all the possible
groups that appear as subgroups of planar isometries.
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The Klein Group  

Christian Felix Klein (1849 –1925) 

 

 

When n=2, the description of D2 gives the group of 

symmetries of the rectangle, also called the Klein group. 

Two Natural Questions 

    Planar isometries gave us cyclic and dihedral groups. All our 

finite group examples so far are either cyclic or dihedral up to 

isomorphism. 

 
QUESTION 1:  can planar isometries give us other finite groups? 

QUESTION 2: are there finite groups which are not isomorphic 

to planar isometries? 
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For that, let us recall what we learnt about planar isometries.
From Theorem 1, we know that every isometry in R2 can be written as

H : C → C, with

H(z) = αz + β, or H(z) = αz̄ + β, |α| = 1.

We also studied fixed points of planar isometries in Exercise 5. If H(z) =
αz + β, then

• if α = 1, then H(z) = z + β = z and there is no fixed point (apart if
β = 0 and we have the identity map), and this isometry is a translation.

• if α 6= 1, then αz + β = z ⇒ z = β
1−α

, and

H(z)− β

1− α
= αz +

(

β − β

1− α

)

= α

(

z − β

1− α

)

showing that H(z) = α
(
z − β

1−α

)
+ β

1−α
, that is we translate the fixed

point to the origin, rotate, and translate back, that is, we have a rota-
tion around the fixed point β

1−α
.

If H(z) = αz̄ + β, we first write this isometry in matrix form as
[
x′

y′

]

=

[
cos θ sin θ
sin θ − cos θ

] [
x
y

]

+

[
t1
t2

]

(6.1)

and fixed points (xF , yF ) of this isometry satisfy the equation
[
xF
yF

]

=

[
cos θ sin θ
sin θ − cos θ

] [
xF
yF

]

+

[
t1
t2

]

⇐⇒
[
1− cos θ − sin θ
− sin θ 1 + cos θ

]

︸ ︷︷ ︸

M

[
xF
yF

]

=

[
t1
t2

]

The matrix M has determinant det(M) = (1− cosθ)(1 + cosθ)− sin2θ = 0.
By rewriting the matrix M as

M =

[
2sin θ

2
sin θ

2
− 2sin θ

2
cos θ

2

−2sin θ
2
cos θ

2
2cos θ

2
cos θ

2

]

= 2

[
sin θ

2

−cos θ
2

]
[
sin θ

2
− cos θ

2

]

and fixed points (xF , yF ) have to be solutions of

2

[
sin θ

2

−cos θ
2

]
[
sin θ

2
−cos θ

2

]
[
xF
yF

]

=

[
t1
t2

]

.
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First Question: Planar isometries 

• Let us assume that we are given a finite group of planar 

isometries. 

• What are all the isometries that could be in this finite group? 

Remember all the isometries of the plane we saw in the first chapter? 

  translations 

  rotations 

  reflection 

  glide reflection = composition of reflection and translation   
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If [t1, t2] = λ[sin(θ/2),− cos(θ/2)] then

2〈[xF , yF ], [sin(θ/2),− cos(θ/2)]〉 = λ⇒ xF sin(θ/2)− yF cos(θ/2) = λ/2

showing that (xF , yF ) form a line, and the isometry (6.1) is now of the form

[
x′

y′

]

=

[
cos2 θ

2
− sin2 θ

2
2 sin θ

2
cos θ

2

2 sin θ
2
cos θ

2
− cos2 θ

2
+ sin2 θ

2

] [
x
y

]

+ λ

[
sin θ

2

− cos θ
2

]

=

[
cos θ

2
sin θ

2

sin θ
2

− cos θ
2

] [
1 0
0 −1

] [
cos θ

2
sin θ

2

sin θ
2

− cos θ
2

] [
x
y

]

+ λ

[
sin θ

2

− cos θ
2

]

Multiplying both sides by the matrix (rotation):

[
cos θ

2
sin θ

2

sin θ
2

− cos θ
2

]

we get

[
cos θ

2
sin θ

2

sin θ
2

− cos θ
2

] [
x′

y′

]

︸ ︷︷ ︸




x̃′

ỹ′





=

[
1 0
0 −1

] [
cos θ

2
sin θ

2

sin θ
2

− cos θ
2

] [
x
y

]

︸ ︷︷ ︸




x̃
ỹ





+λ

[
0
1

]

and in the rotated coordinates (x̃′, ỹ′) and (x̃, ỹ), we have x̃′ = x̃ and (ỹ′−λ
2
) =

−(ỹ− λ
2
) which shows that in the rotated coordinates this isometry is simply

a reflection about the line y = +λ
2
.

If [t1, t2] 6= λ[sin(θ/2),− cos(θ/2)], then we have no fixed points. Just like
in the previous analysis we have here

[
x′

y′

]

=

[
cos θ

2
sin θ

2

sin θ
2

−cos θ
2

] [
x
y

]

+

[
t1
t2

]

and we have as before in the rotated coordinates that
[
x̃′

ỹ′

]

=

[
1 0
0 −1

] [
x̃
ỹ

]

+

[
cos θ

2
sin θ

2

sin θ
2

−cos θ
2

] [
t1
t2

]

=

[
1 0
0 −1

] [
x̃
ỹ

]

+

[
m
n

]

and we recognize a translation along the direction of the reflection line x̃′ =
x̃+m and a reflection about the line y = n

2
, since (ỹ′ − n

2
) = −(ỹ− n

2
). This

gives a proof of Theorem 2, which we recall here.
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Planar Isometries in a Finite Group 

• A translation generates an infinite subgroup! 

• Thus translations cannot belong to a finite group. 

• A glide reflection is the composition of a reflection and a 

translation. 

• Thus again, it generates an infinite subgroup, and cannot 

belong to a finite group. 

We are left with rotations and reflections! 
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Theorem 12. Any planar isometry is either

a) A rotation about a point in the plane

b) A pure translation

c) A reflection about a line in the plane

d) A reflection about a line in the plane and a translation along the same
line (glide reflection)

Since we are interesting in subgroups of planar isometries, we now need
to understand what happens when we compose isometries, since a a finite
subgroup of isometries must be closed under composition.

A translation T (β) is given by T (β) : z → z + β, thus

T (β2) ◦ T (β1) = (z + β1) + β2 = z + β1 + β2 = T (β1 + β2)

and translations form a subgroup of the planar isometries that is isomorphic
to (C,+) or (R2,+). The isomorphism f is given by f : T (β) 7→ β.

A rotation RΩ about a center Ω = z0 is given by

RΩ(θ)z → eiθ(z − z0) + z0,

thus

RΩ(θ2) ◦RΩ(θ1) = eiθ2(eiθ1(z − z0) + z0 − z0) + z0 = RΩ(θ1 + θ2)

which shows that rotations about a given fixed center Ω(= z0) form a sub-
group of the group of planar isometries.

We consider now the composition of two rotations about different centers:

RΩ1(θ1) = eiθ1(z − z1) + z1, RΩ2(θ2) = eiθ2(z − z2) + z2

so that

RΩ2(θ2) ◦RΩ1(θ1) = eiθ2(eiθ1(z − z1) + z1 − z2) + z2

= ei(θ2+θ1)(z − z1) + eiθ2(z1 − z2) + z2

= ei(θ1+θ2)[z − γ] + γ
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Rotations 

• Recall: to define a rotation, we fix a center, say the origin, 

around which we rotate (counter-clockwise). 

•  What if we take a rotation around a point different than 0? 

R(θͿ : z → e θi z 

Rz0
(θͿ : z → e θi (z-z0)+z0 

First translate z0 to the origin, then 

rotate, then move back to z0 

Rotations around Different centers 

•   What if we take two rotations around different centers? 

•  If both Rz1
(θ1) and Rz2

(θ2) are in a finite group, then both 

their composition, and that of their inverse must be there! 

Rz2
(θ2) Rz1

(θ1)(z)=ei(θ1+θ2)z – ei(θ1+θ2)z1 + eiθ2(z1-z2) +z2 

(Rz2
(θ2))-1(Rz1

(θ1))-1(z)= e-i(θ1+θ2)z – e-i(θ1+θ2)z1 + e-iθ2(z1-z2) +z2 

(Rz2
(θ2))-1(Rz1

(θ1))-1Rz2
(θ2)Rz1

(θ1)(z)=z+(z2-z1)[e-i(θ1+θ2)–(e-iθ2+ e-iθ1)+1] 

Pure translation if z1 is not z2! Thus such 

rotations cannot be in a finite group! 
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where we determine γ:

−ei(θ1+θ2)z1+eiθ2z1 − eiθ2z2 + z2 = −ei(θ1+θ2)γ + γ

(1− ei(θ1+θ2))γ = z2 + eiθ2(z1 − z2)− ei(θ1+θ2)z1

γ =
z2 + eiθ2(z1 − z2)− ei(θ1+θ2)z1

1− ei(θ1+θ2)

Hence, we have a rotation by (θ1 + θ2) about a new center γ.
If z1 6= z2 and θ2 = −θ1, we get in fact a translation:

RΩ2(−θ1) ◦RΩ1(θ1) = z − z1 + e−iθ1(z1 − z2) + z2

= z + (z1 − z2)(e
−iθ1 − 1)

︸ ︷︷ ︸

a translation!

After rotations and translations, we are left with reflections and glide
reflections about a line l. Suppose we have two reflections, or two glide
reflections, of the form

ϕ1 : z → eiθ1 z̄ + β1, ϕ2 : z → eiθ2 z̄ + β2,

so that

ϕ2 ◦ ϕ1(z) = eiθ2(eiθ1z + β1) + β2 = ei(θ2−θ1)z + β1e
iθ2 + β2.

Hence if θ2 = θ1 = θ we get a translation:

ϕ2 ◦ ϕ1(z) = z + β1e
iθ + β2

︸ ︷︷ ︸

a translation vector

which is happening when the lines defining the reflections and glide reflections
are parallel (reflect a shape with respect to a line, and then again with respect
to another line parallel to the first one, and you will see that the shape is
translated in the direction perpendicular to the lines.)

If instead θ2 − θ2 6= 0, we get a rotation, since the ϕ2 ◦ ϕ1(z) will have
one well defined fixed point, given by

zFP = ei(θ2−θ2)zFP + β1e
iθ2 + β2

⇒ zFP =
β1e

iθ2 + β2
1− ei(θ2−θ1)
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Reflections 

• Among the planar isometries, so far, only rotations with same 

center z0 are allowed! 

• Reflections are also allowed, assuming that their lines 

intersect at z0 (otherwise, we could get rotations about a 

different point.) 

 

First Question: Leonardo Theorem 

     QUESTION 1:  can planar isometries give us other finite 

groups than cyclic and dihedral groups? 

 ANSWER: No! This was already shown 

by Leonardo da Vinci! 

Leonardo da Vinci (1452-1519) `` painter, sculptor, 

architect, musician, scientist, mathematician, 

engineer, inventor, anatomist, geologist, 

cartographer, ďotanist and writer “ (dixit wikipedia) 
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Now, we have built up enough prerequisites to prove the following result.

Theorem 13 (Leonardo Da Vinci). The only finite subgroups of the group
of planar symmetries are either Cn (the cyclic group of order n) or Dn (the
dihedral group of order 2n).

Proof. Suppose that we have a finite subgroup G = {ϕ1, ϕ2, · · · , ϕn} of the
group of planar isometries. This means that for every ϕk, 〈ϕk〉 is finite, that
there exists ϕ−1

k ∈ G, and that ϕk ◦ ϕl = ϕs ∈ G = {ϕ1, ϕ2, . . . , ϕn}. Thus

1. ϕk cannot be a translation, since 〈ϕk〉 = {ϕnk , n ∈ Z} is not a finite set.

2. ϕk cannot be a glide reflection, since ϕk ◦ϕk is a translation hence 〈ϕ2
k〉

is then not a finite set.

3. ϕk and ϕr cannot be rotations about different centers, since

RΩ2(θ2)RΩ1(θ1) = ei(θ2+θ1)z − ei(θ2+θ1)z1 + eiθ2(z1 − z2) + z2

R−1
Ω2
(θ2)R

−1
Ω1
(θ1) = e−i(θ2+θ1)z − e−i(θ2+θ1)z1 + e−iθ2(z1 − z2) + z2

and

RΩ2(−θ2)RΩ1(−θ1)RΩ2(θ2)RΩ1(θ1)

= e−i(θ2+θ1)[ei(θ2+θ1)z − ei(θ2+θ1)z1 + eiθ2(z1 − z2) + z2]

− e−i(θ2+θ1)z1 + e−iθ2(z1 − z2) + z2

= z − z1 + e−iθ1(z1 − z2) + e−i(θ2+θ1)z2 − e−i(θ2+θ1)z1 + e−iθ2(z1 − z2) + z2

= z + (z2 − z1) + e−i(θ2+θ1)(z2 − z1)− (z2 − z1)(e
−iθ1 + eiθ2)

= z + (z2 − z1)[e
−i(θ2+θ1) − (e−iθ2 + e−iθ1) + 1]

︸ ︷︷ ︸

a pure translation if z1 6= z2

Therefore in the subgroup G = {ϕ1, ϕ2, · · · , ϕn} of finitely many isome-
tries, we can have

1) rotations (which must all have the same center Ω)

2) reflections (but their lines must intersect at Ω otherwise we would
be able to produce rotations about a point different from Ω and
hence produce translations contradicting the finiteness of the set.)
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Motivation  for Leonardo Theorem 

Leonardo da Vinci systematically 

determined all possible 

symmetries of a central building, 

and how to attach chapels and 

niches without destroying its 

symmetries.  

Extract of Leonardo’s noteďooks. 

Proof of Leonardo Theorem (I) 

• We have already shown that a finite group of planar 

isometries can contain only rotations around the same center, 

and reflections through lines also through that center. 

• Among all the rotations, take the one with smallest strictly 

positive angle θ, which generates a finite cyclic group of order 

say n, and every rotation belongs to this cyclic group! 

• [if θ’ is another rotation angle, then it is ďigger than θ, thus 

we can decompose this rotation between a rotation of angle 

(a multiple of) θ and a sŵaller angle, a contradiction] ← saŵe 
argument as we did several times for cyclic groups! 
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Let us look at the rotations about Ω in the subgroupG = {ϕ1, ϕ2, · · · , ϕn}
and list the rotation angles (taken in the interval [0, 2π)) in increasing order:θ1 <
θ2 < · · · < θl−1. Now r(θ1) is the smallest rotation, and r(2θ1), r(3θ1),. . .,r(kθ1)
for all k ∈ Z must be in the subgroup as well.

We shall prove that these must be all the rotations in G, i.e., there can-
not be a θt which is not kθ1 mod 2π for some k. Assume for the sake of
contradiction that θt 6= kθ1. Then θt = sθ1 + ζ where 0 < ζ < θ1, and

r(θt)r(−sθ1) = r(θt)r(θ1)
−s = r(ζ)

but r(θt)r(θ1)
−s belongs to the group of rotations and thus it is a rotation

of an angle that belongs to {θ1, θ2, · · · , θl−1}, with ζ < θ1 contradicting the
assumption that θ1 is the minimal angle.

Also note that θ1 = 2π/l since otherwise lθ1 = 2π + η with η < θ1 and
rl(θ1) = r(η) with η < θ1, again contradicting the minimality of θ1.

Therefore we have exactly l rotations generated by r(θ1) and 〈r(θ1)〉 is
the cyclic group Cl of order l.

If Cl = 〈r(θ1)〉 exhausts all the elements of G = {ϕ1, ϕ2, · · · , ϕn}, we are
done. If not, there are reflections in G too. Letm be a reflection that belongs
to {ϕ1, ϕ2, . . . , ϕn}. If m and 〈r(θ1)〉 are both in G, then by closure

m,mr,mr2, . . . ,mrp−1 ∈ G

and all these are (1) reflections since mrα = rβ ⇒ m = r(β−α) and m would
be a rotation, (2) distinct elements since mrα = mrβ ⇒ rα = rβ.

Can another reflection be in the group say m̃? If m̃ 6= mrα, then mm̃ is
by definition a rotation in G, that is mm̃ = rα, since we have shown that all
rotations of G are in 〈r(θ1)〉. Now this shows that

m̃ = m−1rα = mrα, and (mrα)(mrα) = 1 ⇒ mrαm = r−α.

Since m2 = 1 as for any reflection, we proved that

G = {1, r, r2, . . . , rl−1,m,mr, . . . ,mrl−1}, m2 = 1, rl = 1,mrαm = r−α.

The group G is therefore recognized as the dihedral group

Dp = {〈r,m〉|m2 = 1, rl = 1,mr = r−1m}.

Therefore we proved that a finite group of planar symmetries is either cyclic
of some order l or dihedral of order 2l for some l ∈ N.
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Let us look at our table of small groups, up to order 8.

order n abelian non-abelian
1 C1 ≃ {1} x
2 C2 x
3 C3 x
4 C4, Klein group x
5 C5 x
6 C6 D3

7 C7 x
8 C8 D4

Using Leonardo Theorem, we know that planar isometries only provide
cyclic and dihedral groups, so if we want to find potential more groups to
add in this table, we cannot rely on planar geometry anymore! This leads to
the second question we addressed earlier this chapter:

Are there finite groups which are not isomorphic
to subgroups of the group of planar isometries?
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Exercises for Chapter 6

Exercise 34. Show that any planar isometry of R2 is a product of at most
3 reflections.

Exercise 35. Look at the pictures on the wiki (available on edventure), and
find the symmetry group of the different images shown.
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Chapter 7

Permutation Groups

We started the study of groups by considering planar isometries. In the
previous chapter, we learnt that finite groups of planar isometries can only
be cyclic or dihedral groups. Furthermore, all the groups we have seen so far
are, up to isomorphisms, either cyclic or dihedral groups! It is thus natural to
wonder whether there are finite groups out there which cannot be interpreted
as isometries of the plane. To answer this question, we will study next
permutations. Permutations are usually studied as combinatorial objects,
we will see in this chapter that they have a natural group structure, and in
fact, there is a deep connection between finite groups and permutations!

We know intuitively what is a permutation: we have some objects from
a set, and we exchange their positions. However, to work more precisely, we
need a formal definition of what is a permutation.
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Definition 15. A permutation of a set X is a function σ : X → X that is
one-to-one and onto, i.e., a bijective map.

Let us make a small example to understand better the connection between
the intuition and the formal definition.

Example 25. Consider a set X containing 3 objects, say a triangle, a circle
and a square. A permutation of X = {△, ◦,�} might send for example

△ 7→ △, ◦ 7→ �, � 7→ ◦,
and we observe that what just did is exactly to define a bijection on the set
X, namely a map σ : X → X defined as

σ(△) = △, σ(◦) = �, σ(�) = ◦.
Since what matters for a permutation is how many objects we have and

not the nature of the objects, we can always consider a permutation on a set
of n objects where we label the objects by {1, . . . , n}. The permutation of
Example 25 can then be rewritten as σ : {1, 2, 3} → {1, 2, 3} such that

σ(1) = 1, σ(2) = 3, σ(3) = 2, or σ =

(
1 2 3
1 3 2

)

.

Permutation maps, being bijective, have inverses and the maps combine nat-
urally under composition of maps, which is associative. There is a natural
identity permutation σ : X → X, X = {1, 2, 3, . . . , n} which is

σ(k) 7→ k.

Therefore all the permutations of a set X = {1, 2, . . . , n} form a group under
composition. This group is called the symmetric group Sn of degree n.

What is the order of Sn? Let us count how many permutations of
{1, 2, . . . , n} we have. We have to fill the boxes

· · ·
1 2 3 · · · n

with numbers {1, 2, . . . , n} with no repetitions. For box 1, we have n possible
candidates. Once one number has been used, for box 2, we have (n− 1)
candidates, ... Therefore we have

n(n− 1)(n− 2) · · · 1 = n!

permutations and the order of Sn is

|Sn| = n!.
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What is a Permutation? (II) 

• What is  formally a permutation? 

 

• A permutation of an arbitrary set X is a bijection from X to 

itself 

 

• Recall that a bijection is both an injection and a surjection. 

What is a Permutation? (III) 

• Bridging intuition and formalism 

• X={                                 } 

 

• Define an arbitrary bijection 
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Notation 

If |X|=n, we laďel the n eleŵents ďy 1…n. 

(         )     
                                                                    

          

         1 2 3  

       1 3 2 

 

(     ) 

Combining Permutations 

( ) 1 2 3 

2 1 3 

1 2 3 

1 3 2 
1 2 3 

2 3 1 ( ( ) ) = 

1 Ϯ ϯ  → 1 ϯ Ϯ → Ϯ ϯ 1  

It’s a coŵposition, so 
this permutation first! 
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Group Structure of Permutations (I) 

• All permutations of a set X of n elements  form a group under 

composition, called the symmetric group                                       

on n elements, denoted by Sn. 

 

 

 

 

•      Identity = do-nothing (do no permutation) 

 

•     Every permutation has an inverse, the inverse permutation. 

Composition  of two 

bijections is a bijection 

•    Non abelian (the two permutations of the previous slide do       

not commute for example!)  
 

A permutation is a 

bijection! 

Group Structure of Permutations (II) 

    The order of the group Sn of permutations on a set X of 

elements is n! 
 
 

1 2 n-1 n 

n 

choices 

n-1 

choices 
2 choices 1 choice 

|Sn| =n! 
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Let us see a few examples of symmetric groups Sn.

Example 26. If n = 1, S1 contains only one element, the permutation
identity!

Example 27. If n = 2, thenX = {1, 2}, and we have only two permutations:

σ1 : 1 7→ 1, 2 7→ 2

and
σ2 : 1 7→ 2, 2 7→ 1,

and S2 = {σ1, σ2}. The Cayley table of S2 is

σ1 σ2
σ1 σ1 σ2
σ2 σ2 σ1

.

Let us introduce the cycle notation. We write (12) to mean that 1 is sent to
2, and 2 is sent to 1. With this notation, we write

S2 = {(), (12)} .

This group is isomorphic to C2, and it is abelian.

The permutation

σ =

(
1 2 3
1 3 2

)

of Example 25 in the cycle notation is written as (23). We can combine two
such permutations:

(12)(23)

which means that we first permute 2 and 3: 1 2 3 7→ 1 3 2 and then we
permute 1 and 2: 1 3 2 7→ 2 3 1. Let us look next at the group S3.
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Permutations on a Set of 2 Elements 

 

 

 

 

• |X| =2 , X={ 1, 2} 

 

• |S2| = 2, S2 ={ σ1,σ2},   σ1:1 Ϯ →1 Ϯ, σ2 : 1 Ϯ →Ϯ 1.       

σ1 

σ1 σ2 

σ2 

σ2 

σ2 

σ1 

σ1 

Cycle Notation 

                                                                    

          

         1 2 3  

       1 3 2 

 

(     ) (23) 
Ϯ → ϯ 

ϯ → Ϯ 

thus 1Ϯϯ → 1ϯϮ  

( ) 1 2 3 

2 1 3 

1 2 3 

1 3 2 ( ) (12)(23) 

Ϯ → ϯ 

ϯ → Ϯ 

thus 1Ϯϯ → 1ϯϮ 

1 → Ϯ 

Ϯ → 1  
thus 1ϯϮ→Ϯϯ1  
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Example 28. If n = 3, we consider the set X = {1, 2, 3}. Since 3! = 6, we
have 6 permutations:

S3 = {σ1 = (), σ2 = (12), σ3 = (13), σ4 = (23), σ5 = (123), σ6 = (132)}.

We compute the Cayley table of S3.

() (12) (23) (13) (123) (132)

() () (12) (23) (13) (123) (132)
(12) (12) () (123) (132) (23) (13)
(23) (23) (132) () (123) (13) (12)
(13) (13) (123) (132) () (12) (23)
(123) (123) (13) (12) (23) (132) ()
(132) (132) (23) (13) (12) () (123)

We see from the Cayley table that S3 is indeed isomorphic to D3! This
can also be seen geometrically as follows. Consider an equilateral triangle,
and label its 3 vertices by A,B,C, and label the locations of the plane where
each is by 1,2,3 (thus vertex A is at location 1, vertex B at location 2 and
vertex C as location 3). Let us now rotate the triangle by r (120 degrees
counterclockwise), to find that now, at position 1 we have C, at position 2
we have A and at position 3 we have B, and we apply all the symmetries of
the triangle, and see which vertex is sent to position 1,2, and 3 respectively:

1 2 3

1 A B C ()
r C A B (213)
r2 B C A (123)
m A C B (23)
rm B A C (12)
r2m C B A (13)

and we see that to each symmetry corresponds a permutation. For example,
r sends ABC to CAB and thus we have (132).
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Permutations on a Set of 3 Elements 

• |X|=3, X={1 2 3} 

• σ1 :1Ϯϯ →1Ϯϯ (), σ2 :1Ϯϯ →Ϯ1ϯ (12) ,σ3 :1Ϯϯ→ϯϮ1 (13) ,  

     σ4 :1Ϯϯ →1ϯϮ (23) , σ5: 1Ϯϯ→Ϯϯ1 (123) , σ6 : 1Ϯϯ→ϯ1Ϯ (132) . 

 () (1,2)  (2,3)  (1,3)  (1,2,3)  (1,3,2)  

()  ()  (1,2)  (2,3)  (1,3)  (1,2,3)  (1,3,2)  

(1,2)  (1,2)  ()  (1,2,3)  (1,3,2)  (2,3)  (1,3)  

(2,3)  (2,3)  (1,3,2) ()  (1,2,3)  (1,3)  (1,2)  

(1,3)  (1,3)  (1,2,3)  (1,3,2)  ()  (1,2)  (2,3)  

(1,2,3)  (1,2,3)  (1,3)  (1,2)  (2,3)  (1,3,2)  ()  

(1,3,2)  (1,3,2)  (2,3)  (1,3)  (1,2)  ()  (1,2,3) 

The Symmetric Group S3 
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Have we found New Groups? 

• S2 ? 

     since | S2 |=2, it is the cyclic group C2! 
 

 
•  S3 ?    

We know |S3|=3!=6, and it is non-abelian. 

We also know |D3|=2·3=6 and it is non-abelian. 

S3 vs D3 

() (12)  (23)  (13)  (123)  (132)  

()  ()  (1,2)  (2,3)  (1,3)  (123)  (132)  

(1,2)  (1,2)  ()  (123)  (132)  (2,3)  (1,3)  

(2,3)  (2,3)  (132) ()  (123)  (1,3)  (1,2)  

(1,3)  (1,3)  (123)  (132)  ()  (1,2)  (2,3)  

(123)  (123)  (1,3)  (1,2)  (2,3)  (132)  ()  

(132)  (132)  (2,3)  (1,3)  (1,2)  ()  (123) 

1 r r2 m rm r2m 

1 1 r r2 m rm r2m 

r r r2 1 rm r2m m 

r2 r2 1 r r2m m rm 

m m r2m rm 1 r2 r 

rm rm m r2m r 1 r2 

r2m r2m rm m r2 r 1 

Are they isomorphic? 
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Thus despite the introduction of a new type of groups, the groups of
permutations, we still have not found a finite group which is not a cyclic or
a dihedral group. We need more work! For that, we start by noting that
permutations can be described in terms of matrices.

Any permutation σ of the elements {1, 2, . . . , n} can be described by








σ(1)
σ(2)
...

σ(n)







=








0 · · · 1 0
1 0 · · · 0
...

...
0 1 · · · 0















1
2
...
n







=






eTσ(1)
...

eTσ(n)






︸ ︷︷ ︸

Pσ






1
...
n




 ,

where the kth row of the binary matrix is given by eTσ(k) = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is at location σ(k). Now e1, . . . , en are a set of orthogonal vectors,
that is, satisfying

eTk es = 〈ek, es〉 = δks =

{
0 if k 6= s
1 if k = s

, (7.1)

which form a standard basis of Rn. Let us derive some properties of the
matrix Pσ.

Property 1. The matrix Pσ is orthogonal, that is PσP
T
σ = In, where In is

the identity matrix. This follows from








eTσ(1)
eTσ(2)
...

eTσ(n)








[
eTσ(1) eTσ(2) · · · eTσ(n)

]
=






...
· · ·

〈
eσ(i), eσ(j)

〉
· · ·

...




 = In

using (7.1). Hence the inverse of a permutation matrix is its transpose.

Property 2. Using that det(AB) = det(A) det(B) and det(AT ) = det(A),
we get

det(PσP
T
σ ) = det(I) = 1.

Therefore det(Pσ) = ±1. (det(P T
σ ) = det(Pσ) ⇒ (detPσ)

2 = 1).
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Permutation Matrices : Definition 

[ ] 
1 0  0 

0  0 1 

0  1 0 

1  

2 

3 [ 

 

]=[ ] 
1  

3 

2 

If σ is a perŵutation on X={1…n}, then it can ďe represented ďy a 
permutation matrix Pσ 

 

 

 

 

 

 

 

1  

 

n [ ] 
1 0  0 

    … 

0  1 0 [ 

 

]=[  ] …
 σ(1)  

 

σ(n) 

 

…
 

kth row has a 1 

at position σ(k) 

(Ϭ…Ϭ 1 Ϭ…ϬͿ 

Permutation Matrices: Properties 

[      ] 
 

p1
T  …  pn

T     

 

p1  

 

pn [        ]=[   ] 
1  

 

        1 

Pσ Pσ
T

 = …
 

A permutation matrix as an orthogonal matrix! 

Every row/column 

has only a 1 

det(Pσ Pσ
T )=1              det(Pσ )= 1 or -1 
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Property 3. We will show next that any permutation can be decomposed
as a chain of “elementary” permutations called transpositions, or exchanges.

We consider the permutation σ given by






σ(1)
...

σ(n)




 =






eTσ(1)
...

eTσ(n)











1
...
n




 .

We shall produce σ from (1, 2, . . . , n) by successively moving σ(1) to the first
place and 1 to the place of σ(1), then σ(2) to the second place and whoever
is in the second place after the first exchange to the place of σ(2) place, etc..

After moving σ(1) to the first place, using a matrix P , we get












σ(1)
2
...
1
...
n












= Pn×n












1
2
...

σ(1)
...
n












.

After this step, we use an (n− 1)× (n− 1) permutation matrix to bring σ(2)
to the second place as follows (without affecting σ(1)):












σ(1)
σ(2)
...
2
...
n












=

[
1 0
0 P(n−1)×(n−1)

]












σ(1)
2
...

σ(2)
...
n












,

and so on. From this process, it is clear that at every stage we have either
a matrix of exchange in which two rows of the identity are exchanged, or if
the output happens to have the next value in its designated place an identity
matrix. The process will necessarily terminate after n steps and will yield
the permutation σ as desired.
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Transpositions 

     A transposition (exchange) is a permutation that swaps two 

elements and does not change the others. 

•  In cycle notation, a transposition has the form (i j). 

Exaŵple: (1 ϮͿ on the set X={1,Ϯ,ϯ,4} ŵeans 1Ϯϯ4 →Ϯ1ϯ4. 

•  In matrix notation, a transposition is an identity matrix, but for 

for two rows that are swapped. 

 

 

      ] 
0100  

1000 

0010 

0001 
[ 

Decomposition in Transpositions (I) 

    Any permutation can be decomposed as a product of 

transpositions. 

[ ] 
0..010..0 

  

1Ϭ  …    Ϭ 

 
[ 

 

]=[  ] 
1 

 

 

n 

i 

…
 

…
 

i=σ(1) 

σ(1) 

 …
 …
 

1 

1st  row, 1 at 

ith position 

ith  row, 1 at 

1st position 

Place similarly σ(2) at the 2nd position, σ(3) at the 3rd position etc, this 

process stops at most after n steps! (since at every step, either two rows 

are exchanged, or we have an identity matrix if nothing needs to be 

changed).  
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Hence we will be able to write







σ(1)
σ(2)
...

σ(n)







= EnEn−1 · · ·E2E1








1
2
...
n








where Ei =

{
either an elementary exchange matrix of size n× n
or an identity matrix of size n× n

.

Now, we know from the property of the determinant that exchanging two
rows in a matrix induces a sign change in the determinant. Hence we have

detEi =

{
−1 if it is a proper exchange
1 if it is In×n

.

Therefore we have shown that for any permutation, we have a decomposition
into a sequence of transpositions (or exchanges), and we need at most n of
them to obtain any permutation. Hence for any σ we have:

Pσ = EnEn−1 · · ·E1

and
detPσ = detEn detEn−1 · · · detE1 = (−1)# of exchanges.
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Example 

[ 
0 0  1 

0  1 0 

1 0 0 

1  

2 

3 [ 

 

]→[ ] 
3  

1 

2   

[ σ(1)=3 

[ 
1 0  0 

0  0 1 

0 1 0 

3  

2 

1 ]→[ ] 
3  

1 

2   

[ 

[ σ(2)=1 

Decomposition in Transpositions (II) 

[ 

 

]=[  ] 
1  

 

n 

σ(1)  

 

σ(n) 

 

     En …E2E1   

Pσ 

where Ei is either an identity matrix, or a transposition 

(exchange) matrix. 

det(Ei)=-1 for a transposition, and 1 for the identity, thus 

det(Pσ)=(-1)#exchanges 
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The above development enable us to define the permutation to be even if

detPσ = 1,

and odd if
detPσ = −1.

Definition 16. The sign/signature of a permutation σ is the determinant
of Pσ. It is either 1 if the permutation is even or -1 otherwise.

We have a natural way to combine permutations as bijective maps. In
matrix form, we have that if

PσA






1
...
n




 =






σA(1)
...

σA(n)




 , PσB






1
...
n




 =






σB(1)
...

σB(n)






then
PσAPσB = PσB◦σA .

The description of a permutation via transposition is not unique but the
parity is an invariant. We also have that

sign(σA ◦ σB) = sign(σA)sign(σB)

det(PσBPσA) = det(PσB) det(PσA).

Then we have the multiplication rule.

even odd
even even odd
odd odd even

This shows the following.

Theorem 14. All even permutations form a subgroup of permutations.

Proof. Clearly the identity matrix is an even permutation, since its determi-
nant is 1.

Product of even permutations is even, thus closure is satisfied.
The inverse of an even permutation must be even. To show this, we know

P T
σ Pσ = I,

so det(P T
σ ) = det(Pσ) ⇒ det(P T

σ ) = 1 if det(Pσ) = 1.

Definition 17. The subgroup An of even permutations of the symmetric
group Sn is called the alternating group.
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Parity of a Permutation 

A permutation is even if det(Pσ)=1 and odd if det(Pσ)=-1.  

The sign/signature of a permutation σ is sign(σ)=det(Pσ). 

 

Example 

(1ϯϮͿ : 1Ϯϯ →ϯ1Ϯ 

1Ϯϯ → ϯ1Ϯ thus (1ϯͿ : 1Ϯϯ →ϯϮ1 

ϯϮ1 →ϯ1Ϯ  thus (1ϮͿ(1ϯͿ : 1Ϯϯ →ϯϮ1→ϯ1Ϯ 

sign(132)=(-1)2=1. 

The decomposition in transpositions is far from unique! It 

is the signature which is unique!! ! 

Same result from the 

matrix approach! 

The Alternating Group 

   The subset of Sn formed by even permutations is a group, 

called the alternating group An. 

•  The identity is the do-nothing permutation σ= (), its 

permutation matrix is the identity, and its determinant is 1 and 

sign(())=1, that is () is even.  

• The composition of two even permutations is even, since 

det(Pσ1Pσ2)= det(Pσ1) det(Pσ2)=1·1=1. 

•  If σ is a permutation with matrix Pσ, then its inverse 

permutation has matrix Pσ
T . Now det(PσPσ

T)=1 and since 

det(Pσ)=1, we must have det(Pσ
T)=1! 
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Example 29. When n = 3, we consider the symmetric group S3, and identify
those permutations which are even. Among the 6 permutations of S3, 3 are
odd and 3 are even. Thus A3 is isomorphic to the cyclic group C3 of order 3.

An interesting immediate fact is that the size of the subgroup of even
permutations is 1

2
n!, since for every even permutation, one can uniquely as-

sociate an odd one by exchanging the first two elements!
Let us go back once more to our original question. We are looking for a

group which is not isomorphic to a group of finite planar isometries. Since
A3 is isomorphic to a cyclic group, let us consider the next example, namely
A4.

Since 4! = 24, we know that |A4| = 12. There is a dihedral group D6

which also has order 12. Are the two groups isomorphic?
Lagrange theorem tells us that elements of A4 have an order which divides

12, so it could be 1,2,3,4 or 12. We can compute that there are exactly 3
elements of order 2:

(12)(34), (13)(24), (14)(23),

and 8 elements of order 3:

(123), (132), (124), (142), (134), (143), (234), (243).

This shows that A4 and D6 cannot be isomorphic! We thus just found our
first example, to show that there is more than cyclic and dihedral groups!
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Example: A3 

() (12)  (23)  (13)  (123)  (132)  

()  ()  (1,2)  (2,3)  (1,3)  (123)  (132)  

(1,2)  (1,2)  ()  (123)  (132)  (2,3)  (1,3)  

(2,3)  (2,3)  (132) ()  (123)  (1,3)  (1,2)  

(1,3)  (1,3)  (123)  (132)  ()  (1,2)  (2,3)  

(123)  (123)  (1,3)  (1,2)  (2,3)  (132)  ()  

(132)  (132)  (2,3)  (1,3)  (1,2)  ()  (123) 

() (123)  (132)  

()  ()  (123)  (132)  

(123)  (123)  (132)  ()  

(132)  (132)  ()  (123) 

It is the cyclic group 

of order 3! 

Order of An 

The order of An is |An|=|Sn|/2 = n!/2. 

Proof. To every even permutation can be associated 

uniquely an odd one by permuting the first two 

elements! 

Examples. 

•  A2 is of order 1              this is {1}. 

•  A3 is of order 3!/2=6/2=3           this is C3. 

•  A4 is of order 4!/2 =24/2=12           ? 
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Question 2: one more Bad News ?? 

Order abelian groups non-abelian groups 

1 {1} x 

2 C2= S2 x 

3 C3 x 

4 C4, Klein group x 

5 C5 x 

6 C6 D3  = S3 

7 C7 x 

8 C8 D4 

12 C12 D6, A4 

QUESTION 2: are there finite groups which are not isomorphic 

to planar isometries (cyclic or dihedral groups)?  

Order of Elements in A4 

• Lagrange Theorem tells us: 1,2,3,4,6,12. 

• In fact: 3 elements of order 2, namely (12)(34), (13)(24), (14)(23) 

• And 8 elements of order 3, namely 

(123),(132),(124),(142),(134),(143),(234),(243) 

A4 and D6 are not isomorphic!  

http://kristin-williams.blogspot.com/2009/09/yeah.html 
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Exercises for Chapter 7

Exercise 36. Let σ be a permutation on 5 elements given by σ = (15243).
Compute sign(σ) (that is, the parity of the permutation).

Exercise 37. 1. Show that any permutation of the form (ijk) is always
contained in the alternating group An, n ≥ 3.

2. Deduce that An is a non-abelian group for n ≥ 4.

Exercise 38. Let H = {σ ∈ S5 | σ(1) = 1, σ(3) = 3}. Is H a subgroup of
S5?

Exercise 39. In the lecture, we gave the main steps to show that the group
D6 cannot be isomorphic to the group A4, though both of them are of order
12 and non-abelian. This exercise is about filling some of the missing details.

• Check that (1 2)(3 4) is indeed of order 2.

• Check that (1 2 3) is indeed of order 3.

• By looking at the possible orders of elements of D6, prove that A4 and
D6 cannot be isomorphic.



Chapter 8

Cayley Theorem and Puzzles

“As for everything else, so for a mathematical theory: beauty can
be perceived but not explained.”(Arthur Cayley)

We have seen that the symmetric group Sn of all the permutations of n
objects has order n!, and that the dihedral group D3 of symmetries of the
equilateral triangle is isomorphic to S3, while the cyclic group C2 is isomor-
phic to S2. We now wonder whether there are more connections between
finite groups and the group Sn. There is in fact a very powerful one, known
as Cayley Theorem:

Theorem 15. Every finite group is isomorphic to a group of permutations
(that is to some subgroup of Sn).

This might be surprising but recall that given any finite group G =
{g1, g2, . . . , gn}, every row of its Cayley table

g1 = e g2 g3 · · · gn
g1
g2
...
gr grg1 grg2 grg3 · · · grgn
...
gn

is simply a permutation of the elements of G (grgs ∈ {g1, g2, . . . , gn}).
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Groups and Permutation Groups 

• We saw that D3=S3 and C2=S2. 

• Is there any link in general between a given group G and 

groups of permutations? 

• The answer is given by Cayley Theorem! 

Cayley Theorem 

    Theorem Every finite group is isomorphic to a group of  

permutations. 

One known link: for a group G, we can consider its 

multiplication (Cayley) table. Every row contains a permutation 

of the elements of the group. 

This means a 

subgroup of some 

symmetric group. 
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Proof. Let (G, ·) be a group. We shall exhibit a group of permutations (Σ, ◦)
that is isomorphic to G. We have seen that the Cayley table of (G, ·) has
rows that are permutations of {g1, g2, . . . , gn}, the elements of G. Therefore
let us define

Σ = {σg : G→ G, σg(x) = gx, ∀x ∈ G}
for g ∈ G. In words we consider the permutation maps given by the rows of
the Cayley table. We verify that Σ is a group under map composition.

1. To prove that Σ is closed under composition, we will to prove that

σg2 ◦ σg1 = σg2g1 , g1 ∈ G, g2 ∈ G.

Indeed, for every x ∈ G,

σg2 (σg1(x)) = σg2 (g1x) = g2(g1x) = (g2g1)x = σg2g1(x) ∈ Σ

since g2g1 ∈ G.

2. Map composition is associative.

3. The identity element is σe(x) = ex, since

σg ◦ σe = σg·e = σg, σe ◦ σg = σe·g = σg.

4. The inverse. Consider g and g−1, we have gg−1 = g−1g = e. From

σg2 ◦ σg1 = σg2g1

we have
σg ◦ σg−1 = σe = σg−1 ◦ σg.

Now we claim that (G, ·) and (
∑
, ◦) are isomorphic, where the group

isomorphism is given by

φ : G→ Σ, g 7→ σg.

Clearly if σg1 = σg2 then g1e = g2e ⇒ g1 = g2. If g1 = g2, then σg1 = σg2 .
Hence the map is one-to-one and onto, by construction!

Let us check that φ is a group homomorphism. If g1, g2 ∈ G,

φ(g1g2) = σg1g2 = σg1 ◦ σg2 = φ(g1) ◦ φ(g2),
and hence we are done, φ is an isomorphism between (G, ·) and a permutation
group!
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Proof of Cayley Theorem (I) 

• We need to find a group Σ of permutations isomorphic to G. 

 

 
•   Define Σ={ σg : G →G, σg(x)=gx , g in G} 

These are the 

permutations given by 

the rows of the Cayley 

table! 

•  The set Σ forms a group of permutations: 

o  It is a set of permutations (bijections). 

o  The identity is σ1 since it maps x to x. 

o  Associativity is that of map composition. 

o  Closure:  we have that σg1 σg2 = σg1g2. 
o Inverse: we have that σg σg(-1) = σ1.  

Proof of Cayley Theorem (II) 

• Left to prove: G and Σ are isomorphic. 

•   We define a group isomorphism φ: G →Σ , φ(g)=σg. 

o  The map φ is a bijection. 

o The map φ is a group homomorphism: φ(g1g2)=φ(g1) φ(g2). 
  

[Indeed: φ(g1g2)= σg1g2 = σg1 σg2 =φ(g1) φ(g2).]  
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Now that we saw that all finite groups are subgroups of Sn, we can un-
derstand better why we could describe the symmetries of bounded shapes
by the cyclic group Cn or the dihedral group Dn which can be mapped in a
natural way to permutations of the vertex locations in the plane.

Example 30. Consider the group of integers modulo 3, whose Cayley table
is

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

We have σ0(x) = x + 0 corresponding to the permutation identity ().
Then σ1(x) = x + 1 corresponding to the permutation (123), σ2(x) = x + 2
corresponding to (132).

Since we have a group homomorphism, addition in G = {0̄, 1̄, 2̄} corre-
sponds to composition in Σ = {σ0, σ1, σ2}. For example

1̄ + 1̄ = 2̄ ⇐⇒ (123)(123) = (132).

We next illustrate how the techniques we learnt from group theory can
be used to solve puzzles. We start with the 15 puzzle. The goal is to obtain
a configuration where the 14 and 15 have been switched.

Since this puzzle involves 16 numbers, we can look at it in terms of per-
mutations of 16 elements.

Let us assume that when the game starts, the empty space is in position
16. Every move consists of switching the empty space 16 and some other
piece. To switch 14 and 15, we need to obtain the permutation (14 15) as
a product of transpositions, each involving the empty space 16. Now the
permutation (14 15) has parity -1, while the product of transpositions will
always have parity 1, since 16 must go back to its original position, and thus
no matter which moves are done, the number of vertical moves are even, and
the number of horizontal moves are even as well.
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Example 

Take G={0,1,2} the group of integers mod 3. 

 
0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

() 

(123) 

(132) 

• You can check the consistency of the operations! (homomorphism) 

• For exaŵple: 1+1 =Ϯ ↔ (1ϮϯͿ(1ϮϯͿ=(1ϯϮͿ 

This is a subgroup of S3. 

A Historical Point of View 

Lagrange ~1770 

Galois ~1830 

Cauchy~1820-1840 

Kronecker~1870 
Klein ~1880 

Lie ~1880 

Permutations 

Number Theory 

Geometry 

(Jordan ~1880) 

Cayley ~1854 

(modern definition 

of group) 

Group Theory 

[The symmetric group is complicated! Needs more tools.] 
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15 Puzzle 

• 1870, New England 

• 1890, price of 1000$ to who could solve it. 

14 15 

Impossibility of the 15 Puzzle (I) 

     Every move involves switching the empty space (say 16) and 

some other piece. 

11 12 

15 

11 

15 12 

11 

15 12 

15 11 

12 

(12 16) (11 16) (15 16) 

15 11 

12 

(12 16) 

Solving the puzzle means we can write: 

(14 15)= (an 16)(an-1 16Ϳ …(a2 16)(a1 16) 



179

We next consider a solitaire puzzle. The goal of the game is to finish
with a single stone in the middle of the board. This does not seem very easy!
We might ask whether it would be easier to finish the game by having a
single stone anywhere instead. To answer this question, we consider the Klein
group, and label every position of the board with an element of the Klein
group, such that two adjacent cells multiplied together give as result the label
of the third cell (this is done both horizontally and vertically). The value
of the board is given by multiplying all the group elements corresponding to
board positions where a stone is. The key observation is that the value does
not change when a move is made.

When the game starts, and only one stone is missing in the middle, the
total value of the board is h (with the labeling shown on the slides). Since
a move does not change the total value, we can only be left with a position
containing an h. Since the board is unchanged under horizontal and vertical
reflections, as well as under rotations by 90, 180, and 270 degrees, this further
restricts the possible positions containing a valid h, and in fact, the easiest
version is as hard as the original game!

Other applications of group theory can be found in the area of cryptog-
raphy. We already saw Caesar cipher, and affine ciphers. We will see some
more: (1) check digits and (2) the RSA cryptosystem.
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Impossibility of the 15 Puzzle (II) 

Solving the puzzle means we can write: 

(14 15)= (an 16)(an-1 16Ϳ …(a2 16)(a1 16) 

parity = -1 parity = 1 

16 must return to its 

place, thus both 

number of horizontal 

and vertical moves 

are even! 

Solitaire (I) 
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Solitaire (II) 

• A move = pick up a marble, jump it horizontally or vertically 

(but not diagonally) over a single marble into a vacant hole, 

removing the marble that was jumped over. 

 

•  A win = finish with a single marble left  in the central hole. 

•  Would it be easier if a win = finish with a single marble anywhere? 

Solitaire (III) 

Binary 

operation of the 

Klein group 

• G={1,f,g,h} = Klein group 

• Label the board such that 

labels of two cells multiplied  

together give the label of the 

third cell. 
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Cryptography: Modular Arithmetic 

Modular arithmetic (integers modulo n) enables 

• Caesar’s cipher 

 

• Affine ciphers  

 

 

• RSA cryptosystem 

 

eK: x → eK(x)=x+K mod 26, K=3 

eK: x → eK(x)=K1x+K2 mod 26, (K1,26)=1, K=(K1,K2)  

eK: x → eK(x)=xe mod n, K=(n,e) 

Cryptography: Discrete Log Problem 

• “Regular͟ logarithŵ: loga(b) is defined as the solution x of the 

equation ax = b. 

• Example: : log2(8)=3 since 23=8.  

•   Discrete logarithm: let G be a finite cyclic group, take g and h           

in G, logg(h) in G is defined as a solution x of the equation gx = h. 

•    Example: log3(13)=x in the group of invertible integers 

modulo 17 means that 3x ≡ 13 (mod 17) , and x=4 is a solution. 
 

This is useful in cryptography because solving the discrete log 

problem is hard! 

Need to check this is a cyclic group! 
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Cryptography: Check Digit (I)  

     Take a message formed by a string of digits. 

      A check digit consists of a single digit, computed from the other 

digits,  appended at the end of the message. 

It is a form of redundancy to enable error detection. 

We will look at the Check Digit introduced by J. Verhoeff in 

1969, based on the dihedral group D5. 

Cryptography: Check Digit (II) 

     Multiplication table of D5 with 0=do-nothing, 1-4=rotations, 5-
9=reflections, *=binary operation in D5. 

* 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 0 6 7 8 9 5 

2 2 3 4 0 1 7 8 9 5 6 

3 3 4 0 1 2 8 9 5 6 7 

4 4 0 1 2 3 9 5 6 7 8 

5 5 9 8 7 6 0 4 3 2 1 

6 6 5 9 8 7 1 0 4 3 2 

7 7 6 5 9 8 2 1 0 4 3 

8 8 7 6 5 9 3 2 1 0 4 

9 9 8 7 6 5 4 3 2 1 0 
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Cryptography: Check Digit (III) 

     How does it work?Let σ be a permutation in S10. To any string 

a1a2… an-1 of digits, we append the check digit an so that  

     σ(a1)* σ2(a2)* …*σn-1(an-1)* σn(an)=0. 

Composition of 

the permutation σ 

Binary operation 

of D5 

Single-digit errors are detected: if the digit a is replaced by 

b, then σi(a) is replaced by σi(b) (σi(aͿ≠ σi(b) when a≠ď) thus 

the check digit is changed and an error is detected. 

Cryptography: Check Digit (IV) 

Example. Take σ=(1,7,9)(2,5,10,4,6) and the digit 12345 (n-1=5). 

• σ(2)=5, σ2(3)=3, σ3(4)=5, σ4(5)=2, σ5(6)=6.  

• 5*3*5*2*6* σ6(a6)=0          5* σ6(a6)=0          σ6(a6)=  5 and a6=2.  

[23456] 

• We get [234562] that is 123451. 

Check digit 8 

on a German 

banknote. 
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Application of Euler Theorem: RSA 

    RSA is an encryption scheme discovered by River, Shamir and 

Adleman (in 1978). 

Alice and Bob Story 

Alice and Bob want to exchange confidential data in the 

presence of an eavesdropper Eve. 
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Alice and Bob story by xkcd 

RSA Protocol (I) 

• “elect two distinct large priŵes p and Ƌ (“large͟ ŵeans 1ϬϬ 
digits ). 

• Compute n=pq. 

• The Euler totient function of n is           = (p-1)(q-1). 

 

 

•   Pick an odd integer e such that e is coprime to           . 

•   Find d such that ed = 1 modulo           .  

This function counts the 

integers coprime to n. 

Publish e and n as public keys, keep d private. 

e exists because it is 

coprime to the Euler 

totient function! 
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RSA Protocol (II) 

• Alice: public key = (n,e), d is private. 

• Bob sends m to Alice via the following encryption: c =me mod n. 

• Alice decrypts: m = cd mod n. 

 Why can Alice decrypt? 

Step 1 cd mod n = (me)d mod n. 

Step 2  We have  ed =1 +k          .  

Step 3 Now (me)d mod n = m 1+k               = m mod n when m is 

coprime to n. 
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Exercises for Chapter 8

Exercise 40. • Let G be the Klein group. Cayley’s Theorem says that
it is isomorphic to a subgroup of S4. Identify this subgroup.

• Let G be the cyclic group C4. Cayley’s Theorem says that it is isomor-
phic to a subgroup of S4. Identify this subgroup.

Exercise 41. Show that any rearrangement of pieces in the 15-puzzle start-
ing from the standard configuration (pieces are ordered from 1 to 15, with
the 16th position empty) which brings the empty space back to its original
position must be an even permutation of the other 15 pieces.

Exercise 42. Has this following puzzle a solution? The rule of the game is

the same as the solitaire seen in class, and a win is a single marble in the
middle of the board. If a win is a single marble anywhere in the board, is
that any easier?
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Quotient Groups

“Algebra is the offer made by the devil to the mathematician...All
you need to do, is give me your soul: give up geometry.” (Michael
Atiyah)

Based on the previous lectures, we now have the following big picture.
We know that planar isometries are examples of groups, and more precisely,
that finite groups of planar isometries are either cyclic groups or dihedral
groups (this is Leonardo Theorem). We also know that there other groups
out there, for example the alternating group, but still, most of the groups we
have seen can be visualised in terms of geometry. The goal of this lecture is
to introduce a standard object in abstract algebra, that of quotient group.
This is likely to be the most “abstract” this class will get! Thankfully, we
have already studied integers modulo n and cosets, and we can use these to
help us understand the more abstract concept of quotient group.

Let us recall what a coset is. Take a group G and a subgroup H. The set
gH = {gh, g ∈ H} is a left coset of H, while Hg = {hg, h ∈ H} is a right
coset of H. Consider all the distinct cosets of G (either right or left cosets).
The question is: does the set of all distinct cosets of G form a group?

Example 31. Consider G = {0, 1, 2, 3} to be the set of integers modulo 4,
and take the subgroup H = {0, 2} (you might want to double check that you
remember why this is a subgroup). We have two cosets H and 1+H = {1, 3}.
To have a group structure, we need to choose a binary operation. Let us say
we start with +, the addition modulo 4. How do we add two cosets? Let us
try elementwise. To compute {0, 2}+{1, 3}, we have {0+1, 0+3, 2+1, 2+3} =
{1, 3}. It seems not bad, the sum of these two cosets does give another coset!

191
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Quotient Group Recipe 

Ingredients: 

• A group G, a subgroup H, and cosets gH 

 

 

 

• Group structure 

The set  gH={gh, h in H} is called a left coset of H. 

The set Hg={hg, h in H} is called a right coset of H. 

When does the set of all cosets of H form a group? 

1st Example (I) 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G. 

The coset 1+H  = {1,3}. 
 

G 
0        2 1       3 

 All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} . 
 

The set of cosets is { {0,2}, {1,3} }. Does it form a group? 

We need a binary operation, say we keep +. 

Let us compute! 

 

•  {0,2}+{0,2}={0,2} 

•  {0,2}+{1,3}={1,3} 

•  {1,3}+{1,3}={0,2} 

1+{1,3}={2,0},3+{1,3}={0,2} 
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Let us try to do that with both cosets, and summarize it in a Cayley
table.

{0, 2} {1, 3}
{0, 2} {0, 2} {1, 3}
{1, 3} {1, 3} {0, 2}

We notice that we indeed have a group structure, since the set of cosets is
closed under the binary operation +, it has an identity element {0, 2}, every
element has an inverse, and associativity holds. In fact, we can see from the
Cayley table that this group is in fact isomorphic to the cyclic group C2.

In the above example, we defined a binary operation on the cosets of H,
where H is a subgroup of a group (G,+) by

(g +H) + (k +H) = {g + h+ k + h′ for all h, h′}.

We now illustrate using the same example that computations could have been
done with a choice of a representative instead.

Example 32. We continue with the same setting as in Example 31. Since
0 +H = {0, 2} and 1 +H = {1, 3}, we have

(0 +H) + (1 +H) = (0 + 1) +H = 1 +H

using the representative 0 from 0 +H and 1 from 1 +H. Alternatively, if 2
and 3 are chosen as representatives instead, we have

(2 +H) + (3 +H) = (2 + 3) +H = 1 +H

since 5 ≡ 1 mod 4. There are in total 4 ways of choosing the coset repre-
sentatives, since 0 and 2 can be chosen for the first coset, and 1 and 3 could
be chosen in the second coset. Any choice will give the same answer as the
sum of the two cosets.
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1st Example (II) 

+ {0,2} {1,3} 

{0,2} {0,2} {1,3} 

{1,3} {1,3} {0,2} 

We observe 

1. The set of cosets is closed under the binary operation +. 

2. It has an identity element {0,2}. 

3. Every element has an inverse. 

4. Associativity 

This is the cyclic 

group C2! 

1st Example (III) 

+ {0,2} {1,3} 

{0,2} {0,2} {1,3} 

{1,3} {1,3} {0,2} 

How to compute with cosets: 

• {0,2}=0+H=2+H: {0,2}+{0,2}=(0+H)+(0+H)=(0+0)+H=H={0,2} 

G= {0,1,2,3} integers modulo 4. H={0,2} is a subgroup of G.  
 

 All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} . 
 

=(0+H)+(2+H)=(0+2)+H=H={0,2} 

• {1,3}=1+H=3+H: {0,2}+{1,3}=(0+H)+(1+H)=(0+1)+H=1+H={1,3} 

                                                     =(2+H)+(3+H)=(2+3)+H=1+H={1,3} 

Can be computed 

using coset 

representatives! 
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Let us now revisit integers modulo n. We recall that a and b are said to be
congruent modulo n if their difference a− b is an integer which is a multiple
of n. We saw that being congruent mod n is an equivalence relation, and
that addition modulo n is well defined, which led to the definition of group
of integers modulo n with respect to addition.

Now consider the group G = Z of integers, and the subgroup H = nZ,
that is

H = nZ = {. . . ,−2n,−n, 0, n, 2n, . . .}
is the set of multiples of n (you might check that this is indeed a subgroup).
We now consider the cosets of H, that is

−2 +H,−1 +H, 0 +H, 1 +H, 2 +H, . . . .

Example 33. If n = 3, then H = 3Z consists of the multiple of 3. We have
exactly 3 distinct cosets, given by

0 +H, 1 +H, 2 +H

since Z is partitioned by these 3 cosets. Indeed, 0 + H contains all the
multiples of 3, 1 +H contains all the multiples of 3 to which 1 is added, and
0+H all the multiples of 3, to which 2 is added, which cover all the integers.

Now when we do computations with integers modulo 3, we choose a coset
representative. When we compute (0 mod 3) + (1 mod 3), we are looking
at the sum of the coset (0 +H) and of the coset (1 +H).
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In the case of integers modulo n, we do have that cosets form a group.
Now we may wonder whether this is true in general. To answer this question,
let us take a general group G, and its set of cosets. We need to define a binary
operation:

(gH, g′H) 7→ (gH)(g′H)

multiplicatively, or

(g +H, g′ +H) 7→ (g +H) + (g′ +H)

additively. Now, is the set {gH, g ∈ G} closed under this binary operation,
that is, is it true that

(gH)(g′H) = gg′H

multiplicatively, or

(g +H) + (g′ +H) = (g + g′) +H

additively. Let us see what happens multiplicatively. If we choose two ele-
ments gh ∈ gH and g′h′ ∈ g′H, then

(gh)(g′h′) 6= gg′hh′

in general. We do have equality if the group is Abelian, but otherwise there
is no reason for that to be true. This leads us to the following definition.

Definition 18. A subgroup H of (G, ·) is called a normal subgroup if for all
g ∈ G we have

gH = Hg.

We shall denote that H is a subgroup of G by H < G, and that H is a normal
subgroup of G by H ⊳ G.

One has to be very careful here. The equality gH = Hg is a set equal-
ity! It says that a right coset is equal to a left coset, it is not an equality
elementwise.
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When do Cosets form a Group? (I) 

• G a group, H a subgroup, gH={gh, h in H} a coset. 

• Consider the set {gH, g in G}. 

• We need to define a binary operation:  

map gH and g’H to (gH)(g’H)  multiplicatively 

map (g+H) and (g’+H) to (g+H)+(g’+H) additively 

(gH)(g’H)=gg’H  multiplicatively 

(g+H)+(g’+H)=(g+g’Ϳ+H additiǀely 

Is the set {gH, g in G} closed under this binary operation? 

? 

When do Cosets form a Group? (II) 

(gH)(g’H)=gg’H  multiplicatively 

(g+H)+(g’+H)=(g+g’Ϳ+H additiǀely 

If gH=Hg, then gh=h’g, and the set {gH, g in G} is closed under      

the binary operation. 

? 
Take gh in gH and g’h’ iŶ g’H. 

Do we have that (gh)(g’h’Ϳ =gg’h’’?  
Not ŶeĐessarily…True if G is abelian, otherwise not clear. 

This does NOT 

mean gh=hg, this 

means gh=h’g. 
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Now suppose we have (G, ·) a group, H a normal subgroup of G, i.e.,
H ⊳ G, and the set of cosets of H in G, i.e., the set G/H defined by
G/H = {gH|g ∈ H} .

Theorem 16. If H ⊳ G, then (G/H, (g1H)(g2H) = (g1g2)H) is a group.

Proof. To check what we have a group, we verify the definition.

1. Closure: (g1H)(g2H) = g1(Hg2)H = g1g2H ∈ G/H using that g2H =
Hg2.

2. Associativity follows from that of G.

3. eH = H is the identity in G/H.

4. Finally g−1H is the inverse of gH in G/H, since

(gH)(g−1H) = (gg−1)H = H.

We also need to show that the operation combining two cosets to yield a
new coset is well defined. Notice that

(gH, g′H) 7→ gg′H

involves the choice of g and g′ as representatives. Suppose that we take
g1 ∈ gH and g2 ∈ g′H, we need to show that

(g1H, g2H) 7→ gg′H.

Since g1 ∈ gH, then g1 = gh for some h, and similarly, since g2 ∈ g′H, then
g2 = g′h′ for some h′ in H, so that

g1H = ghH = gH, g2H = g′h′H = g′H

and
(g1H)(g2H) = (gH)(g′H) = gg′H

as desired.

The group G/H is called quotient group.
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Quotient Group (I) 

Let G be a group, with H a subgroup such that gH=Hg for any g in G.  

The set G/H ={gH, g in G} of cosets of H in G is called a quotient group. 

We need to check that G/H is indeed a group! 

• Binary operation: G/H x G/H , (gH,g’HͿ → gHg’H is associative 

• Since gH=Hg, gHg’H=gg’H and G/H is closed under binary operation. 

• The identity element is  1H since (1H)(gH)=(1g)H=gH for any g in G. 

• The inverse of gH is g-1H: (gH)(g-1H)=(g-1H)(gH)=(gg-1)H=(g-1g)H=H. 

Anything 

missing? 

Quotient Group (II) 

     We need to check the binary operation does not depend on 

the choice of coset representatives. ! 
(gH,g’HͿ → gHg’H=gg’H  IŶǀolǀes ĐhoosiŶg g aŶd g’ as 

respective coset representatives!! 

Suppose we take g1 in gH and g2 in g’H, we need that g1Hg2H = gg’H.   

 g1 in gH thus g1 =gh for some h, g2 in g’H thus g2 = g’h’ for soŵe h’.      
 Now g1H =(gh)H for some h, and g2 H =(g’h’ͿH for soŵe h’.  
Thus g1H g2H =(gh)H (g’h’ͿH=gHg’H=gg’H as desired.  
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The order of the quotient group G/H is given by Lagrange Theorem

|G/H| = |G|/|H|.

Example 34. Continuing Example 31, where G = {0, 1, 2, 3} and H =
{0, 2}, we have

|G/H| = 4/2 = 2

and G/H is isomorphic to C2.

Example 35. When G = Z, and H = nZ, we cannot use Lagrange since
both orders are infinite, still |G/H| = n.

Example 36. Consider Dihedral group Dn. The subgroup H = 〈r〉 of rota-
tions is normal since

1. if r′ is any rotation, then r′r = rr′,

2. if m is any reflection ∈ Dn, mr = r−1m always.

Hence rH = Hr, mH = Hm and rimjH = riHmj = Hrimj for j = 0, 1 and
i = 0, . . . , n− 1.

Suppose now G is a cyclic group. Let H be a subgroup of G. We know
that H is cyclic as well! Since G is cyclic, it is Abelian, and thus H is normal,
showing that G/H is a group! What is this quotient group G/H?

Proposition 10. The quotient of a cyclic group G is cyclic.

Proof. Let H be a subgroup of G. Let xH be an element of G/H. To show
that G/H is cyclic, we need to show that xH = (gH)k for some k and gH.
Since G is cyclic, G = 〈g〉 and x = gk for some k. Thus

xH = gkH = (gH)k.
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Quotient Group (III) 

     Let G be a group, H a subgroup of G such that gH=Hg and G/H 

the quotient group of H in G. 

What is the order of G/H? 

By Lagrange Theorem, we have: 

|G/H|=[G:H]=|G|/|H|. 

1st Example Again 

G= {0,1,2,3} integers modulo 4. H={0,2} is a subgroup of G.  
 

G is abelian, thus g+H = H+g. 

G/H is thus a group of order 2: G/H = C2. 
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Quotient of Cyclic Groups (I) 

• Let G be a cyclic group. Let H be a subgroup of G. 

• We know that H is a cyclic group too. 

• Since G is abelian, we have gH=Hg for every g in G. 

• Thus G/H is a group! 

What is the quotient group of a cyclic subgroup in a cyclic group? 

Quotient of Cyclic Groups (II) 

Proposition. The quotient of a cyclic group G is cyclic. 

Proof. Let H be a subgroup of G, and let xH be an element of G/H.  

Since G is cyclic, we have G=<g> and x=gk for some k. 

To show, G/H is cyclic, namely xH =(gH)k for some k and gH. 

 xH=gk H =(gH)k.  

gH is thus the 

generator of G/H! 
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The notion of quotient is very important in abstract algebra, since it
allows us to simplify a group structure to what is essential!

Example 37. The reals under addition (R,+), the subgroup (Z,+) of in-
tegers. We have (Z,+) ⊳ (R,+) because of the fact that (R,+) is abelian!
Now

R/Z = {r + Z|r ∈ R} .
The cosets are r+Z with r ∈ [0, 1). R/Z is isomorphic to the circle group S of
complex numbers of absolute value 1. The isomorphism is φ[(r+Z)] = ei2πr.
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Exercises for Chapter 9

Exercise 43. Consider the Klein group G = {1, f, g, h}.

• What are all the possible subgroups of G?

• Compute all the possible quotient groups of G.

Exercise 44. Consider the dihedral group D4. What are all the possible
quotient groups of D4?

Exercise 45. Consider A the set of affine maps of R, that is

A = {f : x 7→ ax+ b, a ∈ R∗, b ∈ R}.

1. Show that A is a group with respect to the composition of maps.

2. Let
N = {g : x 7→ x+ b, b ∈ R}.

Show that the set of cosets of N forms a group.

3. Show that the quotient group A/N is isomorphic to R∗.
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Chapter 10

Infinite Groups

The groups we have carefully studied so far are finite groups. In this chapter,
we will give a few examples of infinite groups, and revise some of the concepts
we have seen in that context.

Let us recall a few examples of infinite groups we have seen:

• the group of real numbers (with addition),

• the group of complex numbers (with addition),

• the group of rational numbers (with addition).

Instead of the real numbers R, we can consider the real plane R2. Vectors
in R2 form a group structure as well, with respect to addition! Let us check
that this is true. For that, we check our 4 usual properties: (1) the sum of two
vectors is a vector (closure), (2) addition of vectors is associative, (3) there
is an identity element, the vector (0, 0), and (4) every vector (x1, x2) ∈ R2

has an inverse, given by (−x1,−x2), since

(x1, x2) + (−x1,−x2) = (0, 0).

211
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The example that we just saw with R2 is a special case of a vector space.
Vector spaces are objects that you might have seen in a linear algebra course.
Let us recall the definition of a vector space.

Definition 19. A set V is a vector space over a field (for us, we can take
this field to be R) if for all u, v, w ∈ V

1. u+ v ∈ V (closure property),

2. u+ v = v + u (commutativity),

3. u+ (v + w) = (u+ v) + w (associativity),

4. there exists 0 ∈ V such that u+ 0 = 0 + u,

5. there exists −v such that (−v) + v = 0

and for all x, y ∈ R we have

1. x(u+ v) = xu+ xv,

2. (x+ y)u = xu+ xu,

3. x(yu) = (xy)u

4. 1u = u, where 1 is the identity of R.

We recognize that the first axioms of a vector space V are in fact request-
ing V to be an Abelian group!

Example 38. The n-dimensional real space Rn = {(x1, x2, . . . , xn) |xi ∈ R, i = 1, . . . , n}
is a vector space over the reals.

Example 39. We already know that the set C of complex numbers forms a
group. Now

C = {x+ iy|x, y ∈ R}
is a vector space over R, which gives another proof that C forms a group
under addition.
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Definition of Vector Space 

• Associativity of vector addition: v1 + (v2 + v3) = (v1 + v2) + v3. 

 

• Commutativity of vector addition: v1 + v2 = v2 + v1. 

 

• Identity element of vector addition: there exists 0 ∈ V  such that v + 0 = v for all v ∈ V. 

 

•Inverse elements of vector addition: for all v ∈ V, there exists -v ∈ V such that v + (-v) = 0. 

 

• Distributivity of scalar multiplication w/r vector addition: n(v1 + v2) = nv1 + nv2. 

 

• Distributivity of scalar multiplication w/r field addition : (n1 + n2)v = n1v + n2v. 

 

• Respect of scalar multiplication over field multiplication: n1 (n2 v) = (n1 n2)v . 

 

• Identity element of scalar multiplication: 1v = v, where 1 = multiplicative identity in F. 

 

A set V of vectors, a set F (field, say the real numbers) of scalars. 

We recognize the 

group definition! 

Definition of Vector Space Revisited 

A set V of vectors, a set F (field, say the real numbers) of scalars. 

• Vectors form an abelian group with respect to addition. 

 

• Inverse elements of vector addition: for all v ∈ V, there exists -v ∈ V such that v + (-v) = 0. 

 

• Distributivity of scalar multiplication w/r vector addition: s(v1 + v2) = sv1 + sv2. 

 

• Distributivity of scalar multiplication w/r field addition : (n1 + n2)v = n1v + n2v. 

 

• Respect of scalar multiplication over field multiplication: n1 (n2 s) = (n1 n2)s . 

 

• Identity element of scalar multiplication: 1s = s, where 1 = multiplicative identity in F. 

 

The word field can be easily replaced by 

real nuŵďers if you don’t know it. 



215

A vector space is thus an Abelian group. What is the order of this group?
It’s infinity!

Now we might wonder what are the subgroups of this group. They are in
fact subspaces, as follows from the definition of a subspace.

Definition 20. Let V be a vector space over some field F and U be a subset
of V. If U is a vector space over F under the operations of V (vector addition
and multiplication by elements of F ), then U is called a subspace of V.

Let us recall the definition of a basis of a vector space.

Definition 21. A basis of V is a set of linearly independent vectors of
V such that every element v is a linear combination of the vectors from this
set.

Example 40. The set {(1, 0), (0, 1)} is a basis of the two-dimensional plane
R2. This means that every vector x ∈ R2 can be written as

x = x1(1, 0) + x2(0, 1), x1, x2 ∈ R.

Now let us think of what happens in the above example if we keep the two
basis vectors (1, 0) and (0, 1), but now restrict to integer coefficients x1, x2.
We get a set of the form

{x = x1(1, 0) + x2(0, 1), x1, x2 ∈ Z}.

If you plot it, you will see that you find an integer grid!



216 CHAPTER 10. INFINITE GROUPS

Group of Vectors 

    If we consider a vector space V, the vectors form an abelian 

group. 

What is its order? It is infinite… 

Subspace 

   When we have a group, we saw we can have subgroups. 

Group 

 

Subgroup 

Vector space 

 

Subspace 
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Subspaces of the 2-dimensional Plane 

Subspace 

     A subset of a vector space which is also a vector space is 

called a subspace. 

A subspace of V is thus a subgroup of the group V of vectors. 
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Basis of a Vector Space 

    A basis is a set of linearly independent vectors which span the 

whole vector space (any other vector can be written as a 

linear combination of the basis vectors). 

Let x be a vector in V, a vector space over the real numbers 

with basis {v1, v2,…, vn}, then  x = x1 v1 + x2 v2 + … + xn vn where 

x1,…, xn are real. 

Example. The 2-dimensional  real plane has for example 

basis {v1=(0,1), v2=(1,0)}. 

Integer Linear Combinations? 

Let x be a vector in V, with basis {v1, v2,…, vn} over the reals, 

then  x = x1 v1 + x2 v2 + … + xn vn where x1,…, xn are real. 

What happens if x1,…, x1  are in fact integers?  

Example. The 2-dimensional plane has for example basis 

{v1=(0,1), v2=(1,0)}. 

x= x1(0,1) + x2 (1,0) where x1, x2 are integers. 



219

We might ask whether the integer grid

{x = x1(1, 0) + x2(0, 1), x1, x2 ∈ Z}

still has a group structure. In fact, we could ask the same question more
generally. Suppose that we have two linearly independent vectors v1, v2,
does the set

L = {x = x1v1 + x2v2, x1, x2 ∈ Z}
form a group? We already know that addition of vectors is associative. If we
take two vectors in L, their sum still is a vector in L (we need to make sure
that the coefficients still are integers), so the closure property is satisfied.
The identity element is the vector (0, 0), and every element has an inverse.
Indeed, if we have a vector (x1, x2) with integer coefficients then (−x1,−x2)
also has integer coefficients, and their sum is (0, 0). In that case, L is called
a lattice, and it forms an infinite Abelian group.

A subset of the lattice L which itself has a subgroup structure is called a
sublattice.
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1st Example  

Group Structure? 

    Take two linearly independent vectors v1,v2 in the 2-dimensional 

real plane. Consider the set {x1v1+x2v2,x1,x2 integers}. 

Does it form a group? 
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2nd Example 

This forms an 

infinite group! 

Lattice 

    Take two linearly independent vectors v1,v2 in the 2-dimensional 

real plane. The set L={x1v1+x2v2,x1,x2 integers} forms a group 

called a lattice. 

A lattice is an infinite abelian group. 

• Addition of vectors is associative. 

• Closure:   (x1v1+x2v2)+(x3v1+x4v2)= (x1+x3)v1+(x2+x4)v2 is in L. 

• Inverse:  -x1v1-x2v2   is the inverse of x1v1+x2v2  is in L.  

• Identity is the zero vector. 
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Sublattice 

   When we have a group, we saw we can have subgroups. 

Group 

 

Subgroup 

Lattice 

 

Sublattice 

3rd Example 

sublatticee 

lattice 
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We spent quite some time at the beginning of theses lectures to study
isometries of the plane. What happens with the isometries of the integer
grid?

The isometries of R2 → R2 were completely characterized and analyzed
before and we know that a planar isometry ϕ is of the form

ϕ : (x, y) 7→ (x′, y′)
[
x′

y′

]

=

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 (−1)ε

] [
x
y

]

+

[
β1
β2

]

.

Let us now consider the integer grid lattice

Z2 = {(m,n)|m ∈ Z, n ∈ Z} .

The isometries of the integer lattice, under the Euclidean distance defined
over R2 will be a subgroup of the group of planar isometries, i.e., they will
be of the form

ϕD : (m,n) 7→ (m′, n′)
[
m′

n′

]

= RθD

[
1 0
0 (−1)ε

] [
m
n

]

+

[
β1
β2

]

D

.

The restriction of having to map integer coordinate points to integer co-
ordinate points immediately imposes the following constraints on θD and
[β1, β2]D :

1. [β1, β2]D ∈ Z2

2. cos θ and sin θ must be integers or zero, hence their possibilities are
{−1, 0, 1} yielding θ = 0, 90◦, 180◦, 270◦, 360◦.

Hence the set of isometries of the integer lattice/grid forms a group of
planar transformations involving integer vector translations and rotations by
multiples of 90◦.
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Isometries of the Plane 

Theorem An isometry H of the plane is necessarily of the form  

• H(z)= αz + β, or 

• H(z)=αz ̅ + β 

with |α|=1 and some complex number β. 

We already know: 

In matrix form: 

Rθ M z + b, where Rθ =rotation matrix by angle of θ,  

                                 M=reflection matrix, b=translation vector. 

Isometries of the Integer Grid (I) 

    We keep the basis vectors (1,0) and (0,1), but now instead of 

the 2-dimensional plane, by taking integer coefficients, we get 

the integer grid. 
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Isometries of the Integer Grid (II) 

What are the isometries of the integer grid? 

They are a subset (in fact subgroup) of the isometries of the 

plane, which sends integer points to integer points. 

1. The translation vector b must be part of the integer grid. 

2.  cosθ and sinθ must be 0,+1 or -1. 

In matrix form: 

Rθ M z + b, where Rθ =rotation matrix by angle of θ,  

                                 M=reflection matrix, b=translation vector. 

Quotient Group (I) 

• The integer grid lattice is a subgroup H of the 2-dimensional 

real plane seen as an abelian group G. 

•   Since G is abelian, H satisfies that g+H = H+g.  

     What is the quotient group G/H? 

Take the unit square 

[0,1[ x [0,1[. 
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Exercises for Chapter 10

Exercise 46. • Show that the complex numbers C form a vector space
over the reals.

• Give a basis of C over the reals.

• In the lecture, we saw for R2 that we can obtain a new group, called a
lattice, by keeping a basis of R2 but instead considering integer linear
combinations instead of real linear combinations. What happens for C
if we do the same thing? (namely consider integer linear combinations).

Exercise 47. Consider the set M2(R) of 2×2 matrices with real coefficients.

1. Show that M2(R) forms a vector space over the reals.

2. Deduce that it has an abelian group structure.

3. Give a basis of M2(R) over the reals.

4. What happens for M2(R) if we keep a basis over the reals and consider
only integer linear combinations instead of real linear combinations?
Do we also get a new group? If so, describe the group obtained.



228 CHAPTER 10. INFINITE GROUPS



Chapter 11

Frieze Groups

We conclude this class by looking at frieze groups. A frieze pattern is a
two dimensional image that repeats periodically in one direction. We shall
consider that the repetition is in the x-axis direction.

The repetition periodicity will be set to 1. Therefore we are considering
a bivariate function I(x, y) periodic in x, that is such that

I(x+ 1, y) = I(x, y), x ∈ (−∞,+∞)

.
Usually y is restricted to y ∈ [−1

2
, 1
2
], so that the frieze is a unit width

band carrying a repetitive pattern in the x-direction. Frieze patterns are
popular ornaments in architecture, textiles, on fences etc., and can be very
beautiful and elaborate. We will study the possible symmetries that such
patterns can have, and we shall prove that there are exactly seven groups of
isometries that can arise as symmetries of planar friezes.

By definition, all the symmetry groups of friezes will have the subgroup
of translations by integers in the x-direction included. This subgroup is
generated by the basic mapping

τ : (x, y) 7→ (x+ 1, y).

〈τ〉 is the infinite cyclic group of integer translations isomorphic to (Z,+).
Now the basic pattern of the frieze defined over the square [−1

2
, 1
2
]×[−1

2
, 1
2
]

is a finite planar shape which can have symmetries and properties that may
induce further symmetries for the whole frieze.

229
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What are Friezes? 

Pottery jar, Southern Iraq (4500-4000 BC). 

http://en.wikipedia.org/wiki/File:Frieze-group-3-example1.jpg 

Frieze Definition 

     A frieze pattern is a two dimensional image that repeats 

periodically in one direction (say the x-axis). 

-1/2                0             1/2                1            3/2 

The periodicity is set to 1. 
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More Examples 

Tile Frieze, Palacio de Velazquez, Madrid, Spain 

Meander Frieze, San Giorgio Maggiore, Venice, Italy 

http://mathdl.maa.org/images/upload_library/4/vol1/architecture/Math/f3.jpg 

http://mathdl.maa.org/images/upload_library/4/vol1/architecture/Math/f4.jpg 

 

Frieze Groups 

• Groups of symmetries of frieze patterns. 

• We will see: there are exactly 7 such groups. 
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Group of Translations 

• All the symmetry groups of friezes have the subgroup of 

translations by integers included by definition. 

• This subgroup is generated by τ: (x,yͿ→ (x+1,yͿ. 

 

 

 

 

 

• <τ> = infinite cyclic group of integer translations. 

-1/2                0             1/2                1            3/2 

Vertical Mirror Reflections 

v: (x,yͿ → (-x,y), v2=1 

-1/2               0               1/2 
Induced Frieze 

pattern 
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For example we might have a reflection symmetry w.r.t the x-axis and/or
the y-axis. Such a symmetry of the basic pattern will yield immediately
corresponding symmetries of the frieze.

Let us denote by v the vertical symmetry

v : (x, y) 7−→ (−x, y)

and by
h : (x, y) 7−→ (x,−y),

the horizontal symmetry.
Clearly we have v2 = e, h2 = e, since these are both reflection isometries.

We have
hv = vh : (x, y) 7−→ (−x,−y),

a rotation by 180 degrees, yet another possible symmetry that the basic shape
can have.
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Horizontal Mirror Reflections 

h: (x,yͿ → (x,-y), h2=1 

-1/2               0               1/2 
Induced Frieze 

pattern 

Mirror Reflections 

hv=vh: (x,yͿ → (-x,-y), (hv)2=1. 

-1/2               0               1/2 
Induced Frieze 

pattern 
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Notice that all the frieze symmetries will leave the x-axis invariant (i.e.,
will map it to itself). The subgroup of isometries that map the x-axis to
itself contains all isometries that combine:

1. translations along the x-direction

2. reflections about the x-axis

3. reflection about any axis perpendicular to x

4. glide reflections along the x-direction

5. rotations by 180◦ or its multiples centered on the x-axis.

The study of frieze groups is in fact the study of all subgroups of this
group that are discrete, hence their subgroup of translations will have to be
〈τ〉 where the unit of translation is the minimal one reproducing the frieze!

To complete the possible symmetries that friezes can have, we must also
consider glide reflections that preserve the x-axis. Denote by γ a glide reflec-
tion about x, i.e.,

γ : (x, y) 7−→ (x+ a,−y).
We clearly have

γ2 : (x, y) 7−→ (x+ 2a, y),

i.e., a translation by twice a as defined above. Therefore taking a = 1/2 we
get

γ : (x, y) 7−→ (x+
1

2
,−y)

γ2 : (x, y) 7−→ (x+ 1, y),

hence γ2 = τ.
Therefore we can generate τ by applying γ twice.
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More Isometries? 

• All frieze symmetries leave the x-axis invariant. 

• The subgroup of isometries that map the x-axis to itself 

contains all isometries that combine: 

1. Translations along the x-axis 

2. Reflections with respect to the x-axis 

3. Reflections with respect to the y-axis, or an axis 

perpendicular to x 

4. Glide reflections along the x-axis 

5. Rotations by 180 degrees, or its multiples 

centered on the x-axis  

Glide  Reflections 

• γ = glide reflection that preserves the x-axis 

     γ: (x,yͿ → (x+a,-y) 

• Note that γ2: (x,yͿ→(x+2a,y) . 

     Thus  it is a translation by 2a. 

Take a=1/Ϯ, to get γ: (x,yͿ → (x+1/Ϯ,-y) and γ2 =τ.  

-1/2               0               1/2 



237

Theorem 17. All transformations that preserve the x-axis and have as sub-
groups of translations 〈τ〉 can be generated by r, h, γ, hence all frieze groups
must be subgroups of 〈v, h, γ〉 .
Proof. 1. Any translation by integers can be generated. This is true since

γ2 = τ, hence we have 〈γ2〉 = 〈τ〉 .

2. Any horizontal reflection can be generated: true because we have h.

3. Any reflection in a frieze will be about an integer or about an half
integer point. Let vp be any vertical reflection. Then

vp : (x, y) 7−→ (2p− x, y) ⇒ vpv(x, y) = vp(−x, y) = (x+ 2p, y),

hence 2p is an integer because we only allow integer translations and
vp is generated by (vpv is a translation, thus some power of τ = γ2):

vpv = (γ2)k ⇒ vp = (γ2)kv.

4. Consider a half turn about a point P

TP : (x, y) 7→ (2p− x,−y).
Then TPh = vp and we must have TP = vph = (γ2)krh.

5. Any glide reflection can be written as

Gp : (x, y) 7→ (x+ p,−y),
hence p is an integer and Gph = (γ2)k ⇒ Gp = (γ2)

kh. Hence all glide
reflections possible are generated.

After showing that 〈r, h, γ〉 included all possible frieze groups, we must
show that there are some restrictions too, hence we cannot have all 〈r, h, γ〉-
subgroups as frieze groups.

Theorem 18. h and γ cannot occur together in a frieze group.

Proof. hr : (x, y) 7→ (x + 1
2
, y). But we cannot have translation of 1

2
in the

frieze group since then the frieze would have a periodicity of 1
2
(and we assume

that the least periodicity is 1).

These results yield all possible frieze groups as the subgroups of 〈r, h, γ〉 .



238 CHAPTER 11. FRIEZE GROUPS

First Theorem 

    All transformations that preserve the x-axis and have as 

subgroup <τ> can be generated by v,h,γ, hence all frieze 

groups must be a subgroup of <v,h,γ>. 

1. Translations along the x-axis 

2. Reflections with respect to the x-axis 

3. Reflections with respect to the y-axis, or an axis 

perpendicular to x 

4. Glide reflections along the x-axis 

5. Rotations by 180 degrees, or its multiples 

centered on the x-axis  

Recall the 

transformations 

that preserve 

the x-axis 

Second Theorem 

h and γ cannot occur together in a frieze group. 

Proof. If h and γ belong to the group, then so does hγ.  

            But then hγ (x,y)=h (x+1/2,-y) = (x+1/2,y). 

Contradicts the periodicity of 1 of the frieze pattern. 
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Frieze Group Classification 

   The frieze groups that have no glide reflection are:  

                       <γ2>, <h,γ2>, <v,γ2>, <hv,γ2>, <h,v,γ2>. 

     The frieze groups that have glide reflections are: 

                      <γ>, <v,γ>. 

1. First group: γ2 with every possible of h and v. 

2. Second group: γ but h cannot be there.  

Groups 1 & 2 

< γ2 > 

< h,γ2 > 
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Groups 3 & 4 

< v,γ2 > 

< hv,γ2 > 

Groups 5 & 6 

< h,v,γ2 > 

< γ> 
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Group 7 

< v,γ> 

Which Frieze Groups? 

< v,γ2 > 

< hv,γ2 > 

< h,γ2 > 
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Road Map: End of the Trip! 

Cn 

Dn 

Sn 

An 

Group 

Theory 

vector 

spaces, 

lattices, 

  friezes 

quotient 

group 

applications 

Cayley Thm 

Zoom inside 

finite group 

theory! 

Chapter 1: Isometries of the Plane 

1. Planar isometries 

(rotation, translation, 

reflections, glide 

translations) 

2. Classification of the 

isometries of the plane 

Mandalas 

have a rich 

group of 

isometries! 
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Chapter 1: important 
 

1. Definition of an isometry 

2. An isometry H of the complex plane is necessarily of the form  

• H(z)= αz + β, or 

• H(z)=αz ̅ + β 

with |α|=1 and some complex number β. 

 

 
True or False. A planar isometry can have exactly 

2 fixed points. 

Chapter 2: Symmetries of Shape 

1. Symmetries of planar 

shapes (rotation, 

translation, reflections, 

glide translations) 

2. Multiplication (Cayley) 

tables 

Nice group 

of 

symmetries! 



245

Chapter 2: important 
 

1. Definition of a symmetry 

2.  How to compute multiplication (Cayley) tables. 

        They illustrate: 

• Closure (every row contains all the symmetries) 

• Inverse (every row contains the identity map) 

• Whether commutativity holds 

 

 

 True or False. Combining two symmetries of the 

same shape gives another symmetry of this shape. 

Chapter 3: Introducing Groups 

Definition of  

 group  

 abelian group  

 order of group 

  order of element 

  cyclic group 

  subgroup 

The rubik 

cube has a 

group 

structure! 
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Chapter 3: important 
 

1. Definition of a group, abelian group, subgroup, cyclic group, 

order of a group, order of an element 

2. Prove or disprove a set with a binary operation has a  group 

structure. 

3. Compute the order of a group or of an element. 

4. Decide whether a group is cyclic. 

5. Identify subgroups of a given group. 

 

 

 

True or False. The set of real diagonal matrices 

forms a group with respect to addition/ multiplication. 

Chapter 4: the Group Zoo 

• Integers mod n 

• roots of unity 

•  group homomorphism 

•  group isomorphism 

Do you 

recognize 

them? 
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Chapter 4: important 
 

1. Understand integers mod n  

2. The notion of  group homomorphism. 

3. The notion of group isomorphism and how to show that two 

groups are isomorphic. 

 

 

 True or False. The Klein group is isomorphic to 

the cyclic group of order 4. 

Chapter 5: more Group Structure 

1. Cyclic groups 

2. Cosets, Lagrange 

Theorem and its 

corollaries. 
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Chapter 5: important 
 

1. Cyclic group of order n  

2. Lagrange theorem and its corollaries. 

3. The notion of group isomorphism and how to show that two 

groups are isomorphic. 

 

 

 True or False. The Dihedral group D25 contains an 

element of order 11. 

Chapter 6 

1. Dihedral Groups  

2. Leonardo Theorem 

Snow flakes have 

the dihedral 

group as 

symmetry group! 
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Chapter 6: important 
 

1. What is a dihedral group  

2. The statement of Leonardo Theorem. 

 

 

 

True or False. The symmetric group S4 of all  

permutations on 4 elements can be interpreted as a 

group of planar symmetries. 

Chapter 7: Permutation Groups 

• Permutations 

• parity of a permutation 

• symmetric and 

alternating group 

 

This is the permutation group 

of some complicated object 

(related to Lie algebras)! 
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Chapter 7: important 
 

1. Formal definition of a permutation  

2. Parity of a permutation. 

 

 

 

True or False. A permutation can have two 

different parities. 

Chapter 8: Cayley Theorem, puzzles 

• Cayley Theorem  

•  Puzzles (15 puzzle, 

solitaire game) 

• Cryptography 

applications (Caesar’s 
cipher, check digit) 

 

1. Cayley Theorem 

2. Interpret a group as a subgroup of the symmetric group. 
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Chapter 12

Revision Exercises

Here are a few extra exercises that serve as revision.

Exercise 48. Lagrange Theorem is likely to be the most important theorem
of group theory, so let us revise it! Here is a bit of theory first:

• Can you remember what it states?

• The proof of Lagrange Theorem relies on a counting argument, based
on the fact that cosets partition the group. Can you remember what
cosets partition the group mean? If so, can you rederive the counting
argument that proves Lagrange Theorem?

Now some more practice on how to use Lagrange Theorem!

• How many groups of order 5 do we have (up to isomorphism)?

• Consider the group of permutations S5. Does S5 contain a permutation
of order 7?

• Suppose there exists an abelian group G of order 12 which contains a
subgroup H of order 4. Show that the set of cosets of H forms a group.
What is the order of G/H? Deduce what group G/H is.

Exercise 49. At the beginning of the class, we started by studying structure
of geometric figures. We have seen shapes, and been asked what is their group
of symmetries.

• Can you remember some of the shapes we studied, and what is the
corresponding group of symmetries?

253
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• Do you remember what are all the possible groups arising as symmetries
of planar shapes?

• Let us do the reverse exercise: think of a symmetry group, and try to
draw a figure that has this symmetry group.

Exercise 50. Let us remind a few things about permutations.

• What is the formal definition of a permutation?

• What is the parity of a permutation?

• Consider the permutation σ that maps:

1 7→ 2, 2 7→ 1, 3 7→ 5, 4 7→ 3, 5 7→ 6, 6 7→ 4, 7 7→ 7.

Compute its parity.

• We have studied that the group of symmetries of a planar shape can
be seen as a group of permutations. Do you remember how that works
(either in general or on an example?)

Exercise 51. Let us remember that planar isometries are either of type I:
H(z) = αz + β, |α| = 1 or of type II: H(z) = αz̄ + β, |α| = 1.

• Show that the isometries of type I form a subgroup H of the group G
of planar isometries.

• Show that G/H is a quotient group of order two.
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Solutions to the Exercises

“Intuition comes from experience, experience from failure, and
failure from trying.”

Exercises for Chapter 1

Exercise 1. Let X be a metric space equipped with a distance d. Show that
an isometry of X (with respect to the distance d) is always an injective map.

This exercise shows that one can study isometries in a much more general
setting than just in the real plane! In that case, we can only deduce injectivity
from the fact that the distances are preserved. It is also useful to recall
the definition of a metrice space. Consider a set X and define on pairs of
elements of X a map called a distance d : X × X → R with the properties
that

1. d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 ⇐⇒ x = y (a distance is
positive).

2. d(x, y) = d(y, x) for all x, y ∈ X (a distance is symmetric).

3. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X (triangle inequality).

Solution. Let ϕ be an isometry of X. We have to show that if ϕ(x) = ϕ(y)
for x, y ∈ X, then x = y. Now by definition of isometry

d(ϕ(x), ϕ(y)) = d(x, y)

255
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so if ϕ(x) = ϕ(y), then

0 = d(ϕ(x), ϕ(y)) = d(x, y)

and x = y. Note that d(x, y) = 0 implies that x = y is part of the axioms of
a distance!

Exercise 2. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H has only one fixed point which is 1+i,
and H sends 1− i to 3 + i, then H(z) = .

Guided version.

1. Recall the general formula that describes isometries H of the complex
plane. We saw that an isometry of the complex plane can take two
forms, either H(z) = . . ., or H(z) = . . .

2. You should have managed to find the two formulas, because they are
in the lecture notes! Now you need to use the assumptions given. First
of all, we know that H has only one fixed point, which is 1 + i. Write
in formulas what it means that 1 + i is a fixed point of H (write it for
both formulas).

3. Now you must have got one equation from the previous step. Use the
next assumption, namely write in formulas what it means that H sends
1− i to 3 + i, this should give you a second equation.

4. If all went fine so far, you must be having two equations, with two
unknowns, so you are left to solve this system!

5. Once the system is solved, do not forget to check with the original
question to make sure your answer is right!

We will provide two solutions for this question. Here is the first one,
which is done from scratch.

Solution. We remember that the general formula for a planar isometry is
either H(z) = αz + β, or H(z) = αz̄ + β, |α| = 1. In the first case, that is
H(z) = αz + β, |α| = 1, we compute

{
1 + i = H(1 + i) = α(1 + i) + β
3 + i = H(1− i) = α(1− i) + β

=⇒ −2 = 2αi =⇒
{
α = i
β = 2
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We find that H(z) = iz + 2. Now the question states that there is only one
fixed point. Let us check that this is true:

H(z) = iz + 2 = z ⇐⇒ z(i− 1) = −2 ⇐⇒ z =
2

1− i
= 1 + i.

Since we have only one fixed point, the one we wanted, the answer is H(z) =
iz + 2. Now in the second case that is H(z) = αz̄ + β, |α| = 1, we again
compute

{
1 + i = H(1 + i) = α(1− i) + β
3 + i = H(1− i) = α(1 + i) + β

=⇒ −2 = −2αi =⇒
{
α = −i
β = 2i+ 2

We find that H(z) = −iz̄+2i+2. Now the question states that there is only
one fixed point. Let us check that this is true:

H(z) = −iz̄+2i+2 = z ⇐⇒ z0+iz1 = −i(z0−iz1)+2i+2 ⇐⇒ z0+z1 = 2.

We see that z = 1+ i is indeed a fixed point, however, it is not the only one!
This shows that the final answer to this question is

H(z) = iz + 2.

Here is the second solution, which uses Exercise 3!

Solution. If you remember Exercise 3, then you can alternatively solve the
exercise this way. In Exercise 3, we investigated the fixed points of a planar
isometry, and found the following:

• H(z) = αz + β, |α| = 1:

– All points are fixed when α = 1 and β = 0;

– No fixed point when α = 1 and β 6= 0;

– One and only one fixed point β
1−α

when α 6= 1.

• H(z) = αz̄ + β, |α| = 1 (α = eiθ and β = s+ it):

– No fixed point when s · cos θ
2
+ t · sin θ

2
6= 0;

– The line 2sin2 θ
2
·x−2sin θ

2
cos θ

2
·y = s is fixed when s·cos θ

2
+t·sin θ

2
=

0.
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In fact, you do not need to remember all of that, it is enough that you
remember that in the second case, if H(z) = αz̄ + β, |α| = 1, there is
never a unique fixed point: either we have no fixed point, or we have a line.
Since there is one and only one fixed point, we only need to look at the case
H(z) = αz + β, |α| = 1. Then

{
1 + i = H(1 + i) = α(1 + i) + β
3 + i = H(1− i) = α(1− i) + β

=⇒ −2 = 2αi =⇒
{
α = i
β = 2

So the answer is H(z) = iz + 2.

Exercise 3. Recall the general formula that describes isometries H of the
complex plane. If a planar isometry H fixes the line y = x+1 (identifying the
complex plane with the 2-dimensional real plane), then H(z) = .

We can solve this exercise in two different ways, as we did for the previous
exercise. Let us start from scratch.

Solution. Suppose that H(z) = αz + β, |α| = 1 first. If H fixes the line
y = x+ 1, this means that H fixes all the points on this line, so we can take
two convenient points:

y = 0, x = −1, and x = 0, y = 1

which in the complex plane correspond to z = x+iy = −1 and z = x+iy = i
respectively. Now

{
i = H(i) = αi+ β
−1 = H(−1) = −α + β

=⇒ −1 + i = α(i− 1) =⇒
{
α = 1
β = 0

This gives us the identity map! We now consider H(z) = αz̄ + β, |α| = 1,
and the same two convenient points on the line y = x+1: z = i and z = −1.
We solve
{
i = H(i) = α(−i) + β
−1 = H(−1) = α(−1) + β

=⇒ i+ 1 = (1− i)α =⇒
{
α = i
β = i− 1

So the answer is H(z) = iz − 1 + i. We can check that the fixed points are
indeed the line mentioned.

Now if we remember Exercise 3, we can do as follows (the same thing as
in the previous exercise).
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Solution. Recall again Exercise 3, where we investigated the fixed points of
a planar isometry:

• H(z) = αz + β, |α| = 1:

– All points are fixed when α = 1 and β = 0;

– No fixed point when α = 1 and β 6= 0;

– One and only one fixed point β
1−α

when α 6= 1.

• H(z) = αz̄ + β, |α| = 1 (α = eiθ and β = s+ it):

– No fixed point when s · cos θ
2
+ t · sin θ

2
6= 0;

– The line 2sin2 θ
2
·x−2sin θ

2
cos θ

2
·y = s is fixed when s·cos θ

2
+t·sin θ

2
=

0.

Since the fixed points form a line, we know that it cannot be H(z) = αz+β,
because then it never happens that only a line is fixed. Thus we only need
to consider H(z) = αz̄+β, |α| = 1. Take the same two convenient points on
the line y = x+ 1: z = i and z = −1 and solve
{
i = H(i) = α(−i) + β
−1 = H(−1) = α(−1) + β

=⇒ i+ 1 = (1− i)α =⇒
{
α = i
β = i− 1

So the answer is H(z) = iz − 1 + i.

Exercise 4. Show that an isometry of the complex plane that fixes three
non-collinear points must be the identity map.

This is a generalization of the Lemma 1 seen in Chapter 1, where we
proved almost the same thing. The statement was for three special points,
0, 1 and i. This exercise shows that the points can be anything as long as
they are not colinear! You can try to redo the proof step-by-step and see what
happens...this is the first solution, or try to use what you now know about
planar isometries, this is the second solution below.

Solution. Let H be an isometry of the complex plane which fixes say z1, z2, z3:

H(z1) = z1, H(z2) = z2, H(z3) = z3.

We have, by definition of an isometry, that

|H(z)−H(z1)|2 = |z − z1|2
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thus by developing both the left and the right handside, we get

H(z)H(z)−H(z)H(z1)−H(z1)H(z) +H(z1)H(z1) = zz̄ − zz̄1 − z1z̄ + z1z̄1.

Since we know that H(z1) = z1, we further simplify to get

H(z)H(z)−H(z)z̄1 − z1H(z) + z1z̄1 = zz̄ − zz̄1 − z1z̄ + z1z̄1,

that is

H(z)H(z)−H(z)z̄1 − z1H(z) = zz̄ − zz̄1 − z1z̄.

Now we can do the exact same thing by replacing z1 by z2, which yields

H(z)H(z)−H(z)z̄2 − z2H(z) = zz̄ − zz2 − z2z̄.

So far, everything is pretty much the same as what we did in the class!
Now we notice that H(z)H(z) appear on both the left hand sides of the 2

above equations, and zz̄ similarly appear on both the right hand sides. Thus
we get

H(z)H(z)− zz̄ = H(z)z̄1 + z1H(z)− zz̄1 − z1z̄

= H(z)z̄2 + z2H(z)− zz̄2 − z2z̄,

from which it follows that

H(z)z̄1 + z1H(z)− zz̄1 − z1z̄ = H(z)z̄2 + z2H(z)− zz̄2 − z2z̄.

By rearranging the terms we get

(H(z)− z)(z̄1 − z̄2) + (H(z)− z̄)(z1 − z2) = 0.

So now, we have used two of the three points we have! So we redo everything
we did so far with z1 and z3 instead of z1 and z2, to get

(H(z)− z)(z̄1 − z̄3) + (H(z)− z̄)(z1 − z3) = 0.

Now we can extract H(z)− z̄ from the second equation above

H(z)− z̄ =
−(H(z)− z)(z̄1 − z̄2)

z1 − z2
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(note that z1 6= z2 so that makes sense, if z1 = z2, then z1, z2, z3 are then
necessarily collinear!), and insert it in the equation that follows to get:

(H(z)− z)(z̄1 − z̄3)−
(H(z)− z)(z̄1 − z̄2)

z1 − z2
(z1 − z3) = 0.

We can then factor out H(z)− z, namely

(H(z)− z)

(

(z̄1 − z̄3)−
(z1 − z3)(z̄1 − z̄2)

z1 − z2

)

= 0.

We are now almost there! Recall that we want to prove that H is the identity
if the three points z1, z2, z3 are not collinear. If we can now prove that

(z̄1 − z̄3)−
(z1 − z3)(z̄1 − z̄2)

z1 − z2
6= 0

then it must be that

H(z)− z = 0,

which concludes the proof! So let us make sure that

(z̄1 − z̄3)−
(z1 − z3)(z̄1 − z̄2)

z1 − z2
6= 0.

If this term were to be 0, then

(z̄1 − z̄3)(z1 − z2) = (z1 − z3)(z̄1 − z̄2),

or equivalently
z2 − z1
z3 − z1

=
z̄2 − z̄1
z̄3 − z̄1

.

But this is not possible, because we have assumed that z1, z2, z3 are not
collinear. Can you see this? The above equation says that (z2− z1)/(z3− z1)
is a real number, this means that if we write z2 − z1 and z3 − z1 in polar
coordinates, with respective phase ψ1 and ψ2, then the complex part of the
ratio is ei(ψ1−ψ2), which has to be zero. Thus ψ1 = ψ2, showing that z2−z1 and
z3 − z1 are two vectors centered at the origin pointing in the same direction.
In other words, z2 − z1, z3 − z1 and 0 are collinear! This shows that z2, z3, z1
are collinear, a contradiction.
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Here is another possible solution to this question. The advantage of the
above solution is that it assumes nothing on planar isometries, but the com-
putations are a bit lengthy...the advantage of the solution below is that it is
pretty short! however you already need to know what are planar isometries!

Solution. • If H(z) = αz + β, |α| = 1, then

{
z1 = H(z1) = αz1 + β
z2 = H(z2) = αz2 + β

=⇒ z1 − z2 = α(z1 − z2).

Then we know that α has to be 1. Since α = 1, we get z1 = z1 + β and
z2 = z2 + β, which forces β to be 0. Since α = 1 and β = 0, we have
that H(z) = z and we are done!

• If H(z) = αz̄ + β, |α| = 1, then

{
z1 = H(z1) = αz̄1 + β
z2 = H(z2) = αz̄2 + β

=⇒ z1 − z2 = α(z̄1 − z̄2).

We do the same thing for z1 and z3:

{
z1 = H(z1) = αz̄1 + β
z3 = H(z3) = αz̄3 + β

=⇒ z1 − z3 = α(z̄1 − z̄3).

Now we put the two equations that we obtained together:

{
z1 − z2 = α(z̄1 − z̄2)
z1 − z3 = α(z̄1 − z̄3)

=⇒ z1 − z2
z1 − z3

=
z̄1 − z̄2
z̄1 − z̄3

.

To finish the proof, argue as above that this means that z1, z2 and z3
are colinear. In other words, H(z) = αz̄ + β cannot fix any arbitrary
three points unless if they are colinear. Thus an isometry which fixes
three arbitrary non-colinear points is of the form H(z) = αz + β and
we showed that it is then H(z) = z.

Exercise 5. In this exercise, we study the fixed points of planar isometries.
Recall that a planar isometry is of the form H(z) = αz + β, H(z) = αz̄ + β,
|α| = 1. Determine the fixed points of these transformations in the different
cases that arise:

1. if H(z) = αz + β and α = 1,
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2. if H(z) = αz + β and α 6= 1

3. if H(z) = αz̄ + β and α = 1, further distinguish β = 0 and β 6= 0,

4. if H(z) = αz̄ + β and α 6= 1, further distinguish β = 0 and β 6= 0.

This exercise shows the importance of fixed points. In fact, it is an inter-
mediate step to prove Theorem 2.

Solution. The formula (from Theorem 1) is that an isometryH of the complex
plane is given by

H(z) = αz + β or H(z) = αz̄ + β,

where |α| = 1.
We now look at the fixed points of these maps. Let us start with

H(z) = αz + β.

If z is a fixed point, then H(z) = z, that is

αz + β = z ⇐⇒ z(α− 1) + β = 0.

The case α = 1. If α = 1, then β = 0. What it means is: if α = 1,
then H(z) = z + β, that is the isometry is a translation, and in that case,
a fixed point occurs only when β = 0, that is the identity map. If H is a
translation, different than the identity, then it has no fixed point.

The case α 6= 1. If α 6= 1, we can divide by 1− α, to get

z = β/(1− α),

that is we have only one fixed point. Note that if β = 0, H is a pure rotation
around the origin, and we understand geometrically that there is only one
fixed point at z = 0. If H(z) = αz + β with α 6= 1, then the isometry
has only one fixed point given by z = β/(1− α).

We now continue with the other case, that is

H(z) = αz̄ + β.
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We have
H(z) = z ⇐⇒ αz̄ + β = z.

Let us write z = z0 + iz1. Then we can continue to develop

H(z) = z ⇐⇒ α(z0 − iz1) + β = z0 + iz1 ⇐⇒ z0(α− 1) + β = z1i(1 + α).

If you look at this last equation as a function of z0 and z1, you can see that
we will get either a line, or a point, or an empty set. We need to distinguish
cases as above to figure out when the different scenarios occur.

The case α = 1. If α = 1, then

β = z12i⇒ z1 = β/2i.

Since z1 is a real number, it must be that β is a totally imaginary number,
say β = iβ′, β′ a real number. If we write β = |β|eiϕ, then ϕ = π/2, and

z1 =
β

2i
=

|β|e3iπ/2eiϕ
2

=
|β|
2
.

This shows that if H(z) = z̄ + β, then β = i|β| and the fixed points
form a line given by

z1 =
|β|
2
.

The case α 6= 1, β = 0. If α 6= 1, β = 0, then

z0(α− 1) = z1i(1 + α) ⇒ z0 = z1i
1 + α

α− 1
.

We provide two solutions here. Here is the first one:
For this expression to make sense, it must be that the fraction is a totally
imaginary number, say (1+α)/(1−α) = ia for some a a real number. Since
|α| = 1, we have that α = cos θ + i sin θ, and (1 + α)/(1 − α) = ia becomes
cos θ + 1 = −a sin θ and sin θ = a cos θ − a that is cos θ = (a2 − 1)/(a2 + 1).
This isometry has for fixed points a line. If H(z) = αz̄, then its fixed
points form a line.

Here is the second solution.
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Alternatively, starting again from

z0(α− 1) = z1i(1 + α),

one can start by rewriting α as α = cos θ + i sin θ, yielding

z0(cos θ + i sin θ − 1) = z1i(1 + cos θ + i sin θ),

and by separating real and imaginary part, we get

z0 cos θ − z0 + z1 sin θ = 0, z0 sin θ − z1 − z1 cos θ = 0.

This is a system of linear equations in z0, z1, which can be written

(
cos θ − 1 sin θ
sin θ −1− cos θ

)(
z0
z1

)

=

(
0
0

)

.

To know whether this system has a solution, we look at the determinant
of the matrix, given by 0! This means the matrix is not invertible. If the
matrix were invertible, then the only solution would be (z0, z1) = (0, 0), but
since this is not the case, then that means that the solution is a subspace of
dimension 1, that is a line (a solution exists, since (0, 0) is always a solution).

The case α 6= 1, β 6= 0. Finally, if α 6= 1, β 6= 0, then

z0 =
z1i(1 + α)− β

α− 1
.

Here we can follow either of the above methods, that is either try to determine
when

z1i(1 + α)− β

α− 1

is a real number, or write the system of linear equations.
Here is the first solution.

With the first method, we have that if

z1i(1 + α)− β

α− 1
= x, x ∈ R,

then
z1i+ z1i cos θ − z1 sin θ − β1 − iβ2 = x cos θ + xi sin θ − x
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that is, by separating real and imaginary parts

z1 + z1 cos θ − β2 = x sin θ, − z1 sin θ − β1 = x(cos θ − 1).

By identifying what x should be equal to in both these equations, we get

(z1 + z1 cos θ − β2)(cos θ − 1) = sin θ(−z1 sin θ − β1)

which after simplifying yields

β2(1− cos θ) + β1 sin θ = 0.

Thus if β1, β2 satisfy this equation, then the fixed point is a line, if not there
is no solution. If H(z) = αz̄+β, with α 6= 1, β 6= 0, then either the fixed
points form a line, if β1, β2 satisfies the above equation, or there is
none.

Here is the second solution.
We have that z0(cos θ + i sin θ − 1) + β = z1i(1 + cos θ + i sin θ), where

β = β1 + iβ2. By separating real and imaginary parts, we get

z0 cos θ − z0 + β1 = −z1 sin θ, z0 sin θ + β2 = z1 + z1 cos θ

which corresponds to the following system of linear equations:
(

cos θ − 1 sin θ
sin θ −1− cos θ

)(
z0
z1

)

= −
(
β1
β2

)

.

The determinant of the matrix is still the same, namely 0, but this time this
not clear that a solution always exists. If it does, then we know it is a line.
To know when there is no solution, we can use that a rank 1 matrix can be
written as the outer product of two vectors, namely
(

cos θ − 1 sin θ
sin θ −1− cos θ

)

= −2

(
sin(θ/2)

− cos(θ/2)

)

(sin(θ/2), − cos(θ/2)).

Here we use the trigonometric formulas for double/half-angles:

cos(2γ) = 2 cos2(γ)− 1 = 1− 2 sin2(γ), sin(2γ) = 2 sin(γ) cos(γ).

If (β1, β2) can be written as a multiple of
(

sin(θ/2)
− cos(θ/2)

)

,
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then the solution is a line, otherwise there is no solution. We can see that
both conditions are of course the same! Indeed if β1 = a sin(θ/2), β2 =
−a cos(θ/2), then

− cos(θ/2)(1− cos θ) + sin(θ/2) sin θ = 0,

and vice-versa, if β2(1−cos θ)+β1 sin θ = 0, then β2 sin(θ/2)+β1 cos(θ/2) = 0
and solutions are indeed of the right form. Now this tells us that

β = β1 + iβ2 = |β|(sin(θ/2)− i cos(θ/2)) = −i|β|eiθ/2 = |β|ei(θ−π)/2.

We now discuss another way of solving this exercise.

Solution. The case H(z) = αz+β was less difficult, so we focus on the second
case

H(z) = αz̄ + β

with |α| = 1, which means that we can write α = eiθ for θ some real number.
We now suppose that H has fixed points, and start with finding what β looks
like.

Suppose z is fixed by H, that is H(z) = z. Then

z = H(z) = H(H(z)).

Therefore
z = α(αz̄ + β̄) + β

and as |α| = αᾱ = 1, this gives us

z = z + αβ̄ + β

that is αβ̄ = −β. We observe that the case β = 0 needs to be treated
separately, so let us assume that β 6= 0, so that we can conclude that α =
−β/β̄. Recall that α = eiθ, and write similarly β = |β|eiϕ. Then

eiθ =
−eiϕ
e−iϕ

= −e2iϕ = eiπ+2iϕ

and we get
θ = π + 2ϕ⇒ ϕ = (θ − π)/2

and we conclude that
β = |β|ei(θ−π)/2.
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We can check that this expression for β is consistent with those we got earlier.
Now let us find the fixed points of H(z). Since β is linearly independent

from eiθ/2, when perceived as vectors in R2 (in fact they are perpendicular),
we can write every complex number z as an R- linear combination:

z = xβ + yeiθ/2

where x, y ∈ R are real scalars. Now let us solve

H(z) = αz̄ + β = z ⇐⇒ α(xβ̄ + ēiθy) + β = xβ + eiθ/2y.

Opening up the parentheses and recalling that α = eiθ we get

H(z) = αxβ̄ + eiθ/2y + β = xβ + eiθ/2y

from which we get
x(αβ̄ − β) + β = 0.

We solve

x = β/(β − αβ̄) =
1

1− αβ̄/β

recalling the values of α, β we obtain in the denominator

1− αβ̄/β = 1− eiθ−2iφ = 1− eiπ = 2.

Hence x = 1/2 and y is free, and we obtain that the fixed line is

{β/2 + yeiθ/2 | y ∈ R}.

Exercises for Chapter 2

Exercise 6. Determine the symmetries of an isosceles triangle, and compute
the multiplication table of all its symmetries.

Solution. An isosceles triangle has two sides which are equal. Consider a line
that goes through the point where both equal sides touch, and crosses the
3rd side in a perpendicular manner. Denote by m the reflection through this
line. An isosceles triangle has only two symmetries, the identity map and m.
The multiplication table is thus

1 m
1 1 m
m m 1
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Exercise 7. Determine the symmetries of an equilateral triangle, and com-
pute the multiplication table of all its symmetries.

Solution. Denote by m1 the reflection that goes through the lower left-hand
corner of the triangle, by m2 the reflection that goes through the lower right-
hand corner of the triangle, and by m3 the vertical reflection. In addition,
we have a rotation r of 120 degrees counter clockwise, so that r2 is the
counter clockwise rotation of 240 degres, and finally 1 denotes the do nothing
symmetry.

The multiplication table is found below.
1 r r2 m3 m1 m2

1 1 r r2 m3 m1 m2

r r r2 1 m2 m3 m1

r2 r2 1 r m1 m2 m3

m3 m3 m1 m2 1 r r2

m1 m1 m2 m3 r2 1 r
m2 m2 m3 m1 r r2 1

Exercise 8. Determine the symmetries of the following shape, and compute
the multiplication table of all its symmetries.

Solution. The symmetries of the shape are 1=do-nothing, r=rotation (coun-
terclockwise) of 120 degrees, r2=rotation (counterclockwise) of 240 degrees.
The table is then
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1 r r2

1 1 r r2

r r r2 1
r2 r2 1 r

Exercise 9. Let z = e2iπ/3.

1. Show that z3 = 1.

2. Compute the multiplication table of the set {1, z, z2}.

3. Compare your multiplication table with that of Exercise 2. What can
you observe? How would you interpret what you can see?

Solution. 1. We have

z3 = (e2iπ/3)3 = e2iπ = 1.

2. The table is

1 z z2

1 1 z z2

z z z2 1
z2 z2 1 z

3. We observe that the two tables are the same. The interpretation is
that there is a bijection between the rotations of angle 120, 240 and
360 degrees and the powers of z, mapping the rotation r to z.

Exercise 10. In the notes, we computed the multiplication table for the
symmetries of the square. We used as convention that entries in the table
are of the form rimj. Adopt the reverse convention, that is, write all entries
as mjri and recompute the multiplication table. This is a good exercise if
you are not yet comfortable with these multiplication tables!

Solution. We build a new multiplication table. (1) You can first fill up the
first column and the first row (since multiplying by 1 does not change a
symmetry). (2) Then using r4 = 1, you can fill the 4 × 4 upper left corner
involving only rotations, and (3) using that m2 = 1, you can fill up the 5th
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row. (4) Now you can fill up the first 4 columns of rows 5, 6, 7 and 8, because
all the terms that appear are of the form m and then a power of r:

1 r r2 r3 m mr mr2 mr3

1 1 r r2 r3 m mr mr2 mr3

r r r2 r3 1
r2 r2 r3 1 r
r3 r3 1 r r2

m m mr mr2 mr3 1 r r2 r3

mr mr mr2 mr3 m
mr2 mr2 mr3 m mr
mr3 mr3 m mr mr2

We now use that r3m = mr. Multiply both sides by r on the left, and r−1

on the right, to get

r(r3m)r−1 = r(mr)r−1 ⇒ mr−1 = rm⇒ mr3 = rm.

Now knowing that rm = mr3, by multiplying on the right by r, r2 and r3,
we immediately get

rmr = mr4 = m, rmr2 = mr, rmr3 = mr2

and we can fill the second line of the table (in blue).

We now need to compute r2m. We use that rm = mr3, and multiply on
the left by r:

r2m = rmr3 = (rm)r3 = (mr3)r3 = mr2

where we use a second time rm = mr3. Now knowing that r2m = mr2, by
multiplying on the right by r, r2 and r3, we immediately get

r2mr = mr3, r2mr2 = m, r2mr3 = mr

and we can fill the third line of the table (in blue). Do the same for the 4rth
line!
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1 r r2 r3 m mr mr2 mr3

1 1 r r2 r3 m mr mr2 mr3

r r r2 r3 1 mr3 m mr mr2

r2 r2 r3 1 r mr2 mr3 m mr
r3 r3 1 r r2 mr mr2 mr3 m
m m mr mr2 mr3 1 r r2 r3

mr mr mr2 mr3 m
mr2 mr2 mr3 m mr
mr3 mr3 m mr mr2

To finish, we notice that (1) the 6th row is the second row multiplied by
m on the left, (2) the 7th row is the third row multiplied by m on the left,
and (3) that the 8th row is the 4rth row multiplied by m on the left:

1 r r2 r3 m mr mr2 mr3

1 1 r r2 r3 m mr mr2 mr3

r r r2 r3 1 mr3 m mr mr2

r2 r2 r3 1 r mr2 mr3 m mr
r3 r3 1 r r2 mr mr2 mr3 m
m m mr mr2 mr3 1 r r2 r3

mr mr mr2 mr3 m r3 1 r r2

mr2 mr2 mr3 m mr r2 r3 1 r
mr3 mr3 m mr mr2 r r2 r3 1

Once you are done, make sure every symmetry appears on every row of
the table!

Exercises for Chapter 3

Before we give the solutions, it is useful to recall that to show that a set
equipped with a binary operation is a group, we need to check the property
of associativity. When the set is finite, it is always possible, though tedious,
to check all possible triples. We will thus adopt the following: associativity of
the addition and of the multiplication in R is considered as natural, thus we
do not have to prove it. Based on it, it is then possible to prove associativity
for addition and multiplication in C. Also, associativity is natural for the
composition of maps. It is always needed to mention associativity though,
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because you might encounter some non-associative map at some point of
time!

Exercise 11. In Exercise 7, you determined the symmetries of an equilateral
triangle, and computed the multiplication table of all its symmetries. Show
that the symmetries of an equilateral triangle form a group.

1. Is it abelian or non-abelian?

2. What is the order of this group?

3. Compute the order of its elements.

4. Is this group cyclic?

5. Can you spot some of its subgroups? When you encounter such a
question, it is enough to give an example of a subgroup which is not
{1}, assuming that such a subgroup exists! If we want all the subgroups,
then we will ask it explicitly!

Solution. For convenience, we recall the multiplication table:

1 r r2 m3 m1 m2

1 1 r r2 m3 m1 m2

r r r2 1 m2 m3 m1

r2 r2 1 r m1 m2 m3

m3 m3 m1 m2 1 r r2

m1 m1 m2 m3 r2 1 r
m2 m2 m3 m1 r r2 1

where m1 is the reflection that goes through the lower left-hand corner of the
triangle, m2 is the reflection that goes through the lower right-hand corner of
the triangle, m3 is the vertical reflection, and r is the rotation of 120 degrees
counter clockwise.

To show that the set G of symmetries of an equilateral triangle form a
group, we need to check:

• G is closed under composition of symmetries, that is, combining two
symmetries give another symmetry. There are several ways to argue
that, for example: we know that this is the case for general isometries of
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the plane, so this is true in particular for symmetries of the equilateral
triangle. In this case, since you also have a multiplication table, it can
be seen from the table, since every element within the table is part of
the group.

• Associativity holds, because composition of maps is associative.

• There is an identity element: 1=do-nothing.

• Every element is invertible: this was shown for every isometry of the
plane, or can be shown from the multiplication table.

1. It is non-abelian (can be seen from the multiplication table which is not
symmetric), or just by giving one counter-example, say m1m2 6= m2m1

where m1 is the mirror reflection going through the left corner, while
m2 is the mirror reflection going through the right corner.

2. The order of the group is its cardinality, it is thus 6.

3. 1=do-nothing has order 1, r and r2 have order 3, the 3 other elements
have order 2.

4. No, because no element has order 6.

5. Every element of order 2 generates a cyclic group of order 2. The
rotation r generates a subgroup of order 3.

Exercise 12. Let z = e2iπ/3. Show that {1, z, z2} forms a group.

1. Is it abelian or non-abelian?

2. What is the order of this group?

3. Compute the order of its elements.

4. Is this group cyclic?

5. Can you spot some of its subgroups?

Solution. We show that {1, z, z2} forms a group.

• We have that zizj ∈ {1, z, z2} for any i, j ∈ {0, 1, 2} thus we have
closure under multiplication.
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• Associativity holds, it is inherited from the associativity of multiplica-
tion in C.

• The identity element is 1.

• Every element is invertible: z−i ∈ {1, z, z2} is the inverse of zi for every
i ∈ {0, 1, 2}.

1. It is abelian.

2. It is 3.

3. 1 is of order 1, z and z2 are of order 3.

4. Yes, since it contains an element of order 3, which is the order of the
group.

5. The only subgroups are the trivial subgroup {1} and the group itself.

Exercise 13. Let X be a metric space equipped with a distance d.

1. Show that the set of bijective isometries of X (with respect to the
distance d) forms a group denoted by G.

2. Let S be a subset of X. Define a symmetry f of S as a bijective
isometry of X that maps S onto itself (that is f(S) = S). Show that
the set of symmetries of S is a subgroup of G.

Note that as a corollary of this general result, we can deduce that the
planar isometries form a group (where d is our usual distance), and the
symmetries of the different shapes we saw are all subgroups!)

Solution. 1. Let G be the set of bijective isometries of X.

• We check that G is closed under composition: let f, g be two
isometries, then

d(fg(x), fg(y)) = d(f(x), f(y)) = d(x, y)

where the first equality holds since g ∈ G and the second because
f ∈ G. Thus the composition of two isometries is an isometry.

• Associativity holds, because composition of maps is associative.



276 CHAPTER 13. SOLUTIONS TO THE EXERCISES

• The identity is the do-nothing isometry.

• Every f ∈ G is invertible because f is a bijection. But we still
have to show that f−1 belongs to G.

d(f−1(x), f−1(y)) = d(ff−1(x), ff−1(y)) = d(x, y)

where the first equality holds because f is an isometry, and thus
f−1 ∈ G.

2. To show that S is a subgroup, we need to check that it is a group under
the same binary operation as G.

• The composition of two symmetries is again a symmetry: indeed,
a symmetry f by definition maps S into itself, that is f(S) = S,
so the composition of two symmetries f, g will map S into itself:
gf(S) = g(S) = S.

• Associativity holds, because the composition of maps is associa-
tive.

• 1=do-nothing is the identity.

• We have to show that every symmetry has an inverse. Let f ∈ S
be a symmetry. We know it has an inverse f−1 in G, we have to
check that this inverse is in S, that is, f−1 maps S to itself. Since
f(S) = S, we have f−1f(S) = f−1(S), that is S = f−1(S).

Exercise 14. Let G be a group. Show that right and left cancellation laws
hold (with respect to the binary group operation), namely:

g2 · g1 = g3 · g1 ⇒ g2 = g3,

g3 · g1 = g3 · g2 ⇒ g1 = g2,

for any g1, g2, g3 ∈ G.

Solution. We have

g2 · g1 = g3 · g1 ⇒ g2 · g1 · g−1
1 = g3 · g1 · g−1

1 ⇒ g2 = g3

using that every element is invertible, and that g1 ·g−1
1 is the identity element.

Similarly

g3 · g1 = g3 · g2 ⇒ g−1
3 · g3 · g1 = g−1

3 · g3 · g2 ⇒ g1 = g2,

using again that every element is invertible, and that g3 · g−1
3 is the identity

element.
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Exercise 15. Let G be an abelian group. Is the set

{x ∈ G, x = x−1}

a subgroup of G? Justify your answer.

Exercise 16. Let G be a group, and let H be a subgroup of G. Consider
the set

gH = {gh, h ∈ H}.

1. Show that |gH| = |H|.

2. Is thet set
{g ∈ G, gH = Hg}

a subgroup of G?

Exercise 17. Let G be a group, show that

(g1g2)
−1 = g−1

2 g−1
1 ,

for every g1, g2 ∈ G. This is sometimes called the “shoes and socks property”!

Exercise 18. In a finite group G, every element has finite order. True or
false? Justify your answer.

Exercise 19. This exercise is to practice Cayley tables.

1. Suppose that G is a group of order 2. Compute its Cayley table.

Guided version.

• Since G is of order 2, this means it has two elements, say G =
{g1, g2}. Decide a binary law, say a binary law that is written
multiplicatively.

• Now use the definition of group to identify that one of the two
elements must be an identity element 1. Then write the Cayley
table.

• Once you have written all the elements in the table, make sure
that this table is indeed that of group! (namely make sure that
you used the fact that every element is invertible).
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2. Suppose that G is a group of order 3. Compute its Cayley table.

Solution. 1. If G has order 2, then we can write G = {g1, g2}. We sup-
pose that the binary law is written multiplicatively. We know that the
identity must be there, so we may assume that g1 = 1 is the identity
element. We now write the table:

1 g2

1 1 g2
g2 g2 g22

but for this table to be a Cayley table of a group, we still need to see
what happens with g22. It must be an element of the group as well by
closure. Now we know that g2 must be invertible, which means that
g22 = 1.

2. We repeat the same for a group of order 3. Suppose that G = {1, g2, g3}
since one element must be the identity element. We get

1 g2 g3

1 1 g2 g3
g2 g2
g3 g3

Now using the closure property, g2g3 must be an element of the group.
It cannot be that g2g3 = g2 or g3 (use the fact that g2 and g3 are
invertible to see that), thus g2g3 = 1, and by the same argument g3g2 =
1. Thus

1 g2 g3

1 1 g2 g3
g2 g2 1
g3 g3 1

which shows that g22 = g3, and g
2
3 = g2, and we are done.

Exercise 20. Consider the set Mn(R) of n× n matrices with coefficients in
R. For this exercise, you may assume that matrix addition and multiplication
is associative.

1. Show that Mn(R) is a group under addition.

2. Explain why Mn(R) is not a group under multiplication.
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3. Let GLn(R) be the subset of Mn(R) consisting of all invertible matri-
ces. Show that GLn(R) is a multiplicative group. (GLn(R) is called a
General Linear group).

4. Let SLn(R) be the subset of GLn(R) consisting of all matrices with
determinant 1. Show that SLn(R) is a subgroup of GLn(R). (SLn(R)
is called a Special Linear group).

5. Explain whether SLn(R) is a subgroup of Mn(R)

Solution. 1. Identity: The zero matrix is the identity element.
Associativity is ok by assumption (alternatively, it is inherited by as-
sociativity of addition of complex numbers).
Inverse of (Aij) is (−Aij).
Closure: (Aij) + (Bij) = Cij with coefficient Cij = Aij +Bij.

2. The zero matrix does not have a multiplicative inverse.

3. Identity: the identity matrix In.
Associativity is ok by assumption.
Inverse: by definition, all matrices in GLn(C) are invertible.
Closure: Multiplying two invertible matrices gives another invertible
matrix: (AB)−1 = B−1A−1.

4. Identity : In ∈ SLn(C), since certainly det(In) = 1.
Inverse: If det(A) = 1, then det(A−1) = 1/ det(A) = 1, so the set
contains inverses.
Closure: if det(A) = det(B) = 1, then det(AB) = det(A) det(B) = 1.

5. No, it is not, since Mn(C) is an additive group, while SLn(C) is not
closed under addition: det(In + In) 6= 1.

Exercises for Chapter 4

Exercise 21. We consider the set C of complex numbers.

1. Is C a group with respect to addition?

2. Is C a group with respect to multiplication?

3. In the case where C is a group, what is its order?
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4. Can you spot some of its subgroups?

Solution. 1. Yes it is. The sum of two complex numbers is a complex
number. Addition is associative. The identity element is 0, and every
element x has an inverse −x, since x− x = 0.

2. No it is not, since 0 is not invertible. Indeed, the identity element is
now 1, but there is no complex number y such that y · 0 = 1. However,
if you remove 0, then C without zero becomes a group! The product
of two complex numbers is again a complex number, multiplication
is associative, and every non-zero element x has an inverse x−1 since
x · x−1 = 1.

3. It is infinite.

4. So we need to look at (C,+). For example, (R,+), (Q,+) and (Z,+)
are subgroups, all with identity element 0, and for x an inverse given by
−x. Associativity is inherited from C, and the closure under addition is
clear. Also the even integers form a subgroup, since the sum of two even
integers is even, the identity element is still 0, and 2y has for inverse
−2y. If one consider (C\{0}, ·), we similarly have (R\{0}, ·), (Q\{0}, ·),
but Z does not work, since apart ±1, integers are not invertible for
multiplication. In that case, nth roots of unity are also a subgroup of
(C\{0}, ·).

Exercise 22. Alice and Bob have decided to use Caesar’s cipher, however
they think it is too easy to break. Thus they propose to use an affine cipher
instead, that is

eK(x) = k1x+ k2 mod 26, K = (k1, k2).

Alice chooses K = (7, 13), while Bob opts for K = (13, 7). Which cipher do
you think will be the best? Or are they both equally good?

Solution. The best cipher is that of Alice. Indeed

eK(x) = 7x+ 13 mod 26

can be deciphered using

dK(y) = 15y + 13 mod 26
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since

dK(eK(x)) = 15(7x+13)+13 = 15 · 7x+15 · 13+13 ≡ x+26 ≡ x mod 26.

Now for the cipher of Bob, we have

eK(x) = 13x+ 7 mod 26

and 13 is not invertible modulo 26. Thus to decipher, we get

dK(y) = αy + β,

for some α, β, and

dK(eK(x)) = α(13x+ 7) + β = α · 13x+ 7α + β.

Now we must solve 13αx = x to find x, that is x(13α − 1) = 0 and there is
no α satistfying this equation.

Exercise 23. Show that the map f : (R,+) → (R∗, ·), x 7→ exp(x) is a
group homomorphism.

Solution. First we notice that (R,+) and (R\{0}, ·) are both well-defined
groups. Now we have to check the property of group homomorphism, namely

f(x+ y) = f(x)f(y).

Now
f(x+ y) = exp(x+ y) = exp(x) exp(y) = f(x)f(y).

Exercise 24. Show that a group homomorphism between two groups G and
H always maps the identity element 1G to the identity element 1H .

Solution. You can show that using either additive or multiplication notation.
In additive notation, we have that f(a + b) = f(a) + f(b) thus take a = 0,
which gives

f(0 + b) = f(0) + f(b) ⇒ f(b) = f(0) + f(b) ⇒ 0 = f(0)

because f(b) is invertible. In multiplicative notation, we have that f(ab) =
f(a)f(b) thus take a = 1, which gives

f(1 · b) = f(1)f(b) ⇒ f(b) = f(1)f(b) ⇒ 1 = f(1)

because f(b) is invertible.
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Exercise 25. In this exercise, we study a bit the invertible integers modulo
n.

1. Take n = 5, and compute the group of invertible integers modulo 5.
What is the order of this group? Can you recognize it? (in other
words, is this group isomorphic to one of the groups we have already
classified?)

2. Take n = 8, and compute the group of invertible integers modulo 8.
What is the order of this group? Can you recognize it? (in other words,
is this group isomorphic to one of the

groups we have already classified?)

Solution. 1. The integers invertible modulo 5 are those coprime to 5, that
is {1, 2, 3, 4}, so the order of the group is 4. We notice that 2 for
example has order 4, since 24 = 16 ≡ 1 mod 5, thus this is a cyclic
group of order 4, and since we know there is a unique cyclic group of
order 4 up to isomorphism, we can also say this is ”the” cyclic group
of order 4.

2. The integers invertible modulo 8 are those coprime to 8, that is {1, 3, 5, 7},
so the order of the group is also 4. However, 32 ≡ 1 mod 8, 52 ≡ 1
mod 8 and 72 ≡ 1 mod 8, thus it cannot be cyclic. In fact, every ele-
ment has order 2 but for the identity, so it follows easily that this group
is isomorphic to the Klein group, that is the group of isometries of the
rectange. To show formally the group isomorphism, one can define a
map f :{1, 3, 5, 7} → {1, r,m, rm} where r is a rotation, m is a mirror
reflection, as defined in the notes, such that

f(1) = 1, f(3) = r, f(5) = m, f(7) = rm.

We can check that f(3 · 5) = f(7) = rm = f(3)f(5) and similarly for
all the pairs. In fact, any map that sends an element of order 2 to an
element of order 2 will do!

Exercise 26. Let f be a group homomorphism f : G→ H where G and H
are two groups. Show that

f(g−1) = f(g)−1.
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Solution. We have already seen that a group homomorphism is mapping the
identity of G to the identity of H. To show the above property, we need to
understand what it means. It means that it maps the inverse of g to the
inverse of f(g). Now we have by definition of group homomorphism that

f(g−1g) = f(g−1)f(g),

and

1H = f(1G) = f(g−1g) = f(g−1)f(g)

where we have added that f maps the identity of G to the identity of H.
From this we can read what is written:

1H = f(g−1)f(g)

which means that f(g−1) is the inverse (we have checked only on the left) of
f(g), that is f(g−1) = f(g)−1. To complete the proof, we actually also need
to check that f(g)f(g−1) = 1, which can be done by replacing g−1g by gg−1

in the first equation, and derive everything again accordingly.
We have seen a few examples of group homomorphisms, or even group

isomorphisms. You can take these examples and easily check for yourself
that it works!

Exercise 27. Consider the group (Z,+) of integers under addition. Let H
be a subgroup of Z.

1. Show that H is of infinite order.

2. Use the Euclidean division algorithm to show that H is generated by
a single element.

3. Find a subset of Z which forms a multiplicative group.

Here is a guided version of this exercise. Please try to do the normal version
first!

1. Recall first what the order of a group is, to understand what it means
for H to be of infinite order. Once this is clear, you need to use one
of the properties of a group! If you cannot see which one, try each of
them (can you cite the 4 of them?) and see which one will help you!
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2. This one is more difficult. You will need to use a trick, namely use the
minimality of some element...In every subgroup of Z, there is a smallest
positive integer (pay attention to the word“subgroup” here, this does
not hold for a subset!).

3. To have a multiplicative group (that is a group with respect to mul-
tiplication), you need to define a set, and make sure this set together
with multiplication satisfies the usual 4 properties of a group!

Solution. 1. Let h ∈ H be an element other than the identity element.
Then all multiples of h are contained in H by closure. It will follow that
H is infinite once we show that all the multiples of h are distinct. To
that end, suppose to the contrary that mh = nh. Then (m− n)h = 0,
but that implies that m = n, since we assumed that h is not identity.

2. Let m be the smallest integer contained in H. We claim that any other
element of H is a multiple of m. To that end, consider h ∈ H. For
the sake of contradiction suppose h is not a multiple of m. Using the
Euclidean Division Algorithm, we have h = mq + r, r < m. But then
r = h−mq ∈ H, and r is smaller than m, contradicting the minimality
of m in H.

3. Elements of a multiplicative group must have a multiplicative inverse.
The only invertible integers are {±1}, which form a group under mul-
tiplication.

Exercise 28. When we define a map on equivalence classes, the first thing
we must check is that the map is well defined , that is, the map is independent
of the choice of the representative of the equivalence class. In this exercise
we give an example of a map which is not well defined .

Recall the parity map sgn : Z → Z/2

sgn(2k + 1) 7→ 1

sgn(2k) 7→ 0

Let Z/5Z be the group of integers modulo 5. Let us attempt to define the
map sgn : ā 7→ sgn(a). Show that sgn is not well-defined on Z/5Z.

Solution. sgn(1̄) = sgn(1) = 1 while sgn(6̄) = sgn(6) = 0. But 1̄ = 6̄, so
their image should be the same. Hence the map sgn is not well-defined.
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Exercises for Chapter 5

Exercise 29. Let G be a group and let H be a subgroup of G. Let gH be
a coset of H. When is gH a subgroup of G?

Solution. If g = 1, we see that gH = H and thus clearly H is a subgroup
of G. In fact, if g ∈ H (this includes g = 1 in particular), we have that
gH = H. Indeed, gH ⊆ H, because every element of gH is of the form gh
with g and h in H, and since H is a subgroup of G, it must be that gh ∈ H.
Conversely, H ⊆ gH, since every element h in H can be written as h = gh′

with h′ = g−1h. We have thus shown that if g ∈ H, then gH = H and thus
gH is a subgroup. Now if g is not in H, gH cannot be a subgroup, because
1 does not belong to gH. Indeed, if 1 were to be in gH, then that means
that there is an element h ∈ H such that gh = 1, which means that g is the
inverse of h, but the inverse of h belongs to H, while we know that this is
not the case for g!

Exercise 30. As a corollary of Lagrange Theorem, we saw that the order
of an element of a group G divides |G|. Now assume that d is an arbitrary
divisor of |G|. Is there an element g in G with order d?

Solution. In general the answer is no. There are many counter-examples. For
example, |G| itself always divides |G|, but there exists an element of order
|G| only when the group is cyclic!

Exercise 31. Take as group G any group of order 50. Does it contain an
element of order 7?

Solution. We have that |G| = 50. We know by Lagrange Theorem that the
order of an element of G has to divide 50. Since 7 does not divide 50, there
cannot be an element of order 7.

Exercise 32. Take as group G the Klein group of symmetries of the rectan-
gle. Choose a subgroup H of G, write G as a partition of cosets of H, and
check that the statement of Lagrange Theorem holds.

Solution. We can write the Klein group as G = {1,m, r, rm}. A subgroup is
for example H = {1,m} (or {1, r}, or {1, rm}). We have that

G = H ∪ rH = {1,m} ∪ {r, rm}.
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The number of cosets of H is called the index of H in G, given by [G : H] = 2.
The size of every coset is 2, and indeed

|G| = [G : H]|H| = 2 · 2 = 4.

Exercise 33. This exercise looks at Lagrange Theorem in the case of an
infinite group. Take as group G = R and as subgroup H = Z. Compute the
cosets of H and check that the cosets of H indeed partition G. Also check
that the statement of Lagrange Theorem holds.

Solution. If G = R, and H = Z, cosets of Z are of the form x + Z, x ∈ R.
Thus

R =
⋃

0≤x<1

(x+ Z)

and |R| = |Z| = ∞.

Exercises for Chapter 6

Exercise 34. Show that any planar isometry of R2 is a product of at most
3 reflections.

Solution. We know from Theorem 2 that any planar isometry is either

a) A rotation about a point in the plane

b) A pure translation

c) A reflection about a line in the plane

d) A reflection about a line in the plane and a translation along the same
line (glide reflection).

We consider each case.

a) A rotation about a point is a composition of two reflections about axes
that meet at the fixed point (center of the rotation).

b) We saw that if we have two reflections of the form

ϕ1 : z → eiθ1 z̄ + β1, ϕ2 : z → eiθ1 z̄ + β2,
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ϕ2 ◦ ϕ1(z) = z + β1e
iθ + β2

︸ ︷︷ ︸

a translation vector

.

This shows that the composition of two glide reflections gives a trans-
lation, and in fact any translation can be obtained in that way.

Now we want to express a translation in terms of two pure reflections.
This means we need to consider extra constraints on β1, β2 in terms
of θ1, θ2. To that end, recall that a glide reflection eiθz̄ + β is a pure
reflection (that is, a reflection of order 2) whenever either β = 0 or the
vector β is perpendicular to the reflection axis {eiθ/2x | x ∈ R}. So, in
particular, for choices β1 = 0, β2 = w and θ/2 = arg(w)+π/2, the glide
reflections ϕ1(z) = eiθz̄, ϕ2(z) = eiθz̄ + w are in fact pure reflections
whose composition ϕ2 ◦ ϕ1 = z + β1e

iθ + β2 = z + w corresponds to
translation by w.

Geometrically, translation by w corresponds to reflection across the
line P , followed by reflection across line (P +w/2), where P is the line
through the origin perpendicular to vector w, (P +w/2) is the shift of
P by w/2.

c) A reflection is a composition of a single reflection (itself!)

d) A glide reflection is a composition of a reflection and a translation
(which is a composition of two reflections). As we have seen any com-
position of two reflections is always a rotation or a translation. A
reflection cannot be a glide reflection since it does not have fixed point.

Exercise 35. Look at the pictures on the wiki (available on edventure), and
find the symmetry group of the different images shown.

Exercises for Chapter 7

Exercise 36. Let σ be a permutation on 5 elements given by σ = (15243).
Compute sign(σ) (that is, the parity of the permutation).

Solution. This permutation sends 12345 to 54132, thus first we need to switch
1 and 5. (15) : 12345 7→ 52341. Now the first element is at the right
place, but the second element should 4, not 2, thus we exchange 4 and 2.
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(24)(15) : 12345 7→ 54321. We continue and exchange 1 and 3: (13)(24)(15) :
12345 7→ 54123. Finally, we exchange 2 and 3, to get (23)(13)(24)(15) :
12345 7→ 54132. Thus sign(54132) = (−1)4 = 1.

Exercise 37. 1. Show that any permutation of the form (i j k) is always
contained in the alternating group An, n ≥ 3.

2. Deduce that An is a non-abelian group for n ≥ 4.

Solution. 1. Any permutation of the form (i j k) can be written as (i j)(j k),
thus it is an even permutation, which belongs to An (n ≥ 3 is needed
to have 3 elements to permute).

2. It is enough to notice that (1 2 3) and (1 2 4) do not commute, since
they are always contained in An, for n ≥ 4.

Exercise 38. Let H = {σ ∈ S5 | σ(1) = 1, σ(3) = 3}. Is H a subgroup of
S5?

Solution. We have that H is a subset of S5 and thus it inherits associativity
of composition from S5. The identity (=do-nothing) permutation belongs to
H. Let σ1, σ2 be two permutations in H. We have that

σ1(σ2(1)) = σ1(1) = 1, σ1(σ2(3)) = σ1(3) = 3

thus σ1σ2 ∈ H. Finally, we have to check that every element in H has an
inverse in H. Let σ ∈ H, then

σ−1(1) = σ−1(σ(1)) = 1, σ−1(1) = σ−1(σ(3)) = 3

which shows that H is indeed a subgroup.

Exercise 39. In the lecture, we gave the main steps to show that the group
D6 cannot be isomorphic to the group A4, though both of them are of order
12 and non-abelian. This exercise is about filling some of the missing details.

• Check that (1 2)(3 4) is indeed of order 2.

• Check that (1 2 3) is indeed of order 3.

• By looking at the possible orders of elements of D6, prove that A4 and
D6 cannot be isomorphic.



289

Solution. • We have to check that (12)(34)(12)(34) = (). We have

(12)(34)(12)(34) : 1234 7→ 1243 7→ 2143 7→ 2134 7→ 1234.

In fact, we can observe that what happens is that the two permutations
are affecting disjoint subsets of indices, thus since we do (12) twice, and
(34) twice, we get back the identity permutation.

• We compute (123)(123)(123):

(123)(123)(123) : 123 7→ 231 7→ 312 7→ 123.

In fact, every permutation is a shift of the 3 elements, and doing 3
shifts gives back the identity.

• D6 contains a rotation r which is of order 6. We can check that no
element of A4 has order 6 (they are of order 2 and 3 only, the list of
the elements and their order can be found in the lecture slide). Now if
there were a group isomorphism f from D6 to A4, then f(r) should be
an element of order 6 in A4, since

f(r)6 = f(r6) = f(1) = 1

and if there were a k < 6 such that f(r)k = 1, then f(rk) = 1, a
contradiction. But there is no element of order 6 in A4.

Exercises for Chapter 8

Exercise 40. • Let G be the Klein group. Cayley’s Theorem says that
it is isomorphic to a subgroup of S4. Identify this subgroup.

• Let G be the cyclic group C4. Cayley’s Theorem says that it is isomor-
phic to a subgroup of S4. Identify this subgroup.

Solution. • Let us write the multiplication table of the Klein group.

1 g1 g2 g3
1 1 g1 g2 g3
g1 g1 1 g3 g2
g2 g2 g3 1 g1
g3 g3 g2 g1 1
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We now interpret this table in terms of permutations. Let us label
the elements of the group: 1 → 1, g1 → 2, g2 → 3, g3 → 4. The
first row is then 1234, thus 1234 → 1234, the second row is 2143, thus
1234 → 2143, the third row is 3412 thus 1234 → 3412, finally the fourth
row is 4321, thus 1234 → 4321. In cycle notation, this gives

(), (12)(34), (13)(24), (14)(23).

• Let us write the multiplication table of C4.

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

We now interpret this table in terms of permutations. The first row is
0123, thus 0123 → 0123, the second row is 1230, thus 0123 → 1230,
the third row is 2301 thus 0123 → 2301, finally the fourth row is 3012,
thus 0123 → 3012. In cycle notation, this gives

(), (0123), (02)(13), (0321)

but since we usually look at permutations on the elements {1, ..., n},
we rewrite these permutations as

(), (1234), (13)(24), (1432).

Exercise 41. Show that any rearrangement of pieces in the 15-puzzle start-
ing from the standard configuration (pieces are ordered from 1 to 15, with
the 16th position empty) which brings the empty space back to its original
position must be an even permutation of the other 15 pieces.

Solution. We can view the overall puzzle as a permutation π in S15, since the
empty space returns to its original position. We can repeat the proof we did
in the lecture, by replacing (14 15) by π. Namely

π = (an 16)(an−1 16) · · · (a2 16)(a1 16).

Now the left hand side is an even permutation in S16 since the blank space
16 is moved an even number of positions (because 16 returns to its original



291

location, it has to move up and down, as well as right and left, an equal
number of times). The parity of a permutation in S15 is the same as its
parity when viewed as a permutation in S16, so π is an even permutation of
the pieces 1,2,...,15.

Exercise 42. Has this following puzzle a solution? The rule of the game is

the same as the solitaire seen in class, and a win is a single marble in the
middle of the board. If a win is a single marble anywhere in the board, is
that any easier?

Solution. We can solve this puzzle the same way we did in the lecture, namely
by labeling the board with the Klein group G = {1, f, g, h} as follows: Now

                                      f        g      h 

                                      f        g      h     f         g 

                                      f        g      h      f         g       h      f 

                 g      h        f        g      h      f        g 

                           h         f        g      h      f       g       h 

               g       h         f        g      h 

                                      f        g      h 
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the total value of this board without the middle marble is

(fgh)12 = 1.

Since the total value is invariant by a move, whenever we move a marble and
remove another one, the total value stays 1. Since no label is 1, not only it
is impossible to finish with one marble in the center, but it is also impossible
to finish with one marble all together!

Exercises for Chapter 9

Exercise 43. Consider the Klein group G = {1, f, g, h}.
• What are all the possible subgroups of G?

• Compute all the possible quotient groups of G.

Solution. • First of all, by Lagrange Theorem, we know that subgroups
of G have possible orders 1,2 and 4.

– If the order of a subgroup is 1, then the subgroup is {1}.
– If the order of a subgroup is 4, then the subgroup is G.

We are left with the case where a subgroup has order 2. It will neces-
sarily have 1 as part of it. Then we are left with three possibilities:

{1, f}, {1, g}, {1, h}.

Thus the list of all possible subgroups of G is:

{1}, {1, f}, {1, g}, {1, h}, G.

• To compute a quotient group of G, we need a subgroup H that satisfies
g + H = H + g. Because G is abelian, every subgroup listed above
satisfies this property, thus we get 5 possible quotient groups:

G/{1}, G/{1, f}, G/{1, g}, G/{1, h}, G/G.

Since |G/{1}| = |G|, this group is G itself. Since |G/H| = 2 for every
subgroup of order 2, in this case we get C2. Finally |G/G| = 1, thus
G/G ≃ {1}.
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Exercise 44. Consider the dihedral group D4. What are all the possible
quotient groups of D4?

Solution. Recall that the group D4 is given by

D4 = {r,m | r4 = m2 = 1, mr = r−1m} = {1, r, r2, r3,m, rm, r2m, r3m}.

There are two ways of solving this exercise. One way is to list all the possible
subgroups, and then check those which are normal. Since this can be quite
tedious when the size of the dihedral group grows, we give a more theoretical
argument. Recall that we found one subgroup that yields a quotient group
in the lecture.

• Let r be a rotation. Then

(rjm)ri = rj(mri) = rj(r−im) = r−i(rjm).

This shows that gH = Hg for every g ∈ D4 and H = 〈r〉.

• The same property will thus be true for every subgroup of H! Here
there is only one subgroup of H which is not {1} or H, namely {1, r2}.

So we have exhausted all the choices where the subgroup we consider contains
only rotations. What if it contains a term of the form rim? (with i possibly
0). Note that gH = Hg ⇐⇒ gHg−1 = H. Thus if H contains an element
rim, it must also contain g(rim)g−1 where g = rjm or g = rj is an element
of D4. All right, let us thus compute g(rim)g−1. If i = 0, then

(rjm)m(rjm)−1 = (rjm)mm−1r−j = rjmr−j = r2jm,

and
(rj)m(rj)−1 = r2jm.

Now what is r2jm? Well j can take any value from 0 to 3. While j goes from
0 to 3, what are the values taken by 2j? They are 0, 2, 0, 2! (Note that this is
happening because 4 is even). If i = 1, we can redo the same computations
with rm instead of m, namely:

(rjm)rm(rjm)−1 = rjmrmm−1r−j = rjmrr−j = rjrj−1m = r2j−1m

and
(rj)rm(rj)−1 = rjrrjm = r2j+1m.
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When j takes values from 0 to 3, both 2j − 1 and 2j + 1 take values 3,1,3,1.
We can do the same computations for rim, where i is either even or odd. In
summary, we have two cases: if we have rim with i even, then g(rim)g−1 =
r2jm, while if we have rim with i odd, then g(rim)g−1 = r2j−1m.

• If i is even, we thus know that H contains not only rim but also r2jm =
{m, r2m}. Thus H further contains r2 and

H = {1,m, r2m, r2}.

• If i is odd, we similarly know that H contains not only rim but also
r2j−1m = {rm, r3m}. Thus H further contains rmr3m = rr−3 = r2

and
H = {1, rm, r2, r3m}.

This gives the following list of subgroups that will yield a quotient group:

{1}, {1, r2}, {1, r, r2, r3}, {1,m, r2m, r2}, {1, rm, r2, r3m}, D4.

The corresponding quotient groups are

D4, D4/{1, r2}, D4/{1, r, r2, r3} ≃ C2, D4/{1,m, r2m, r2} ≃ C2, D4/{1, rm, r2, r3m} ≃ C2, {1}.

Note that |D4/{1, r2}| = 4, thus it could be either C4 or the Klein group.

Exercise 45. Consider A the set of affine maps of R, that is

A = {f : x 7→ ax+ b, a ∈ R∗, b ∈ R}.

1. Show that A is a group with respect to the composition of maps.

2. Let
N = {g : x 7→ x+ b, b ∈ R}.

Show that the set of cosets of N forms a group.

3. Show that the quotient group A/N is isomorphic to R∗.

Solution. 1. Let f, g ∈ A. Then

(f ◦ g)(x) = f(ax+ b) = a′(ax+ b) + b′ = a′ax+ a′b+ b′,
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where a′a ∈ R∗ thus the closure property is satisfied. The composition
of maps is associative. The identity element is given by the identity
map since

Id ◦ f = f ◦ Id = f.

Finally, we need to show that every f ∈ A is invertible. Take f−1(x) =
a−1x− a−1b. Then

f−1 ◦ f(x) = f−1(ax+ b) = a−1(ax+ b)− a−1b = x.

2. We first notice that N is a subgroup of A (we need to check the usual
things: closure, identity, inverse. Associativity is inherited.) Let g ∈ N
and let f ∈ A. We have to show that fN = Nf . Let us take f(x) =
ax+ b ∈ A and g(x) = x+ b′ ∈ N . We have

f ◦ g(x) = f ◦ (x+ b′) = a(x+ b′) + b = ax+ ab′ + b.

On the other hand, define g′(x) = x+ ab′, we have

g′ ◦ f(x) = g′(ax+ b) = ax+ b+ ab′,

and f ◦ g(x) = g′ ◦ f(x).

3. Elements of A/N are cosets of the form fN = {fg, g ∈ N}, with
f(x) = ax + b, thus fg(x) = f ◦ g(x) = f(x + c) = ax + ac + b, with
g(x) = x+ c. Also consider f ′(x) = a′x+ b′. Define the map

ϕ : A/N → R∗, fN 7→ a.

It is a group homomorphism since

ϕ(fNf ′N) = ϕ(ff ′N) = aa′ = ϕ(f)ϕ(f ′),

where the 2nd equality follows from ff ′(x) = f(a′x+ b′) = a(a′x+ b)+
b = aa′x + ab + b. To show that we have an isomorphism, we are left
with 2 things to check

• the map is a bijection (which is clear)

• the map is well-defined, namely it does not depend on the choice
of the coset representative f ,
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from which we conclude that

A/N ≃ R∗.

Let us spend a minute to understand the interpretation of this result:
when we look at all affine maps, and we take the quotient by those
of the form x + b, that means that we consider as the same all maps
whose coefficient in x is 1 no matter what is the constant term. Thus
if the constant term does not matter, what is left that matters is the
coefficient in x, that we denoted by a, which is why the quotient is in
fact isomorphic to R∗!
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Exercises for Chapter 10

Exercise 46. • Show that the complex numbers C form a vector space
over the reals.

• Give a basis of C over the reals.

• In the lecture, we saw for R2 that we can obtain a new group, called a
lattice, by keeping a basis of R2 but instead considering integer linear
combinations instead of real linear combinations. What happens for C
if we do the same thing? (namely consider integer linear combinations).

Solution. • A complex number is of the form a + ib, thus it can be seen
as a vector (a, b) over the reals. We need to check that vectors form an
abelian group, which is clear: 0 is the identity element, (a, b) has an in-
verse given by (−a,−b) for every vector (a, b), addition of vectors gives
a vector, so closure is satisfied, as is associativity. The other properties
for scalars are also clearly satisfied: distributivity of scalar multiplica-
tion with respect to vector and field (here the reals) addition, respect
of scalar multiplication and identity element of scalar multiplication.

• We can write C = {a + ib, a, b ∈ R} = {(a, b), a, b ∈ R} = {a(1, 0) +
b(0, 1), a, b ∈ R}. A natural basis is {(0, 1), (1, 0)}.

• By keeping the natural basis {(0, 1), (1, 0)} we obtain the set

{a+ ib, a, b ∈ Z}

which is usually denoted by Z[i]. It is also an abelian group, it is
isomorphic to Z2!

Exercise 47. Consider the set M2(R) of 2×2 matrices with real coefficients.

1. Show that M2(R) forms a vector space over the reals.

2. Deduce that it has an abelian group structure.

3. Give a basis of M2(R) over the reals.

4. What happens for M2(R) if we keep a basis over the reals and consider
only integer linear combinations instead of real linear combinations?
Do we also get a new group? If so, describe the group obtained.
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Solution. 1. Matrices correpond to the vectors, we have to show they form
an abelian group. The sum of two matrices is again a matrix (closure is
satisfied), associativity holds. The identity element is the zero matrix.
Let M ∈ M2(R), then −M is its inverse. The other properties for
scalars are also clearly satisfied.

2. Once we have a vector space, we know that the vectors form an abelian
group (here we actually showed the abelian group structure above).

3. A natural basis is the matrices Eij, i, j = 1, 2, where Eij denotes a
matrix with zero everywhere but in the ith row, jth column, where
there is a 1.

4. By keeping the natural basis E11, E12, E21, E22, we get the set of ma-
trices M2(Z). It is also an abelian group.
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Exercises for Chapter 12

Exercise 48. Lagrange Theorem is likely to be the most important theorem
of group theory, so let us revise it! Here is a bit of theory first:

• Can you remember what it states?

• The proof of Lagrange Theorem relies on a counting argument, based
on the fact that cosets partition the group. Can you remember what
cosets partition the group mean? If so, can you rederive the counting
argument that proves Lagrange Theorem?

Now some more practice on how to use Lagrange Theorem!

• How many groups of order 5 do we have (up to isomorphism)?

• Consider the group of permutations S5. Does S5 contain a permutation
of order 7?

• Suppose there exists an abelian group G of order 12 which contains a
subgroup H of order 4. Show that the set of cosets of H forms a group.
What is the order of G/H? Deduce what group G/H is.

Solution. • It states that [G : H]|H| = |G| where H is a subgroup of the
group G, and [G : H] denotes the number of cosets of H.

• Cosets partition the group mean that the union of cosets if the whole
group, but the intersection of two cosets is either the whole coset or
empty. Thus when we count how many elements we have in G, it is
the same thing as counting how many cosets we have, times how many
elements in each coset.

• Only 1. If the order is a prime, we know from Lagrange that the group
has to be cyclic, thus up to isomorphism there is only the cyclic group
of order 5.

• No, if there were, then 7 should divide |S5| by Lagrange, but |S5| = 5!
which is not divisible by 7.

• The set of cosets always forms a group when G is abelian! The order
of |G/H| is |G|/|H| by Lagrange, which is 3, thus G/H is the cyclic
group of order 3.
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Exercise 49. At the beginning of the class, we started by studying structure
of geometric figures. We have seen shapes, and been asked what is their group
of symmetries.

• Can you remember some of the shapes we studied, and what is the
corresponding group of symmetries?

• Do you remember what are all the possible groups arising as symmetries
of planar shapes?

• Let us do the reverse exercise: think of a symmetry group, and try to
draw a figure that has this symmetry group.

Solution. • For example, the rectangle with the Klein group, or the square
with the dihedral group D4.

• This is Leonardo Theorem: cyclic and dihedral groups.

• Hmm, that’s thougher to give a solution to that!

Exercise 50. Let us remind a few things about permutations.

• What is the formal definition of a permutation?

• What is the parity of a permutation?

• Consider the permutation σ that maps:

1 7→ 2, 2 7→ 1, 3 7→ 5, 4 7→ 3, 5 7→ 6, 6 7→ 4, 7 7→ 7.

Compute its parity.

• We have studied that the group of symmetries of a planar shape can
be seen as a group of permutations. Do you remember how that works
(either in general or on an example?)

Solution. • It is a bijection.

• Write the permutation as a product of transpositions, count how many
there are, and compute (-1) to the power the number of transpositions.

• This permutation can be written (12)(3564) or for example (12)(34)(36)(35)
(there are many ways of writing it) so its parity is (−1)4 = 1.
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• We take the Cayley table of the group, and rewrite every row of the
table as a permutation.

Exercise 51. Let us remember that planar isometries are either of type I:
H(z) = αz + β, |α| = 1 or of type II: H(z) = αz̄ + β, |α| = 1.

• Show that the isometries of type I form a subgroup H of the group G
of planar isometries.

• Show that G/H is a quotient group of order two.

Solution. • (1) We need to check that the closure property is satisfied:
take H1(z) = α1z + β1, |α1| = 1, H2(z) = α2z + β2, |α2| = 1, then

H1(H2(z)) = H1(α2z + β2) = α1(α2z + β2) + β1

showing that

H1(H2(z)) = (α1α2)z + (α1β2 + β1)

with |α1α2| = 1 (and similarly for H2(H1(z))). (2) Associativity of
maps holds. (3) The identity map is of the right form (take β = 0 and
α = 1). (4) If H(z) = αz + β, |α| = 1, then H−1(z) = α−1z − α−1β
Indeed

H−1H(z) = H−1(αz + β) = z + α−1β − α−1β = z.

• In order to show that we indeed have a quotient group G/H, where G
is the group of planar isometries and H is the group of type I planar
isometries, we need to show that H is a normal subgroup of G, namely,
gH = Hg for all g ∈ G. We observe thatG is partitioned into two parts:
type I and type II. The type I planar isometries form the subgroup H
and the type II planar isometries form a left coset of H in G. Indeed,
take any two type II planar isometries f1(z) = α1z̄ + β1 and f2(z) =
α2z̄+ β2. We can show that f1H = f2H, or equivalently, f1 ◦ f−1

2 ∈ H:

f1 ◦ f−1
2 (z) = f1(f

−1
2 (z)) = f1(

1

α2

z̄ − β2
α2

) = αz + β,

where α and β can be computed to confirm that |α| = 1, verifying
f1 ◦ f−1

2 ∈ H. A similar argument will give that the type II planar
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isometries form a right coset of H in G. Now we have obtained two
partitions of G: G = H

⋃
fH and G = H

⋃
Hf , where f is a type

II planar isometry. Since H = H, we must have fH = Hf . We have
shown that H is normal in G. (Note: this also shows that subgroups
of index 2 are always normal.)

Finally, the quotient group is the cyclic group C2 because the index of
H in G is 2 and there is only one group of order 2.
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Bézout’s Identity, 79
basis, 215
bijective, 85

Caesar’s cipher, 77
Cayley tables, 53
commutative, 45
complex conjugation, 5
congruent mod n, 71
coset, 103
cycle notation, 153
cyclic, 51

Dihedral group, 123
dihedral group, 141
distance, 5

equivalence class, 71
equivalence relation, 71
Euler Theorem, 119
Euler totient, 81

Fermat little theorem, 119
fixed point, 15
frieze, 229
frieze group, 237

glide, 135
group, 41

group isomorphism, 85

homomorphism, 85

identity, 41
identity map, 7
index, 111
injective, 85
inverse, 41
isomorphic, 85

Klein group, 129
Kleingroup, 115

Lagrange theorem, 109
lattice, 219

multiplication table, 29

normal subgroup, 197

one-to-one, 85
onto, 85
order of a group, 47
order of an element, 49

permutation, 149
planar isometry, 7
primitive, 83

quotient group, 199

reflection, 7
reflexive, 71

303



304 INDEX

representative, 73
root of unity, 83
rotation, 7, 135

subgroup, 47
subspace, 215
surjective, 85
symmetric, 71
symmetric group, 149
symmetry, 25

transitive, 71
translation, 131
transposition, 161

vector space, 213



Bibliography

[1] http://plus.maths.org/content/power-groups.

[2] M. A. Armstrong. Groups and Symmetry. Springer.

[3] Keith Conrad. Plane Isometries and the Complex Numbers.
www.math.uconn.edu/ kconrad/blurbs/grouptheory/isometrycpx.pdf.

[4] Keith Conrad. Plane Isometries and the Com-
plex Numbers. http://www.math.uconn.edu/ kcon-
rad/blurbs/grouptheory/15puzzle.pdf.

[5] David. W. Farmer. Groups and Symmetry, a Guide to Discovering Math-
ematics. American Mathematical Society.

[6] Joseph A. Gallian. Contemporary Abstract Algebra.

[7] Scott Kim. Inversions.

305


