
Chapter 1
Group Theory

1.1 Groups and subgroups

Definition 1.1. A group is a non-empty set G on which there is a binary
operation (a, b) 7→ ab such that

• if a and b belong to G then ab is also in G (closure),

• a(bc) = (ab)c for all a, b, c in G (associativity),

• there is an element 1 ∈ G such that a1 = 1a = a for all a ∈ G (identity),

• if a ∈ G, then there is an element a−1 ∈ G such that aa−1 = a−1a = 1
(inverse).

One can check (see Exercise 1) that this implies the unicity of the identity
and of the inverse.

A group G is called abelian if the binary operation is commutative, i.e.,
ab = ba for all a, b ∈ G.

Remark. There are two standard notations for the binary group operation: ei-
ther the additive notation, that is (a, b) 7→ a + b in which case the identity is
denoted by 0, or the multiplicative notation, that is (a, b) 7→ ab for which the
identity is denoted by 1.

Examples 1.1. 1. Z with the addition and 0 as identity is an abelian group.

2. Z with the multiplication is not a group since there are elements which
are not invertible in Z.

3. The set of n × n invertible matrices with real coefficients is a group for
the matrix product and identity the matrix In. It is denoted by GLn(R)
and called the general linear group. It is not abelian for n ≥ 2.
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Figure 1.1: Felix Klein (1849-1925)

4. A permutation of a set S is a bijection on S. The set of all such functions
(with respect to function composition) is a group called the symmetric
group on S. We denote by Sn the symmetric group on n elements. It is
not abelian when n ≥ 3. Consider the symmetric group S3 of permutations
on 3 elements. It is given by (note here that by ab we mean that we first
apply the permutation b, then a)

e : 123→ 123 or ()

a : 123→ 213 or (12)

b : 123→ 132 or (23)

ba : 123→ 312 or (132)

ab : 123→ 231 or (123)

aba : 123→ 321 or (13)

One can check that this is indeed a group. The notation (132) means
that the permutation sends 1 to 3, 3 to 2, and 2 to 1. We can generally
write a permutation on m elements as (i1, . . . , im), which is called a cycle
notation. The permutation (i1, . . . , im) is called an m-cycle

5. The set of isometries of the rectangle (not a square) is an abelian group
containing 4 elements: the identity, the reflection with respect to the
vertical axis, the reflection with respect to the horizontal axis, and the
composition of both reflections. It is called the Klein group in honor of
the mathematician Felix Klein.

The modern definition of group was given in 1854 by the mathematician
Cayley:
“A set of symbols all of them different, and such that the product of any two of
them (no matter in what order), or the product of any one of them into itself,
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Figure 1.2: Arthur Cayley (1821-1895): he was the first to define the concept of
a group in the modern way. Before him, groups referred to permutation groups.

belongs to the set, is said to be a group. These symbols are not in general con-
vertible [commutative], but are associative.”

It took about one hundred years from Lagrange’s work of 1770 on permu-
tations for the abstract group concept to evolve. This was done by abstracting
what was in common to permutation groups (studied e.g. by Galois (1811-1832)
who was motivated by the solvability of polynomial equations, by Cauchy who
from 1815 to 1844 looked at permutations as an autonomous subject, by Jordan
who around 1870 made explicit the notions of homomorphism and isomorphism
for permutation groups), abelian groups, and groups of isometries (studied e.g.
by Klein.)

Definition 1.2. The order of a group G, denoted by |G|, is the cardinality of
G, that is the number of elements in G.

A crucial definition is the definition of the order of a group element.

Definition 1.3. The order of an element a ∈ G is the least positive integer n
such that an = 1. If no such integer exists, the order of a is infinite. We denote
it by |a|.

Note that the critical part of this definition is that the order is the least
positive integer with the given property. The terminology order is used both for
groups and group elements, but it is usually clear from the context which one
is considered.

Let us give some more examples of finite groups.

Examples 1.2. 1. The trivial group G = {0} may not be the most exciting
group to look at, but still it is the only group of order 1.
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2. The group G = {0, 1, 2, . . . , n−1} of integers modulo n is a group of order
n. It is sometimes denoted by Zn.

3. The set of invertible elements modulo n forms a group under multiplica-
tion. Consider the group Z6 = {0, 1, 2, 3, 4, 5}, the group Z∗6 of invertible
elements in Z6 is Z∗6 = {1, 5}.

Definition 1.4. A group G is cyclic if it is generated by a single element, which
we denote by G = 〈a〉. We may denote by Cn a cyclic group of n elements.

Note that in a cyclic group G, there exists an element a whose order is the
same as that of G.

Example 1.3. A finite cyclic group generated by a is necessarily abelian, and
can be written (multiplicatively)

{1, a, a2, . . . , an−1} with an = 1

or (additively)
{0, a, 2a, . . . , (n− 1)a} with na = 0.

Example 1.4. An nth root of unity is a complex number z which satisfies the
equation zn = 1 for some positive integer n. Let ζn = e2iπ/n be an nth root
of unity. All the nth roots of unity form a group under multiplication. It is
a cyclic group, generated by ζn, which is called a primitive root of unity. The
term “primitive” exactly refers to being a generator of the cyclic group, namely,
an nth root of unity is primitive when there is no positive integer k smaller than
n such that ζkn = 1.

Definition 1.5. A subgroup H of a group G is a non-empty subset of G that
forms a group under the binary operation of G.

Examples 1.5. 1. If we consider the group G = Z4 = {0, 1, 2, 3} of integers
modulo 4, H = {0, 2} is a subgroup of G.

2. The set of n × n matrices with real coefficients and determinant of 1 is
a subgroup of GLn(R), denoted by SLn(R) and called the special linear
group.

At this point, in order to claim that the above examples are actually sub-
groups, one has to actually check the definition. There is an easier criterion to
decide whether a subset of a group G is actually a subgroup, namely given G
a group, and H a non-empty subset of G, H is a subgroup of G if and only if
x, y ∈ H implies xy−1 ∈ H for all x, y (see Exercise 2 for a proof).

Now that we have these structures of groups and subgroups, let us intro-
duce a map that allows to go from one group to another and that respects the
respective group operations.

Definition 1.6. Given two groups G and H, a group homomorphism is a map
f : G→ H such that

f(xy) = f(x)f(y) for all x, y ∈ G.
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Note that this definition immediately implies that the identity 1G of G is
mapped to the identity 1H of H. The same is true for the inverse, that is
f(x−1) = f(x)−1.

Example 1.6. The map exp : (R,+) → (R∗, ·), x 7→ exp(x) is a group homo-
morphism.

Definition 1.7. Two groups G and H are isomorphic if there is a group homo-
morphism f : G→ H which is also a bijection.

Roughly speaking, isomorphic groups are “essentially the same”.

Examples 1.7. 1. If we consider again the group G = Z4 = {0, 1, 2, 3} of
integers modulo 4 with subgroup H = {0, 2}, we have that H is isomorphic
to Z2, the group of integers modulo 2.

2. A finite cyclic group with n elements is isomorphic to the additive group
Zn of integers modulo n.

1.2 Cosets and Lagrange’s Theorem

Definition 1.8. Let H be a subgroup of a group G. If g ∈ G, the right coset
of H generated by g is

Hg = {hg, h ∈ H}

and similarly the left coset of H generated by g is

gH = {gh, h ∈ H}.

In additive notation, we get H + g (which usually implies that we deal with
a commutative group where we do not need to distinguish left and right cosets).

Example 1.8. If we consider the group Z4 = {0, 1, 2, 3} and its subgroup
H = {0, 2} which is isomorphic to Z2, the cosets of H in G are

0 +H = H, 1 +H = {1, 3}, 2 +H = H, 3 +H = {1, 3}.

Clearly 0 +H = 2 +H and 1 +H = 3 +H.

We see in the above example that while an element of g ∈ G runs through
all possible elements of the group G, some of the left cosets gH (or right cosets
Hg) may be the same. It is easy to see when this exactly happens.

Lemma 1.1. We have that Ha = Hb if and only if ab−1 ∈ H for a, b ∈ G.
Similarly, aH = bH if and only if a−1b ∈ H for a, b ∈ G.

Proof. If two right cosets are the same, that is Ha = Hb, since H is a subgroup,
we have 1 ∈ H and a = hb for some h ∈ H, so ab−1 = h ∈ H.

Conversely, if ab−1 = h ∈ H, then Ha = Hhb = Hb, again since H is a
subgroup.
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While one may be tempted to define a coset with a subset of G which is not
a subgroup, we see that the above characterization really relies on the fact that
H is actually a subgroup.

Example 1.9. It is thus no surprise that in the above example we have 0+H =
2 + H and 1 + H = 3 + H, since we have modulo 4 that 0 − 2 ≡ 2 ∈ H and
1− 3 ≡ 2 ∈ H.

Saying that two elements a, b ∈ G generate the same coset is actually an
equivalence relation in the following sense. We say that a is equivalent to b
if and only if ab−1 ∈ H, and this relation satisfies the three properties of an
equivalence relation:

• reflexivity: aa−1 = 1 ∈ H.

• symmetry: if ab−1 ∈ H then (ab−1)−1 = ba−1 ∈ H.

• transitivity: if ab−1 ∈ H and bc−1 ∈ H then (ab−1)(bc−1) = ac−1 ∈ H.

The equivalence class of a is the set of elements in G which are equivalent
to a, namely

{b, ab−1 ∈ H}.

Since ab−1 ∈ H ⇐⇒ (ab−1)−1 = ba−1 ∈ H ⇐⇒ b ∈ Ha, we further have that

{b, ab−1 ∈ H} = Ha,

and a coset is actually an equivalence class.

Example 1.10. Let us get back to our example with the group Z4 = {0, 1, 2, 3}
and its subgroup H = {0, 2}. We compute the first coset 0 +H = H, and thus
we now know that the equivalence class of 0 is H, and thus there is no need to
compute the coset generated by 2, since it will give the same coset. We then
compute the coset 1 + H = {1, 3} and again there is no need to compute the
one of 3 since it is already in the coset of 1. We thus get 2 cosets, and clearly
they partition Z4:

Z4 = {0, 2} t {1, 3} = H t (1 +H).

It is important to notice that the right (resp. left) cosets partition the group
G (that the union of all cosets is G is clear since we run through all elements
of G and H contains 1, and it is easy to see that if x ∈ Ha and x ∈ Hb then
Ha = Hb).

Example 1.11. Consider R as an additive group with subgroup Z. Every real
number up to addition by an integer looks like a number in [0, 1). Thus

R = ∪0≤x<1(x+ Z),

and the cosets of Z partition R.
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Furthermore, since the map h 7→ ha, h ∈ H, is a one-to-one correspondence,
each coset has |H| elements.

Definition 1.9. The index of a subgroup H in G is the number of right (left)
cosets. It is a positive number or ∞ and is denoted by [G : H].

If we think of a group G as being partitioned by cosets of a subgroup H,
then the index of H tells how many times we have to translate H to cover the
whole group.

Let us get convinced that the number of left cosets is equal to the number
of right cosets. In order to do that, we will show that the map φ such that
φ(gH) = Hg−1 is a bijection.

But before doing even that, we need to show that φ is well-defined, a concept
which is important to understand when dealing with cosets. That φ is well-
defined means that it does not depend on the choice of the coset representative,
which means that if aH = bH, either a or b are valid coset representatives,
and it does not matter whether we choose a or b, when we apply φ, we get the
same result. Thus we have to prove that if aH = bH, then φ(aH) = φ(bH),
that is Ha−1 = Hb−1. But we know how to characterize coset equality: aH =
bH ⇐⇒ a−1b ∈ H and Ha−1 = Hb−1 ⇐⇒ a−1(b−1)−1 = a−1b ∈ H. So we
are safe and φ is well-defined.

Now we can proceed to show that φ is a bijection. To show it is injective,
suppose that φ(aH) = φ(bH), and we need to prove that aH = bH, or equiva-
lently a−1b ∈ H. Then Ha−1 = Hb−1 and since 1 ∈ H, a−1 = hb−1 for h ∈ H
and a−1b ∈ H as needed. To show that φ is surjective, we take a right coset
Ha, and we need to show there is a left coset that is mapped to it. So take the
left coset a−1H.

Example 1.12. In Example 1.11, the index [R : Z] is infinite, since there are
infinitely many cosets of Z in R.

Theorem 1.2. (Lagrange’s Theorem). If H is a subgroup of G, then |G| =
|H|[G : H]. In particular, if G is finite then |H| divides |G| and [G : H] =
|G|/|H|.

Proof. Let us start by recalling that the left cosets of H forms a partition of G,
that is

G = tgH,

where g runs through a set of representatives (one for each coset). Let us look
at the cardinality of G:

|G| = | t gH| =
∑
|gH|

since we have a disjoint union of cosets, and the sum is again over the set of
representatives. Now ∑

|gH| =
∑
|H|
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Figure 1.3: Joseph-Louis Lagrange (1736-1813)

since we have already noted that each coset contains |H| elements. We then
conclude that

|G| =
∑
|H| = [G : H]|H|.

Example 1.13. Consider G = Z, H = 3Z, then [G : H] = 3.

Of course, Lagrange did not prove Lagrange’s theorem! The modern way
of defining groups did not exist yet at his time. Lagrange was interested in
polynomial equations, and in understanding the existence and nature of the
roots (does every equation has a root? how many roots?...). What he actually
proved was that if a polynomial in n variables has its variables permuted in
all n! ways, the number of different polynomials that are obtained is always a
factor of n!. Since all the permutations of n elements are actually a group, the
number of such polynomials is actually the index in the group of permutations
of n elements of the subgroup H of permutations which preserve the polynomial.
So the size of H divides n!, which is exactly the number of all permutations of
n elements. This is indeed a particular case of what we call now Lagrange’s
Theorem.

Corollary 1.3. 1. Let G be a finite group. If a ∈ G, then |a| divides |G|. In
particular, a|G| = 1.

2. If G has prime order, then G is cyclic.

Proof. 1. If a ∈ G has order say m, then the subgroup H = {1, a, . . . , am−1}
is a cyclic subgroup of G with order |H| = m. Thus m divides |G| by the
theorem.



1.2. COSETS AND LAGRANGE’S THEOREM 13

|G| G
1 {1}
2 C2

3 C3

4 C4, C2 × C2

5 C5

Table 1.1: Groups of order from 1 to 5. Cn denotes the cyclic group of order n.

2. Since |G| is prime, we may take a 6= 1 in G, and since the order of a has
to divide |G|, we have |a| = |G|. Thus the cyclic group generated by a
coincides with G.

Example 1.14. Using Lagrange’s Theorem and its corollaries, we can already
determine the groups of order from 1 to 5, up to isomorphism (see Table 1.1).
If |G| is prime, we now know that G is cyclic.

Let us look at the case where G is of order 4. Let g ∈ G. We know that
the order of g is either 1,2 or 4. If the order of g is 1, this is the identity. If G
contains an element g of order 4, then that means that g generates the whole
group, thus G is cyclic. If now G does not contain an element of order 4, then
apart the identity, all the elements have order 2. From there, it is easy to obtain
a multiplication table for G, and see that it coincides with the one of the group

Z2 × Z2 = {(x, y) | x, y ∈ Z2}

with binary operation (x, y) + (x′, y′) = (x+x′, y+ y′). This group is called the
Klein group, and it has several interpretations, the one we already encountered
earlier is the group of isometries fixing a rectangle. We will discuss more this
idea of building new groups from known ones using the operation × in the
section on direct products.

Remark. The above example also shows that the converse of Lagrange’s Theo-
rem is not true. If we take the group G = C2 × C2, then 4 divides the order of
G, however there is no element of order 4 in G.

Once Lagrange’s Theorem and its corollaries are proven, we can easily deduce
Euler’s and Fermat’s Theorem.

Theorem 1.4. (Euler’s Theorem). If a and n are relatively prime positive
integers, with n ≥ 2, then

aϕ(n) ≡ 1 mod n.

Proof. Since a and n are relatively prime, then by Bezout identity, there exist
r, s such that 1 = ar+ns and thus ar ≡ 1 modulo n and a has an inverse modulo
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n. Now the group of invertible elements modulo n has order ϕ(n), where the
Euler function ϕ(n) by definition counts the number of positive integers less
than n that are relatively prime to n. Thus

aϕ(n) ≡ 1 mod n

by Lagrange’s Theorem first corollary.

Corollary 1.5. (Fermat’s Little Theorem). If p is a prime and a is a
positive integer not divisible by p, then

ap−1 ≡ 1 mod p.

This is particular case of Euler’s Theorem when n is a prime, since then
ϕ(n) = p− 1.

1.3 Normal subgroups and quotient group

Given a group G and a subgroup H, we have seen how to define the cosets of H,
and thanks to Lagrange’s Theorem, we already know that the number of cosets
[G : H] is related to the order of H and G by |G| = |H|[G : H]. A priori, the
set of cosets of H has no structure. We are now interested in a criterion on H
to give the set of its cosets a structure of group.

In what follows, we may write H ≤ G for H is a subgroup of G.

Definition 1.10. Let G be a group and H ≤ G. We say that H is a normal
subgroup of G, or that H is normal in G, if we have

cHc−1 = H, for all c ∈ G.

We denote it H EG, or H CG when we want to emphasize that H is a proper
subgroup of G.

The condition for a subgroup to be normal can be stated in many slightly
different ways.

Lemma 1.6. Let H ≤ G. The following are equivalent:

1. cHc−1 ⊆ H for all c ∈ G.

2. cHc−1 = H for all c ∈ G, that is cH = Hc for all c ∈ G.

3. Every left coset of H in G is also a right coset (and vice-versa, every right
coset of H in G is also a left coset).

Proof. Clearly 2. implies 1., now cHc−1 ⊆ H for all c ∈ G if and only if
cH ⊆ Hc. Let x ∈ Hc, that is x = hc for some h ∈ H, so that

x = (cc−1)hc = c(c−1hc) = ch′
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for some h′ ∈ H since cHc−1 ⊂ H for all c and thus in particular for c−1. This
shows that Hc is included in cH or equivalently that H ⊆ cHc−1.

Also 2. clearly implies 3. Now suppose that cH = Hd. This means that c
belongs to cH by definition of subgroup (H contains 1), thus c belongs to Hd
by assumption (that cH = Hd), so cd−1 ∈ H and so does its inverse dc−1. This
implies that cH = Hd(c−1c) = Hc.

Example 1.15. Let GLn(R) be the group of n×n real invertible matrices, and
let SLn(R) be the subgroup formed by matrices whose determinant is 1. Let us
see that SLn(R) CGLn(R).

For that, we have to check that ABA−1 ∈ SLn(R) for all B ∈ SLn(R) and
A ∈ GLn(R). This is clearly true since

det(ABA−1) = det(B) = 1.

Proposition 1.7. If H is normal in G, then the cosets of H form a group.

Proof. Let us first define a binary operation on the cosets: (aH, bH) 7→ (aH)(bH) =
{(ah)(bh′), ah ∈ aH, bh′ ∈ bH}. We need to check that the definition of group
is satisfied.

• closure. This is the part which asks a little bit of work. Since cH = Hc
for all c ∈ G, then

(aH)(bH) = a(Hb)H = a(bH)H = abHH = abH.

Note that this product does not depend on the choice of representatives.
Suppose indeed that aH = a′H and bH = b′H. Then (a′H)(b′H) = a′b′H
and for things to be well-defined, we need to have a′b′H = abH. Since
a′ ∈ aH, b′ ∈ bH, write a′ = ah1, b

′ = bh2 and it is enough to show that
ah1bh2 = abh3 for some h3 ∈ H, or equivalently that h1b = bh4 for some
h4 ∈ H, which is true since H is normal in G.

• Associativity comes from G being associative.

• The identity is given by the coset 1H = H.

• The inverse of the coset aH is a−1H.

Definition 1.11. The group of cosets of a normal subgroup N of G is called
the quotient group of G by N . It is denoted by G/N .

Let us finish this section by discussing some connection between normal
subgroups and homomorphisms. The first normal subgroup of interest will be
the kernel of a group homomorphism.

Recall that if f : G→ H is a group homomorphism, the kernel of f is defined
by

Ker(f) = {a ∈ G, f(a) = 1}.
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It is easy to see that Ker(f) is a normal subgroup of G. It is a subgroup of G:
take a, b ∈ Ker(f). Then to see that ab−1 ∈ Ker(f), we just need to compute
f(ab−1) = f(a)f(b)−1 = 1 and ab−1 ∈ Ker(f) which is thus a subgroup of G.
It is normal since

f(aba−1) = f(a)f(b)f(a)−1 = f(a)f(a)−1 = 1

for all b ∈ Ker(f) and all a ∈ G.

Definition 1.12. Let N EG. The group homomorphism

π : G→ G/N, a 7→ aN

is called the natural or canonical map or projection.

Recall for further usage that for f a group homomorphism, we have the
following characterization of injectivity: a homomorphism f is injective if and
only if its kernel is trivial (that is, contains only the identity element). Indeed,
suppose that f is injective. Since f is a homomorphism, then f(1) = 1. If
b ∈ Ker(f) = {a, f(a) = 1}, it must be that f(b) = 1 = f(1) but since f is
injective b = 1 and Ker(f) = {1}. Conversely, if Ker(f) = {1} and we assume
that f(a) = f(b), then

f(ab−1) = f(a)f(b)−1 = f(a)f(a)−1 = 1

and ab−1 = 1 implying that a = b and thus f is injective.

Terminology.

monomorphism=injective homomorphism

epimorphism=surjective homomorphism

isomorphism=bijective homomorphism

endomorphism=homomorphism of a group to itself

automorphism=isomorphism of a group with itself

1.4 The isomorphism theorems

This section presents different isomorphism theorems which are important tools
for proving further results. The first isomorphism theorem, that will be the
second theorem to be proven after the factor theorem, is easier to motivate,
since it will help us in computing quotient groups.

But let us first start with the so-called factor theorem. Assume that we
have a group G which contains a normal subgroup N , another group H, and
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f : G → H a group homomorphism. Let π be the canonical projection (see
Definition 1.12) from G to the quotient group G/N :

G H

G/N
?

π

-f

�
�
��
f̄

We would like to find a homomorphism f̄ : G/N → H that makes the diagram
commute, namely

f(a) = f̄(π(a))

for all a ∈ G.

Theorem 1.8. (Factor Theorem). Any homomorphism f whose kernel K
contains N can be factored through G/N . In other words, there is a unique
homomorphism f̄ : G/N → H such that f̄ ◦ π = f . Furthermore

1. f̄ is an epimorphism if and only if f is.

2. f̄ is a monomorphism if and only if K = N .

3. f̄ is an isomorphism if and only if f is an epimorphism and K = N .

Proof. Unicity. Let us start by proving that if there exists f̄ such that f̄◦π = f ,
then it is unique. Let f̃ be another homomorphism such that f̃ ◦ π = f . We
thus have that

(f̄ ◦ π)(a) = (f̃ ◦ π)(a) = f(a)

for all a ∈ G, that is
f̄(aN) = f̃(aN) = f(a).

This tells us that for all bN ∈ G/N for which there exists an element b in G
such that π(b) = bN , then its image by either f̄ or f̃ is determined by f(b).
This shows that f̄ = f̃ by surjectivity of π.

Existence. Let aN ∈ G/N such that π(a) = aN for a ∈ G. We define

f̄(aN) = f(a).

This is the most natural way to do it, however, we need to make sure that this
is indeed well-defined, in the sense that it should not depend on the choice of
the representative taken in the coset. Let us thus take another representative,
say b ∈ aN . Since a and b are in the same coset, they satisfy a−1b ∈ N ⊂ K,
where K = Ker(f) by assumption. Since a−1b ∈ K, we have f(a−1b) = 1 and
thus f(a) = f(b).

Now that f̄ is well defined, let us check this is indeed a group homomorphism.
First note that G/N is indeed a group since N EG. Then, we have

f̄(aNbN) = f̄(abN) = f(ab) = f(a)f(b) = f̄(aN)f̄(bN)

and f̄ is a homomorphism.
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1. The fact that f̄ is an epimorphism if and only if f is comes from the fact
that both maps have the same image.

2. First note that the statement f̄ is a monomorphism if and only if K = N
makes sense since K = Ker(f) is indeed a normal subgroup, as proved
earlier.

To show that f̄ is a monomorphism is equivalent to show that Ker(f̄) is
trivial. By definition, we have

Ker(f̄) = {aN ∈ G/N, f̄(aN) = 1}
= {aN ∈ G/N, f̄(π(a)) = f(a) = 1}
= {aN ∈ G/N, a ∈ K = Ker(f)}.

So the kernel of f̄ is exactly those cosets of the form aN with a ∈ K, but
for the kernel to be trivial, we need it to be equal to N , that is we need
K = N .

3. This is just a combination of the first two parts.

We are now ready to state the first isomorphism theorem.

Theorem 1.9. (1st Isomorphism Theorem). If f : G→ H is a homomor-
phism with kernel K, then the image of f is isomorphic to G/K:

Im(f) ' G/Ker(f).

Proof. We know from the Factor Theorem that

f̄ : G/Ker(f)→ H

is an isomorphism if and only if f is an epimorphism, and clearly f is an epi-
morphism on its image, which concludes the proof.

Example 1.16. We have seen in Example 1.15 that SLn(R) CGLn(R). Con-
sider the map

det : GLn(R)→ (R∗, ·),

which is a group homomorphism. We have that Ker(det) = SLn(R). The 1st
Isomorphism Theorem tells that

Im(det) ' GLn(R)/SLn(R).

It is clear that det is surjective, since for all a ∈ R∗, one can take the diagonal
matrix with all entries at 1, but one which is a. Thus we conclude that

R∗ ' GLn(R)/SLn(R).

Let us state the second and third isomorphism theorem.
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Theorem 1.10. (2nd Isomorphism Theorem). If H and N are subgroups
of G, with N normal in G, then

H/(H ∩N) ' HN/N.

There are many things to discuss about the statement of this theorem.

• First we need to check that HN is indeed a subgroup of G. To show that,
notice that HN = NH since N is a normal subgroup of G. This implies
that for hn ∈ HN , its inverse (hn)−1 = n−1h−1 ∈ G actually lives in HN ,
and so does the product (hn)(h′n′) = h(nh′)n′.

• Note that by writing HN/N , we insist on the fact that there is no reason
for N to be a subgroup of H. On the other hand, N is a normal subgroup
of HN , since for all hn ∈ HN , we have

hnNn−1h−1 = hNh−1 ⊆ N

since N is normal in G.

• We now know that the right hand side of the isomorphism is a quotient
group. In order to see that so is the left hand side, we need to show that
H ∩N is a normal subgroup of H. This comes by noticing that H ∩N is
the kernel of the map φ : H → HN/N such that φ(h) = hN . We repeat
that N is a subgroup of HN , not necessarily of H. Then ker(φ) = {h ∈
H, φ(h) = 1} = {h ∈ H, hN = N} = {h ∈ H, h ∈ N} = H ∩N .

Now that all these remarks have been done, it is not difficult to see that the
2nd Isomorphism Theorem follows from the 1st Isomorphism Theorem. The
map φ : H → HN/N such that φ(h) = hN is a group homomorphism: φ(hh′) =
hh′N = (hN)(h′N) = φ(h)φ(h′) whose kernel is H∩K. So the 1st Isomorphism
Theorem tells us that Im(φ) ' H/(H ∩N). We just need to then show that φ
is surjective. So consider the coset hnN ∈ HN/N . Since hnN = hN = φ(h), φ
is surjective and the theorem is proven.

Example 1.17. Let G be the group Z of integers with addition, let H =
aZ = {. . . ,−2a, a,−0, a, 2a, . . .} and N = bZ = {. . . ,−2b, b,−0, b, 2b, . . .} be
two cyclic subgroups of G, for a, b positive integers. Both are normal subgroups
since G is abelian. We have

H ∩N = {g ∈ G, g = ma = m′b, m,m′ ∈ Z} = lcm(a, b)Z.

Also (in additive notation)

H+N = {g ∈ G, g = ma+m′b = gcd(a, b)(ma′+m′b′), m,m′ ∈ Z} = gcd(a, b)Z.

Thus
H/(H ∩N) = aZ/lcm(a, b)Z ' H +N/N = gcd(a, b)Z/bZ.

This proves
aZ/lcm(a, b)Z ' gcd(a, b)Z/bZ.

In particular we recover the known fact that a · b = lcm(a, b) gcd(a, b).
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Theorem 1.11. (3rd Isomorphism Theorem). If N and H are normal
subgroups of G, with N contained in H, then

G/H ' (G/N)/(H/N).

The proof is given in Exercise 19.

Example 1.18. We have

(Z/12Z)/(6Z/12Z) ' Z/6Z.

1.5 Direct and semi-direct products

So far, we have seen how given a group G, we can get smaller groups, such as
subgroups of G or quotient groups. We will now do the other way round, that
is, starting with a collection of groups, we want to build larger new groups.

Let us start with two groups H and K, and let G = H ×K be the cartesian
product of H and K, that is

G = {(h, k), h ∈ H, k ∈ K}.

We define a binary operation on this set by doing componentwise multiplication
(or addition if the binary operations of H and K are denoted additively) on G:

(h1, k1)(h2, k2) = (h1h2, k1k2) ∈ H ×K.

Clearly G is closed under multiplication, its operation is associative (since both
operations on H and K are), it has an identity element given by 1G = (1H , 1K)
and the inverse of (h, k) is (h−1, k−1). In summary, G is a group.

Definition 1.13. Let H, K be two groups. The group G = H×K with binary
operation defined componentwise as described above is called the external direct
product of H and K.

Examples 1.19. 1. Let Z2 be the group of integers modulo 2. We can
build a direct product of Z2 with itself, namely Z2×Z2 with additive law
componentwise. This is actually the Klein group, also written C2 × C2.
This group is not isomorphic to Z4!

2. Let Z2 be the group of integers modulo 2, and Z3 be the group of integers
modulo 3. We can build a direct product of Z2 and Z3, namely Z2 × Z3

with additive law componentwise. This group is actually isomorphic to
Z6!

3. The group (R,+)×(R,+) with componentwise addition is a direct product.

Note that G contains isomorphic copies H̄ and K̄ of respectively H and K,
given by

H̄ = {(h, 1K), h ∈ H}, K̄ = {(1H , k), k ∈ K},
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which furthermore are normal subgroups of G. Let us for example see that H̄
is normal in G. By definition, we need to check that

(h, k)H̄(h−1, k−1) ⊆ H̄, (h, k) ∈ G.

Let (h′, 1K) ∈ H̄, we compute that

(h, k)(h′, 1k)(h−1, k−1) = (hh′h−1, 1k) ∈ H̄,

since hh′h−1 ∈ H. The same computation holds for K̄.
If we gather what we know about G, H̄ and K̄, we get that

• by definition, G = H̄K̄ and H̄ ∩ K̄ = {1G},

• by what we have just proved, H̄ and K̄ are two normal subgroups of G.

This motivates the following definition.

Definition 1.14. If a group G contains normal subgroups H and K such that
G = HK and H ∩K = {1G}, we say that G is the internal direct product of H
and K.

Examples 1.20. 1. Consider the Klein group Z2 × Z2, it contains the two
subgroups H = {(h, 0), h ∈ Z2} and K = {(0, k), k ∈ Z2}. We have that
both H and K are normal, because the Klein group is commutative. We
also have that H ∩K = {(0, 0)}, and that HK = {(h, 0) + (0, k), h, k ∈
Z2} = {(h, k), h, k ∈ Z2} = Z2 × Z2 so the Klein group is indeed an
internal direct product. On the other hand, Z4 only contains as subgroup
H = {0, 2}, so it is not an internal direct product!

2. Consider the group Z2×Z3, it contains the two subgroupsH = {(h, 0), h ∈
Z2} and K = {(0, k), k ∈ Z3}. We have that both H and K are normal,
because the group is commutative. We also have that H ∩K = {(0, 0)},
and that HK = {(h, 0) + (0, k), h ∈ Z2, k ∈ Z3} = {(h, k), h ∈ Z2, k ∈
Z3} = Z2×Z3 so this group is indeed an internal direct product. Also Z6

contains the two subgroups H = {0, 3} ' Z2 and K = {0, 2, 4} ' Z3. We
have that both H and K are normal, because the group is commutative.
We also have that H ∩ K = {0}, and that HK = {h + k, h ∈ H, k ∈
K} = Z6 so this group is indeed an internal direct product, namely the
internal product of Z2 and Z3. This is in fact showing that Z6 ' Z2×Z3.

The next result makes explicit the connection between internal and external
products.

Proposition 1.12. If G is the internal direct product of H and K, then G is
isomorphic to the external direct product H ×K.

Proof. To show that G is isomorphic to H ×K, we define the following map

f : H ×K → G, f(h, k) = hk.
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First remark that if h ∈ H and k ∈ K, then hk = kh. Indeed, we have using
that both K and H are normal that

(hkh−1)k−1 ∈ K, h(kh−1k−1) ∈ H

implying that
hkh−1k−1 ∈ K ∩H = {1}.

We are now ready to prove that f is a group isomorphism.

1. This is a group homomorphism since

f((h, k)(h′, k′)) = f(hh′, kk′) = h(h′k)k′ = h(kh′)k′ = f(h, k)f(h′, k′).

2. The map f is injective. This can be seen by checking that its kernel is
trivial. Indeed, if f(h, k) = 1 then

hk = 1⇒ h = k−1 ⇒ h ∈ K ⇒ h ∈ H ∩K = {1}.

We have then that h = k = 1 which proves that the kernel is {(1, 1)}.

3. The map f is surjective since by definition G = HK.

Note that the definitions of external and internal product are surely not re-
stricted to two groups. One can in general define them for n groups H1, . . . ,Hn.
Namely

Definition 1.15. If H1, . . . ,Hn are arbitrary groups, the external direct prod-
uct of H1, . . . ,Hn is the cartesian product

G = H1 ×H2 × · · · ×Hn

with componentwise multiplication.
If G contains normal subgroups H1, . . . ,Hn such that G = H1 · · ·Hn and

each g can be represented as h1 · · ·hn uniquely, we say that G is the internal
direct product of H1, . . . ,Hn.

We can see a slight difference in the definition of internal product, since
in the case of two subgroups, the condition given was not that each g can
be represented uniquely as h1h2, but instead that the intersection of the two
subgroups is {1}, from which the unique representation is derived (see Exercise
20).

Let us get back to the case of two groups. We have seen above that we can
endow the cartesian product of two groups H and K with a group structure by
considering componentwise binary operation

(h1, k1)(h2, k2) = (h1h2, k1k2) ∈ H ×K.
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The choice of this binary operation of course determines the structure of G =
H × K, and in particular we have seen that the isomorphic copies of H and
K in G are normal subgroups. Conversely in order to define an internal direct
product, we need to assume that we have two normal subgroups.

We now consider a more general setting, where the subgroup K does not
have to be normal (and will not be in general), for which we need to define a
new binary operation on the cartesian product H ×K. This will lead us to the
definition of internal and external semi-direct product.

Recall that an automorphism of a group H is a bijective group homomor-
phism from H to H. It is easy to see that the set of automorphisms of H forms a
group with respect to the composition of maps and identity element the identity
map IdH . We denote it by Aut(H).

Proposition 1.13. Let H and K be groups, and let

ρ : K → Aut(H), k 7→ ρk

be a group homomorphism. Then the binary operation

(H ×K)× (H ×K)→ (H ×K), ((h, k), (h′, k′)) 7→ (hρk(h′), kk′)

endows H ×K with a group structure, with identity element (1, 1).

Proof. First notice that the closure property is satisfied.
(Identity). Let us show that (1, 1) is the identity element. We have

(h, k)(1, 1) = (hρk(1), k) = (h, k)

for all h ∈ H, k ∈ K, since ρk is a group homomorphism. We also have

(1, 1)(h′, k′) = (ρ1(h′), k′) = (h′, k′)

for all h′ ∈ H, k′ ∈ K, since ρ being a group homomorphism, it maps 1K to
1Aut(K) = IdH .

(Inverse). Let (h, k) ∈ H ×K and let us show that (ρ−1
k (h−1), k−1) is the

inverse of (h, k). We have

(h, k)(ρ−1
k (h−1), k−1) = (hρk(ρ−1

k (h−1)), 1) = (hh−1, 1) = (1, 1).

We also have

(ρ−1
k (h−1), k−1)(h, k) = (ρ−1

k (h−1)ρk−1(h), 1)

= (ρk−1(h−1)ρk−1(h), 1)

using that ρ−1
k = ρk−1 since ρ is a group homomorphism. Now

(ρk−1(h−1)ρk−1(h), 1) = (ρk−1(h−1h), 1) = (ρk−1(1), 1) = (1, 1)

using that ρk−1 is a group homomorphism for all k ∈ K.
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Associativity. This is the last thing to check. On the one hand, we have

[(h, k)(h′, k′)](h′′, k′′) = (hρk(h′), kk′)(h′′, k′′)

= (hρk(h′)ρkk′(h
′′), (kk′)k′′),

while on the other hand

(h, k)[(h′, k′)(h′′, k′′)] = (h, k)(h′ρk′(h
′′), k′k′′)

= (hρk(h′ρk′(h
′′)), k(k′k′′)).

Since K is a group, we have (kk′)k′′ = k(k′k′′). We now look at the first
component. Note that ρkk′ = ρk ◦ ρk′ using that ρ is a group homomorphism,
so that

hρk(h′)ρkk′(h
′′) = hρk(h′)ρk(ρk′(h

′′)).

Furthermore, ρk is a group homomorphism, yielding

hρk(h′)ρk(ρk′(h
′′)) = hρk(h′ρk′(h

′′))

which concludes the proof.

We are now ready to define the first semi-direct product.

Definition 1.16. Let H and K be two groups, and let

ρ : K → Aut(H)

be a group homomorphism. The set H ×K endowed with the binary operation

((h, k), (h′, k′)) 7→ (hρk(h′), kk′)

is a group G called an external semi-direct product of H and K by ρ, denoted
by G = H ×ρ K.

Example 1.21. Let us consider the group Z2 of integers modulo 2. Suppose
we want to compute the semi-direct product of Z2 with itself, then we need to
first determine Aut(Z2). Since an automorphism of Z2 must send 0 to 0, it has
no other choice than send 1 to 1, and thus Aut(Z2) is only the identity map Id.
Since Id = ρ(a+ b) = ρ(a)◦ρ(b) = Id for a, b ∈ Z2, ρ is a group homomorphism
and we get the direct product of Z2 with itself, not a semi-direct product. To
have a bigger automorphism group, let us consider H = Z3. In that case, apart
the identity map, we also have the map x 7→ x−1, that is 0 7→ 0, 1 7→ 2, 2 7→ 1.
Thus ρ(0) = ρ0 is the identity, ρ(1) = ρ1 is the inverse map, ρ is indeed a group
homomorphism since it sends the element of order 2 in K to the element of order
2 in Aut(Z2) and we can form the external semi-direct product G = Z3 ×ρ Z2.

In fact, this example holds for Zn, n ≥ 3.
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Example 1.22. Let H = Zn be the group of integers mod n, K = Z2 be the
group of integers mod 2, and let ρ : K → Aut(H) be the homomorphism that
sends 0 to the identity, and 1 to the inverse map of H, given by x 7→ x−1, which
is indeed a group homomorphism of H since H is abelian. Since the subgroup
of Aut(H) generated by the inverse map is of order 2, it is isomorphic to K.
We can thus define the external semi-direct product G = Zn ×ρ Z2. Note that
Aut(H) ' Z∗n, this is because an automorphism f of H = Zn must send 0 to 0,
but since H = 〈1〉, it is enough to decide where 1 is sent to completely determine
f , since by definition of group homomorphism, f(m) = mf(1). Now f(1) can
be any element of order n, and for an element m to be of order n, m must be
coprime to n.

We can make observations similar to what we did for direct products. Namely,
we can identify two isomorphic copies H̄ and K̄ of respectively H and K, given
by

H̄ = {(h, 1K), h ∈ H}, K̄ = {(1H , k), k ∈ K},

and look at the properties of these subgroups.

• The subgroup H̄ = {(h, 1), h ∈ H} is normal in H×ρK. Indeed, we have
that to see that (h, k)H̄(ρ−1

k (h−1), k−1) ∈ H̄. So (h, k)(h′, 1)(ρ−1
k (h−1), k−1) =

(hρk(h′), k)(ρ−1
k (h−1), k−1) = (hρk(h′)h−1, 1) which belongs to H̄ as de-

sired. The same calculation does not work for K̄. We have that

(h, k)(1, k′)(ρ−1
k (h−1), k−1) = (hρk(1), kk′)(ρ−1

k (h−1), k−1) = (hρk(1)ρkk′ρ
−1
k (h−1), kk′k−1).

Since ρk is a group homomorphism which maps 1 to 1, we have that
hρk(1)ρkk′ρ

−1
k (h−1) = hρkk′ρ

−1
k (h−1) but we still cannot conclude it is 1

(apart of course in the particular case where ρk is the identity map for all
k, but then, we have a direct product, for which we already know that K̄
is normal in H ×K).

• We have H̄K̄ = H ×ρ K, since every element (h, k) ∈ H ×ρ K can be
written as (h, 1)(1, k) (indeed (h, 1)(1, k) = (hρ1(1), k) = (h, k)).

• We have H̄ ∩ K̄ = {1G}.

This motivates the definition of internal semi-direct products.

Definition 1.17. Let G be a group with subgroups H and K. We say that G
is the internal semi-direct product of H and K if H is a normal subgroup of G,
such that HK = G and H ∩K = {1G}. It is denoted by

G = H oK.

Example 1.23. The dihedral group Dn is the group of all reflections and ro-
tations of a regular polygon with n vertices centered at the origin. It has order
2n. Let a be a rotation of angle 2π/n and let b be a reflection. We have that

Dn = {aibj , 0 ≤ i ≤ n− 1, j = 0, 1},
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with
an = b2 = (ba)2 = 1.

We thus have that 〈a〉 = Cn and 〈b〉 = C2, where Cn denotes the cyclic group
of order n.

The geometric interpretation of Dn as symmetries of a regular polygon with
n vertices holds for n ≥ 3, however, note that when n = 2, we can still look
at the relations defined above: we then have a2 = b2 = (ba)2 = 1, thus D2

contains only 4 elements, the identity and 3 elements of order 2, showing that
it is isomorphic to the Klein group C2 × C2.

To prove, for n ≥ 3, that

Dn ' Cn o C2,

we are left to check that 〈a〉∩〈b〉 = {1} and that 〈a〉 is normal in Dn. The former
can be seen geometrically (a reflection cannot be obtained by possibly successive
rotations of angle 2π/n, n ≥ 3). For the latter, the fastest way is to use the fact
that a subgroup of index 2 is normal (see Exercise 12). Alternatively, we can
do it by hand: we first show that

bab−1 ∈ 〈a〉,

which can be easily checked, since (ba)2 = baba = 1, thus bab = a−1 = bab−1

using that b2 = 1. This also shows that ba = a−1b from which we have:

ba2b−1 = baab−1 = a−1(bab−1) ∈ 〈a〉,

similarly
ba3b−1 = baa2b−1 = a−1(ba2b−1) ∈ 〈a〉.

Again similarly to the case of direct products, these assumptions guarantee
that we can write uniquely elements of the internal semi-direct product. Let us
repeat things explicitly.

The internal and external direct products were two sides of the same objects,
so are the internal and external semi-direct products. If G = H ×ρ K is the
external semi-direct product of H and K, then H̄ = H × {1} is a normal
subgroup of G and it is clear that G is the internal semi-direct product of
H × {1} and {1} ×K. This reasoning allows us to go from external to internal
semi-direct products. The result below goes in the other direction, from internal
to external semi-direct products.

Proposition 1.14. Suppose that G is a group with subgroups H and K, and
G is the internal semi-direct product of H and K. Then G ' H ×ρ K where
ρ : K → Aut(H) is given by ρk(h) = khk−1, k ∈ K, h ∈ H.

Proof. Note that ρk belongs to Aut(H) since H is normal.
By Exercise 20, every element g of G can be written uniquely in the form

hk, with h ∈ H and k ∈ K. Therefore, the map

ϕ : H ×ρ K → G, ϕ(h, k) = hk
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is a bijection. It only remains to show that this bijection is a homomorphism.
Given (h, k) and (h′, k′) in H ×ρ K, we have

ϕ((h, k)(h′, k′)) = ϕ((hρk(h′), kk′)) = ϕ(hkh′k−1, kk′) = hkh′k′ = ϕ(h, k)ϕ(h′, k′).

Therefore ϕ is a group isomorphism, which concludes the proof.

In words, we have that every internal semi-direct product is isomorphic to
some external semi-direct product, where ρ is the conjugation.

Example 1.24. Consider the dihedral group Dn from the previous example:

Dn ' Cn o C2.

According to the above proposition, Dn is isomorphic to an external semi-direct
product

Dn ' Cn ×ρ C2,

where
ρ : C2 → Aut(Cn),

maps to the conjugation in Aut(Cn). We have explicitly that

1 7→ ρ1 = IdCn , b 7→ ρb, ρb(a) = bab−1 = a−1,

since (ba)2 = baba = 1⇒ bab = a−1 ⇒ bab−1 = a−1. Similarly, since ba = a−1b,
ba2a = baab = a−1bab = a−2. In fact, we are back to Example 1.22!

Before finishing this section, note the following distinction: the external
(semi-)direct product of groups allows to construct new groups starting from
different abstract groups, while the internal (semi-)direct product helps in ana-
lyzing the structure of a given group.

Example 1.25. Thanks to the new structures we have seen in this section,
we can go on our investigation of groups of small orders. We can get two new
groups of order 6 and 4 of order 8:

• C3 ×C2 is the direct product of C3 and C2. You may want to check that
it is actually isomorphic to C6.

• The dihedral group D3 = C3 o C2 is the semi-direct product of C3 and
C2. We get similarly D4 = C4 o C2.

• The direct product C4 × C2 and the direct product of the Klein group
C2 × C2 with C2.

The table actually gives an exact classification of groups of small order (ex-
cept the missing non-abelian quaternion group of order 8), though we have not
proven it. The reason why the quaternion group of order 8 is missing is exactly
because it cannot be written as a semi-direct product of smaller groups (see
Exercises).
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|G| G abelian G non-abelian
1 {1} -
2 C2 -
3 C3 -
4 C4, C2 × C2 -
5 C5 -
6 C6 = C3 × C2 D3 = C3 o C2

7 C7 -
8 C8, C4 × C2, C2 × C2 × C2 D4 = C4 o C2

Table 1.2: Cn denotes the cyclic group of order n, Dn the dihedral group

1.6 Group action

Since we introduced the definition of group as a set with a binary operation
which is closed, we have been computing things internally, that is inside a group
structure. This was the case even when considering cartesian products of groups,
where the first thing we did was to endow this set with a group structure.

In this section, we wonder what happens if we have a group and a set, which
may or may not have a group structure. We will define a group action, that is a
way to do computations with two objects, one with a group law, not the other
one.

Definition 1.18. The group G acts on the set X if for all g ∈ G, there is a
map

G×X → X, (g, x) 7→ g · x
such that

1. h · (g · x) = (hg) · x for all g, h ∈ G, for all x ∈ X.

2. 1 · x = x for all x ∈ X.

The first condition says that we have two laws, the group law between ele-
ments of the group, and the action of the group on the set, which are compatible.

Examples 1.26. Let us consider two examples where a group G acts on itself.

1. Every group acts on itself by left multiplication. This is called the regular
action.

2. Every group acts on itself by conjugation. Let us write this action as

g · x = gxg−1.

Let us check the action is actually well defined. First, we have that

h · (g · x) = h · (gxg−1) = hgxg−1h−1 = (hg)xg−1h−1 = (hg) · x.

As for the identity, we get

1 · x = 1x1−1 = x.
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Similarly to the notion of kernel for a homomorphism, we can define the
kernel of an action.

Definition 1.19. The kernel of an action G ×X → X, (g, x) 7→ g · x is given
by

Ker = {g ∈ G, g · x = x for all x}.

This is the set of elements of G that fix everything in X. When the group G
acts on itself, that is X = G and the action is the conjugation, we have

Ker = {g ∈ G, gxg−1 = x for all x} = {g ∈ G, gx = xg for all x}.

This is called the center of G, denoted by Z(G).

Definition 1.20. Suppose that a group G acts on a set X. The orbit Orb(x)
of x under the action of G is defined by

Orb(x) = {g · x, g ∈ G}.

This means that we fix an element x ∈ X, and then we let g act on x when g
runs through all the elements of G. By the definition of an action, g · x belongs
to X, so the orbit gives a subset of X.

It is important to notice that orbits partition X. Clearly, one has that
X = ∪x∈XOrb(x). But now, assume that one element x of X belongs to two
orbits Orb(y) and Orb(z), then it means that x = g · y = g′ · z, which in turn
implies, due to the fact that G is a group, that

y = g−1g′ · z, z = (g′)−1g · y.

In words, that means that y belongs to the orbit of z, and vice-versa, z be-
longs to the orbit of y, and thus Orb(y) = Orb(z). We can then pick a set of
representatives for each orbit, and write that

X = tOrb(x),

where the disjoint union is taken over a set of representatives.

Definition 1.21. Suppose that a group G acts on a set X. We say that the
action is transitive, or that G acts transitively on X if there is only one orbit,
namely, for all x, y ∈ X, there exists g ∈ G such that g · x = y.

Definition 1.22. The stabilizer of an element x ∈ X under the action of G is
defined by

Stab(x) = {g ∈ G, g · x = x}.

Given x, the stabilizer Stab(x) is the set of elements of G that leave x
fixed. One may check that this is a subgroup of G. We have to check that if
g, h ∈ Stab(x), then gh−1 ∈ Stab(x). Now

(gh−1) · x = g · (h−1 · x)
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by definition of action. Since h ∈ Stab(x), we have h · x = x or equivalently
x = h−1 · x, so that

g · (h−1 · x) = g · x = x,

which shows that Stab(x) is a subgroup of G.

Examples 1.27. 1. The regular action (see the previous example) is tran-
sitive, and for all x ∈ X = G, we have Stab(x) = {1}, since x is invertible
and we can multiply g · x = x by x−1.

2. Let us consider the action by conjugation, which is again an action of G
on itself (X = G): g ·x = gxg−1. The action has no reason to be transitive
in general, and for all x ∈ X = G, the orbit of x is given by

Orb(x) = {gxg−1, g ∈ G}.

This is called the conjugacy class of x. Let us now consider the stabilizer
of an element x ∈ X:

Stab(x) = {g ∈ G, gxg−1 = x} = {g ∈ G, gx = xg},

which is the centralizer of x, that we denote by CG(x). Note that we can
define similarly the centralizer CG(S) where S is an arbitrary subset of
G as the set of elements of G which commute with everything in S. The
two extreme cases are: if S = {x}, we get the centralizer of one element,
if S = G, we get the center Z(G).

3. An (n, k)-necklace is an equivalence class of words of length n over an
alphabet of size k, where two words are considered equivalent if one is
obtained as a shift of the other (modulo n, that is for example GGRR ≡
RGGR ≡ RRGG ≡ GRRG). We represent these words as necklaces, that
is n beads, positioned as the vertices of a regular n-gon, each of the beads
can be of k colors. Counting (n, k)-necklaces thus means, given n and
k, to count how many orbits of X (the set of words of length n over an
alphabet of size k) under the action of Cn. Suppose n = 4 and k = 2
as above. Let us try to count how many necklaces with 4 beads and two
colors there are. We have necklaces with a single color, these give us two
orbits, each orbit contains a single element.

G

G

G

G

B

B

B

B

Then we have necklaces with only one blue bead, and those with only
one green bead, and their respective rotations which are not counted as
different necklaces, that is we have two orbits, each containing 4 elements:
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G

B

B

B

B

G

G

G

Then we have necklaces with exactly two beads of each color, which could
be contiguous or not. Thus we have 2 more orbits, the first one with 2
elements, the second one with 4 elements.

G

B

G

B

B

B

G

G

This gives us a total of 6 necklaces. We observe that the 24 words of length
4 over an alphabet of length 2 are partitioned into these 6 orbits.

Theorem 1.15. (The Orbit-Stabilizer Theorem). Suppose that a group
G acts on a set X. Let Orb(x) be the orbit of x ∈ X, and let Stab(x) be the
stabilizer of x. Then the size of the orbit is the index of the stabilizer, that is

|Orb(x)| = [G : Stab(x)].

If G is finite, then
|Orb(x)| = |G|/|Stab(x)|.

In particular, the size of an orbit divides the order of the group.

Proof. Fix x ∈ X, consider Orb(x), the orbit of x, which contains the elements
g1 · x, . . . , gn · x for G = {g1, . . . , gn}. Look at g1 · x, and gather all the gi · x
such that gi · x = g1 · x, and call A1 the set that contains all the gi. Do the
same process with g2 · x (assuming g2 is not already included in A1), to obtain
a set A2, and iterate until all elements of G are considered. This creates m sets
A1, . . . , Am, which are in fact equivalence classes for the equivalence relation
∼ defined on G by g ∼ h ⇐⇒ g · x = h · x. We have m = |Orb(x)|, since
there is a distinct equivalence class for each distinct g · x in the orbit, and since
A1, . . . , Am partition G

|G| =
m∑
i=1

|Ai|.

Now |Ai| = |Stab(x)| for all i. Indeed, fix i and g ∈ Ai. Then

h ∈ Ai ⇐⇒ g·x = h·x ⇐⇒ x = g−1h·x ⇐⇒ g−1h ∈ Stab(x) ⇐⇒ h ∈ gStab(x).

This shows that |Ai| = |gStab(x)| = |Stab(x)|, the last equality being a conse-
quence of g being invertible.
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Thus

|G| =
m∑
i=1

|Ai| = m|Stab(x)| = |Orb(x)||Stab(x)| ⇒ |Orb(x)| = |G|
|Stab(x)|

.

Example 1.28. For n = 4 and k = 2, we considered the 4 rotations (by π/2, π,
3π/2 and the identity, denoted by g, g2, g3, g4 = 1). Then consider the ornament
x

G

B

G

B

on which we apply the 4 rotations, starting from the identity, to get the
following orbit, formed of x, g · x, g2 · x, g3 · x:

G

B

G

B

B

G

B

G

G

B

G

B

B

G

B

G

Then Stab(x) is given by g2 and g4 = 1, and |Stab(x)| = 2 = |G|
|Orb(x)| since

the orbit contains only 2 distinct colorings.
The same example can be used to illustrate the proof of the Orbit-Stabilizer

Theorem. Let us look again at these 4 ornaments, given by x, g · x, g2 · x, g3 · x.
Since x and g2 ·x give the same coloring, group 1, g2 into a set A1, and since g ·x
and g3·x give the same coloring, group g, g3 into a set A2. Then |G| = |A1|+|A2|.
We also see that A1 is actually the stabilizer of x, and that A2 is gStab(x), thus
|A1| = |A2| = |Stab(x)|, and the number of Ai is the number of distinct colorings
in Orb(x), so |G| = 2|Stab(x)| = |Orb(x)||Stab(x)|.

Let G be a finite group. We consider again as action the conjugation (X =
G), given by: g · x = gxg−1. Recall that orbits under this action are given by

Orb(x) = {gxg−1, g ∈ G}.

Let us notice that x always is in its orbit Orb(x) (take g = 1). Thus if we have
an orbit of size 1, this means that

gxg−1 = x ⇐⇒ gx = xg

and we get an element x in the center Z(G) of G. In words, elements that have
an orbit of size 1 under the action by conjugation are elements of the center.
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Recall that the orbits Orb(x) partition X:

X = tOrb(x)

where the disjoint union is over a set of representatives. We get

|G| =
∑
|Orb(x)|

= |Z(G)|+
∑
|Orb(x)|

= |Z(G)|+
∑

[G : Stab(x)],

where the second equality comes by splitting the sum between orbits with 1
element and orbits with at least 2 elements, while the third follows from the
Orbit-Stabilizer Theorem. By remembering that Stab(x) = CG(x) when the
action is the conjugation, we can alternatively write

|G| = |Z(G)|+
∑

[G : CG(x)].

This formula is called the class equation.

Example 1.29. Consider the dihedral D4 of order 8, given by

D4 = {1, s, r, r2, r3, rs, r2s, r3s},

with s2 = 1, r4 = 1 and srs = r−1. We have that the center Z(D4) of D4 is
{1, r2} (just check that r2s = sr2). There are three conjugacy classes given by

{r, r3}, {rs, r3s}, {s, r2s}.

Thus

|D4| = 8 = |Z(D4)|+ |Orb(r)|+ |Orb(rs)|+ |Orb(s)|.

The following result has many names: Burnside’s lemma, Burnside’s count-
ing theorem, the Cauchy-Frobenius lemma or the orbit-counting theorem. This
result is not due to Burnside himself, who only quoted it. It is attributed to
Frobenius.

Theorem 1.16. (Orbit-Counting Theorem). Let the finite group G act on
the finite set X, and denote by Xg the set of elements of X that are fixed by g,
that is Xg = {x ∈ X, g · x = x}. Then

number of orbits =
1

|G|
∑
g∈G
|Xg|,

that is the number of orbits is the average number of points left fixed by elements
of G.
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Proof. We have

∑
g∈G
|Xg| = |{(g, x) ∈ G×X, g · x = x}|

=
∑
x∈X
|Stab(x)|

=
∑
x∈X
|G|/|Orb(x)|

by the Orbit-Stabilizer Theorem. We go on:

∑
x∈X
|G|/|Orb(x)| = |G|

∑
x∈X

1/|Orb(x)|

= |G|
∑

B∈ set of orbits

∑
x∈B

1

|B|

= |G|
∑

B∈ set of orbits

1

which concludes the proof. Note that the second equality comes from the fact
that we can write X as a disjoint union of orbits.

Example 1.30. Suppose we want to count (n, k)-necklaces, with n = 6 and
k = 2. The group action on X is C6, it has a generator g, which in cycle notation
(g is understood as a permutation) is g = (1, 2, 3, 4, 5, 6). Then

g2 = (135)(246)

g3 = (14)(25)(36)

g4 = (153)(264)

g5 = (165432)

g6 = (1)(2)(3)(4)(5)(6)

and we need to compute Xgi for each i, that is we want ornaments which
are invariant under rotation by gi. Now g fixes only 2 words, BBBBBB and
GGGGGG, so |Xg| = 2. Then g2 fixes words with the same color in position
1,3,5 and in position 2,4,6, these are BBBBBB, GGGGGG, BGBGBG and
GBGBGB (yes, the last two are obtained by rotation of each other, but re-
member that there is also an average by the number of elements of the group
in the final formula), so |Xg2 | = 4. We observe in fact that within one cycle,
all the beads have to be of the same color, thus what matters is the number of
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cycles. Once this observation is made, we can easily compute:

g = (123456) |Xg| = 21

g2 = (135)(246) |Xg2 | = 22

g3 = (14)(25)(36) |Xg3 | = 23

g4 = (153)(264) |Xg4 | = 22

g5 = (165432) |Xg5 | = 21

g6 = (1)(2)(3)(4)(5)(6) |Xg6 | = 26

and we see that the number of necklaces is

1

6
(2 + 22 + 23 + 22 + 2 + 26) = 14.

We can also check what we actually find 14 necklaces:

• BBBBBB and GGGGGG,

• GBBBBB and BGGGGG,

• GGBBBB, GBGBBB, GBBGBB, and the same pattern with reversed
colors, BBGGGG, BGBGGG, BGGBGG,

• GGGBBB, GGBGBB, GGBBGB, GBGBGB (note that the reversed
colors do not give anything new up to rotation).

The above example shows that the number k of colors does not play a role
but for being the basis of the exponents, so for n = 6 beads in general, we have

g = (123456) |Xg| = k

g2 = (135)(246) |Xg2 | = k2

g3 = (14)(25)(36) |Xg3 | = k3

g4 = (153)(264) |Xg4 | = k2

g5 = (165432) |Xg5 | = k

g6 = (1)(2)(3)(4)(5)(6) |Xg6 | = k6

and we see that the number of necklaces is

1

6
(2k + 2k2 + k3 + k6).

1.7 Classification of abelian groups

We have seen examples of small abelian groups: Cn, for n some positive integer,
C2 × C2, C2 × C2 × C2, to name a few. We will in this section that actually
all abelian groups look like that. In other words, the classification theorem for
finite groups goes as follows:
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Theorem 1.17. Any finite abelian group is a direct product of cyclic subgroups
of prime-power order.

In the context of abelian groups, direct product is also sometimes referred
to as direct sum.

To see how the proof goes, we will need an abelian version of the so-called
Cauchy Theorem.

Theorem 1.18. If G is a finite abelian group, and p is a prime such that p||G|,
then G contains an element of order p.

The standard Cauchy Theorem does not need the assumption that G is
abelian.

Proof. Write |G| = n = pe11 · · · p
ek
k for p1, . . . , pk distinct primes, and define

P (n) = e1 + . . .+ek. We will provide a proof by induction on P (n). If P (n) = 1,
then G has prime order, therefore it is a cyclic group of order p, with generator
of order p, and we are done.

Suppose the statement true for groups H such that P (|H|) < P (n). Take
g ∈ G, g 6= 0.

• If p divides |g|, then |g| = pm, for some m, and take gm (we use the
multiplicative notation even though G is abelian). Then it has order p,
and we are done.

• If p does not divide |g|, set m = |g|, then 〈g〉 is a normal subgroup of G
(recall that G is abelian), of order m by definition, and P (|G/〈g〉|) < P (n).
Notice that p||G/〈g〉| = |G|/|〈g〉| since p divides |G| but not |g|. We can
thus use our induction hypothesis, and claim that there is an element h〈g〉
of order p in the quotient group G/〈g〉. But then, p = |h〈g〉| divides |h|
(see Exercise 34), and |h| = pl for some l, and we have found an element
of order p (take hl).

Definition 1.23. Let p be a prime. The group G is said to be a p-group if the
order of each element of G is a power of p.

Examples 1.31. We have already encountered several 2-groups.

1. We have seen in Example 1.14 that the cyclic group C4 has elements of
order 1,2 and 4, while the direct product C2 ×C2 has elements of order 1
and 2.

2. The dihedral group D4 is also a 2-group.

Corollary 1.19. A finite group is a p-group if and only if its order is a power
of p.
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Proof. If |G| = pn, then by Lagrange Theorem, for any g ∈ G, its order divides
pn, and thus is a power of p. Conversely, if |G| is not a power of p, then it has
some other prime factor q, so by Cauchy Theorem, G has an element of order
q, and thus is not a p-group.

Note that we care only about abelian groups here, so we could state the
corollary for abelian groups, and use the version of Cauchy Theorem that we
have proven, though it does not hurt to state the corollary in general, which
assumes the general version of Cauchy Theorem, even though it has not been
proven here.

We are now able to give the proof of the classification of abelian groups
(based on an article by Navarro, Amer. Math Monthly, 2003).

Proof. Take an abelian group G of order n, and for any prime p that divides
|G|, define

Gp = {g, |g| = pk}, Gp′ = {g, p 6 ||g|}.
By Cauchy Theorem, Gp is not trivial, and is a p-group. Now take g ∈ G of
order pkm, with p which does not divide m. Then pkmg = 0 (recall that we use
the additive notation), that is (pkg)m = 0 and pkg ∈ Gp′ while pk(mg) = 0 and
mg ∈ Gp. Since pk and m are coprime, there exist r, s such that rpk + sm = 1,
that is g = r(pkg) + s(mg), and we get a sum of elements in Gp′ and in Gp,
that is G = Gp ⊕ Gp′ . We now repeat this process for the remaining primes
dividing |Gp′ |. This results in a decomposition of G as a direct sum of p-groups
for different primes. Thus it suffices to prove the theorem for p-groups of order
pk. This is done by induction on k, using the following claim: if G is a finite
abelian p-group, and C is a cyclic subgroup of maximal order, then G = C ⊕H
for some subgroup H (the proof is given below). Suppose this claim is true for
now. If k = 1, then we have a cyclic group. Then let C be a cyclic subgroup
of Gp of maximal order. Then Gp = C ⊕ H with |H| < |Gp|. By induction
hypothesis, H is a direct sum of cyclic subgroups, and we are done.

We see from the above proof that the decomposition of an abelian group G is
unique. Indeed, G is first decomposed into a sum of Gp, where each Gp contains
only elements of order a power of p. Then each p-group Gp is decomposed into
cyclic subgroups, starting from that of maximal order.

Example 1.32. Suppose we want to list all the abelian groups of order 72. We
first note that 72 = 23 ·32. So G will be decomposed as G ' G2⊕G3 (using the
notation of the proof). Then G2 is decomposed into cyclic subgroups, starting
from that of maximal order. Since the order of a subgroup divides the order of
a group, G2 could contain C8, in which case G2 = C8. If it does not contain a
cyclic group of order 8, then it may contain C4, and G2 = C4 ⊕ C2, otherwise
we will have G2 = C2 ⊕ C2 ⊕ C2. For the same reasons, either G3 = C9 or
C3 = C3 ⊕ C3. Thus the list of groups of order 72 is:

• C8 ⊕ C9, C4 ⊕ C2 ⊕ C9, C2 ⊕ C2 ⊕ C2 ⊕ C9,

• C8 ⊕ C3 ⊕ C3, C4 ⊕ C2 ⊕ C3 ⊕ C3, C2 ⊕ C2 ⊕ C2 ⊕ C3 ⊕ C3.
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To complete the classification of finite abelian groups, we are thus left with
proving the following claim: if G is a finite abelian p-group, and C is a cyclic
subgroup of maximal order, then G = C ⊕ H for some subgroup H. Even to
prove this result, we will need one more intermediate lemma.

Lemma 1.20. If G is a finite abelian p-group and G has a unique subgroup H
of order p, then G is cyclic.

Proof. We proceed by induction on |G|, noting that the case |G| = p is clear.
Define φ : G → G such that φ(g) = pg, and let K be the kernel of φ. Then
K consists exactly of the elements of order p, or 1 (pay attention to the use of
the additive notation). Then let H be the unique subgroup of order p from the
hypothesis, it must be that H ≤ K, and K is not trivial. But now take g ∈ K,
g not trivial, then 〈g〉 has order p, and thus must be H. This shows that K = H
and that the unique subgroup H of order p from the hypothesis is the kernel of
φ.

If K = G, then G is cyclic and we are done. If K 6= G, then φ(G) is a non-
trivial proper subgroup of G, while K is a normal subgroup of G. Look at the
quotient group G/K. Then by the first isomorphism theorem, φ(G) ' G/K. By
Cauchy theorem for abelian groups, φ(G) has a subgroup of order p. But since
any such subgroup is also a subgroup of G, and G has a unique such subgroup,
namely H, it must be that φ(G) also has a unique subgroup of order p, which
is H. By induction, it must be that the group φ(G) ' G/K is cyclic. So let us
pick a generator of this cyclic group, say g +K. We claim that this g actually
generates G.

By Cauchy theorem again, 〈g〉 ≤ G has a subgroup of order p, which by
uniqueness must be K, and thus there are p multiples of g which are in K. Now
let us look at the order of g +K: it is the smallest positive integer i such that
ig ∈ K. Say |G| = pn, since |K| = p, then |G|/|K| = |G/K| = pn−1, and since
|g +K| = pn−1 divides the order of |g|, either |g| is pn−1 or |g +K| = pn. But
if |g| = pn−1, this means that all the multiples of |g| generate G/K without
intersecting K, which is not possible. Thus |g| = pn.

This lemma and Cauchy Theorem for abelian groups are what is needed to
prove the following:

Lemma 1.21. If G is a finite abelian p-group, and C is a cyclic subgroup of
maximal order, then G = C ⊕H for some subgroup H.

Proof. We proceed by induction on |G|. When G is cyclic, then C = G, H =
{1G}, and G = C ⊕ {1G} as needed. When G is not cyclic, we use the above
lemma, which proves that G has more than one subgroup of order p, while C
has a unique such subgroup. This tells us that G contains a subgroup K of
order p which is not contained in C. Since K has order p, not only K is not
contained in C, but K∩C = {1G}. Since K is normal in C⊕K, we can consider
the quotient (C ⊕K)/K ' C.

Given any g ∈ G, we know that the order of g + K divides the order of g,
which is at most |C| (recall that C has maximal order, if |g| is more than |C| then



1.7. CLASSIFICATION OF ABELIAN GROUPS 39

|〈g〉| is more too, a contradiction). Thus the cyclic subgroup (C ⊕K)/K ' C
has maximal order in G/K, and we can apply the induction hypothesis to prove
that G/K ' (C + K)/K ⊕ H ′ for some H ′ ≤ G/K. The preimage of H ′

under the canonical map G → G/K is a group H with K ≤ H ≤ G. But
G/K ' (C ⊕ K)/K ⊕ H/K, which means that G = (C ⊕ K) + H = C + H.
Since H∩(C+K) = K, we have H∩C = {1G} and we are done: G = C⊕H.

Now that we are done with the classification of abelian groups, you may
wonder how complicated it gets in general. Well, the answer is ... quite com-
plicated. Let us recall what we know in general so far. The case where |G| is
prime is the easy case: we only have the cyclic group. This solves the problem
for |G| = {1, 2, 3, 5, 7, 11} when |G| ≤ 11. What about |G| = p2?

Proposition 1.22. A group of G of order |G| = p2 is abelian.

Proof. We consider Z(G) the center of G, which is the set of elements in G
which commute with every other element of G. It is a subgroup of G, thus by
Lagrange Theorem, |Z(G)| = 1, p, p2. We need to show that |Z(G)| = 1, p are
both impossible.

Suppose that |Z(G)| = 1 and recall that the class equation tells us that

|G| = |Z(G)|+
∑

[G : CG(x)]

where CG(x) = {g ∈ G, gx = xg}. Since Z(G) = {1}, CG(x) is a proper sub-
group of G (it cannot be G otherwise x would be in the center), and |CG(x)| > 1
since surely as least 1 and x are in CG(x), thus p|[G : CG(x)], and since p||G|,
it cannot be that |Z(G)| = 1.

Suppose that |Z(G)| = p, then Z(G) is cyclic and so is G/Z(G), but then
by Exercise 14, G is abelian.

We already knew this for |G| = 4, but then this also solves the case |G| = 9.
For the case |G| = pq, the classification result goes as follows.

Theorem 1.23. Suppose that |G| = pq, p > q two primes.

• If q 6 |(p− 1), then G ' Cpq.

• If q|(p− 1) then either G is abelian and G ' Cp×Cq, or G is not abelian
and G ' Cp oρ Cq where ρ : Cq → Aut(Cp) is any non-trivial automor-
phism.

Even with a proof of this result, which takes care of |G| = 6, 10, we would
still be left to discuss the case |G| = 8, and we cannot move past |G| = 11, since
|G| = 12 means considering |G| = p2q. The proof of the above theorem typically
uses the Sylow Theorems which we did not cover, there are other proofs that
do not rely on them, but then they require more work. Other small cases can
be done also, such as |p · q · r| for distinct primes.

To know the number of groups of order n, for n ≥ 1, see http://oeis.org/

A000001/list. This is how it looks for groups of order n ≤ 93.
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|G| G abelian G non-abelian
1 {1} -
2 C2 -
3 C3 -
4 C4, C2 × C2 -
5 C5 -
6 C6 = C3 × C2 D3 = C3 o C2

7 C7 -
8 C8, C4 × C2, C2 × C2 × C2 D4 = C4 o C2, Q8

9 C9, C3 × C3 -
10 C10 = C5 × C2 D5 = C5 o C2

11 C11 -

Table 1.3: Cn denotes the cyclic group of order n, Dn the dihedral group
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The main definitions and results of this chapter are

• (1.1). Definitions of: group, subgroup, group ho-
momorphism, order of a group, order of an element,
cyclic group.

• (1.2-1.3). Lagrange’s Theorem. Definitions of:
coset, normal subgroup, quotient group

• (1.4). 1st, 2nd and 3rd Isomorphism Theorems.

• (1.5). Definitions of: external (semi-)direct product,
internal (semi-)direct product.

• (1.6). The Orbit-Stabilizer Theorem, the Orbit-
Counting Theorem. Definitions of: group action, or-
bit, transitive action, stabilizer, centralizer. That the
orbits partition the set under the action of a group

• (1.7). The classification result for abelian groups.
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