
Chapter 2
Exercises on Group Theory

Exercises marked by (*) are considered difficult. Exercises marked by (**) were
previous midterm/exam questions.

2.1 Groups and subgroups

Exercise 1. a) Show the unicity of the identity element in a group.

b) For g an element in a group G, show the unicity of its inverse.
Answer.

a) Suppose that we have two identities e and e′. Then ee′ = e′ because e is
an identity, but also ee′ = e because e′ is an identity, and therefore e = e′.

b) Let g be an element in G. Suppose it has two inverses g−1 and (g′)−1.
Then gg−1 = 1 = g(g′)−1. Thus g−1(gg−1) = g−1 = (g−1g)(g′)−1 and
g−1 = (g′)−1.

Exercise 2. Let G be a group and let H be a nonempty subset of G. Prove
that the following are equivalent by proving 1.⇒ 3.⇒ 2.⇒ 1.:

1. H is a subgroup of G.

2. (a) x, y ∈ H implies xy ∈ H for all x, y.

(b) x ∈ H implies x−1 ∈ H.

3. x, y ∈ H implies xy−1 ∈ H for all x, y.

Now that we have seen that the two following statements are equivalent:

a) H is a subgroup of G,

b) b1) x, y ∈ H ⇒ xy ∈ H
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b2) x ∈ H ⇒ x−1 ∈ H.

1. Show that b1) is not sufficient to show that H is a subgroup of G.

2. Show that however, if G is a finite group, then b1) is sufficient.

Answer. We prove that 1.⇒ 3.⇒ 2.⇒ 1.

1.⇒ 3. This part is clear from the definition of subgroup.

3.⇒ 2. Since H is non-empty, let x ∈ H. By assumption of 3., we have that
xx−1 = 1 ∈ H and that 1x−1 ∈ H thus x is invertible in H. We now
know that for x, y ∈ H, x and y−1 are in H, thus x(y−1)−1 = xy is in H.

2.⇒ 1. To prove this direction, we need to check the definition of group. Since
closure and existence of an inverse are true by assumption of 2., and
that associativity follows from the associativity in G, we are left with the
existence of an identity. Now, if x ∈ H, then x−1 ∈ H by assumption of
2., and thus xx−1 = 1 ∈ H again by assumption of 2., which completes
the proof.

Now for the second part of the exercise:

1. Consider for example the group G = Q∗ with multiplication. Then the
set Z∗ with multiplication satisfies that if x, y ∈ Z then xy ∈ Z. However,
Z is not a group with respect to multiplication since 2 ∈ Z but 1/2 is not
in Z.

2. Let x ∈ H. Then take the powers x, x2, x3, . . . of x. Since G is finite,
there is some n such that xn = 1, and by b1), xn ∈ H thus 1 ∈ H, and
xn−1 = x−1 ∈ H.

Exercise 3. Let G be a finite group of order n such that all its non-trivial
elements have order 2.

1. Show that G is abelian.

2. Let H be a subgroup of G, and let g ∈ G but not in H. Show that H∪gH
is a subgroup of G.

3. Show that the subgroup H ∪ gH has order twice the order of H.

4. Deduce from the previous steps that the order of G is a power of 2.

Answer.

1. Let x, y ∈ G, x, y not 1. By assumption, x2 = y2 = 1, which also means
that x, y and xy are their own inverse. Now

(xy)(xy) = 1⇒ xy = (xy)−1 = y−1x−1 = yx.
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2. First note that H ∪ gH contains 1 since 1 ∈ H. Let x, y ∈ H ∪ gH. Then
x ∈ H or x ∈ gH, and y ∈ H or y ∈ gH. If both x, y ∈ H, then clearly
xy ∈ H since H is a subgroup. If both x, y ∈ gH, then x = gh, y = gh′

and xy = ghgh′ = hh′ ∈ H since G is commutative and g2 = 1. If say
x ∈ H and y ∈ gH (same proof vice-versa), then xy = xgh = g(xh) ∈ gH
since G is commutative. For the inverse, if x ∈ H, then x−1 ∈ H since H
is a subgroup. If x ∈ gH, then x = gh, and x−1 = h−1g−1 = gh since G
is commutative and all elements have order 2.

3. It is enough to show that the intersection of H and gH is empty. Let
x ∈ H and x ∈ gH. Then x = gh for h ∈ H, so that xh = gh2 = g, which
is a contradiction, since xh ∈ H and g is not in H by assumption.

4. Take h an element of order 2 in G, and take H = {1, h}. If G = H we
are done. If not, there is a g not in H, and by the previous point H ∪ gH
has order 4. We can now iterate. If G = H ∪ gH we are done. Otherwise,
H ∪ gH = H ′ is a subgroup of G, and there exists a g′ not in H ′, so that
H ′∪g′H ′ has order 8. One can also write a nice formal proof by induction.

Exercise 4. Let G be a group and let H and K be two subgroups of G.

1. Is H ∩K a subgroup of G? If your answer is yes, prove it. If your answer
is no, provide a counterexample.

2. Is H ∪K a subgroup of G? If your answer is yes, prove it. If your answer
is no, provide a counterexample.

Answer.

1. This is true. It is enough to check that xy−1 ∈ H ∩K for x, y ∈ H ∩K.
But since x, y ∈ H, we have xy−1 ∈ H since H is a subgroup, and likewise,
xy−1 ∈ K for x, y ∈ K since K is a subgroup.

2. This is false. For example, take the group Z with subgroups 3Z and 2Z.
Then 2 and 3 are in their union, but 5 is not.

Exercise 5. Show that if G has only one element of order 2, then this element is
in the center of G (that is the elements of G which commute with every element
in G).

Answer. Let x be the element of order 2. Then for any y, yxy−1 is such
that (yxy−1)(yxy−1) = 1. Thus the order of yxy−1 is either 1 or 2, that is,
yxy−1 must be either 1 or x. If yxy−1 = 1, then x = 1 a contradiction. Thus
yxy−1 = x.

Exercise 6. Let G be a group and H be a subgroup of G. Show that

NG(H) = {g ∈ G, gH = Hg}
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and
CG(H) = {g ∈ G, gh = hg for all h ∈ H}

are subgroups of G.

Answer. Take x, y ∈ NG(H). We have to check that xy−1 ∈ NG(H), that is,
that xy−1H = Hxy−1. But Hxy−1 = xHy−1 since x ∈ NG(H), and xHy−1 =
xy−1H since yH = Hy ⇐⇒ y−1H = Hy−1.

Now take x, y ∈ CG(H). We have to check that xy−1h = hxy−1 for all
h ∈ H. But hxy−1 = xhy−1 because x ∈ CG(H), and xhy−1 = xy−1h since
yh = hy ⇐⇒ y−1h = hy−1.

Exercise 7. Let G = Z∗20 be the group of invertible elements in Z20. Find two
subgroups of order 4 in G, one that is cyclic and one that is not cyclic.

Answer. The group G contains

|G| = ϕ(20) = ϕ(4)ϕ(5) = 2 · 4 = 8.

These 8 elements are coprime to 20, that is

G = {1, 3, 7, 9, 11, 13, 17, 19}.

The subgroup
〈3〉 = {3, 32 = 9, 33 = 7, 34 = 21 = 1}

is cyclic of order 4. We have that

11, 112 = 121 = 1, 19, 192 = (−1)2 = 1, 11 · 19 = (−11) = 9, 92 = 81 = 1

and
{1, 11, 19, 9}

is a group of order 4 which is not cyclic.

2.2 Cosets and Lagrange’s Theorem

Exercise 8. Let G = S3 be the group of permutations of 3 elements, that is

G = {(1), (12), (13), (23), (123), (132)}

and let H = {(1), (12)} be a subgroup. Compute the left and right cosets of H.

Answer. We have

g gH Hg
(1) {(1), (12)} {(1), (12)}
(12) {(1), (12)} {(1), (12)}
(13) {(13), (123)} {(13), (132)}
(23) {(23), (132)} {(23), (123)}
(123) {(13), (123)} {(23), (123)}
(132) {(23), (132)} {(13), (132)}
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For example, H(23) is {(1)(23), (12)(23)}. Clearly (1)(23) = (23). Now (12)(23)
sends 123 7→ 132 via (23), and then sends 132 7→ 231 via (12), so that finally
we have 123 7→ 231 which can be written (123).

Exercise 9. Let G be a finite group and let H and K be subgroups with rela-
tively prime order. Then H ∩K = {1}.

Answer. Since H ∩K is a subgroup of both H and K, we have

|H ∩K| | |H|, |H ∩K| | |K|

by Lagrange’s Theorem. Since (|H|, |K|) = 1, it must be that |H ∩ K| = 1
implying that H ∩K = {1}.

Exercise 10. (**) Let G be a finite group, and let H and K be subgroups G.

1. Show that H ∩K is a subgroup of H.

2. Since H∩K is a subgroup of H, we consider the set of distinct left cosets of
H∩K in H, given by {h1(H∩K), . . . , hr(H∩K)} for some h1, . . . , hr ∈ H.
For any element hk ∈ HK, show that hk ∈ hiK.

3. Prove that the left cosets h1K, . . . , hrK of K in HK are all disjoint (I
would suggest to do it by contradiction).

4. Deduce from the above steps that

|HK| = |H||K|
|H ∩K|

.

Answer.

1. Since a, b ∈ H ∩ K, then a, b ∈ H and a, b ∈ K and both H and K are
subgroups, so it must be that ab−1 ∈ H and ab−1 ∈ K. Thus ab−1 ∈
H ∩K, which is a subgroup, contained in H by definition.

2. For any element hk ∈ HK, since the union of the r cosets give H, h = hig
for some element g ∈ H ∩K. Then hk = higk = hi(gk) ∈ hiK since both
k and g belong to the subgroup K.

3. Suppose by contradiction that there are some hi, hj for which hiK = hjK.
But then this would mean that h−1

j hi ∈ K. Now since we also have

h−1
j hi ∈ H, this would imply that h−1

j hi ∈ H ∩K, that is hi(H ∩K) =
hj(H ∩K), which cannot happen since these cosets are distinct.

4. From the above, we know from 2. that

r =
|H|

|H ∩K|
.
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Then from 4., we know that

r =
|HK|
|K|

.

This is because the cosets are forced to be distinct, and there cannot have
more than r of them since in 3., every hk belongs to one of the hiK. Thus

|HK| = |H||K|
|H ∩K|

.

2.3 Normal subgroups and quotient group

Exercise 11. Consider the following two sets:

T =

{(
a b
0 c

)
, a, c ∈ R∗, b ∈ R

}
, U =

{(
1 b
0 1

)
, b ∈ R

}
.

1. Show that T is a subgroup of GL2(R).

2. Show that U is a normal subgroup of T .

Answer.

1. It is enough to show that if X,Y ∈ T , then XY −1 ∈ T . Let

X =

(
a b
0 c

)
, Y =

(
a′ b′

0 c′

)
then

XY −1 =

(
a b
0 c

)
1

a′c′

(
c′ −b′
0 a′

)
=

1

a′c′

(
ac′ −ab′ + a′b
0 a′c

)
∈ T

2. We have to show that XYX−1 ∈ U when Y ∈ U and X ∈ T . We have

XYX−1 =

(
a′ b′

0 c′

)(
1 b
0 1

)
1

a′c′

(
c′ −b′
0 a′

)
=

(
a′ a′b+ b′

0 c′

)
1

a′c′

(
c′ −b′
0 a′

)
=

1

a′c′

(
a′c′ −b′a′ + a′(a′b+ b′)
0 a′c′

)
∈ U.

Exercise 12. Let G be a group, and let H be a subgroup of index 2. Show
that H is normal in G.

Answer. If H is of index 2, that means by definition that there are only 2
cosets, say H and g1H for some g1 not in H. Note that if g1 6= g2 ∈ G are not
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in H,then g1g2 ∈ H. Indeed, we have that either g1g2 ∈ H or g1g2 ∈ g1H (recall
that the cosets partition the group), and g1g2 ∈ g1H is not possible since g2 is
not in H. In other words, if both g1, g2 are not in H, then (g1g2)H(g1g2)−1 ∈ H.

Now let h ∈ H, g ∈ G. If g ∈ H, then ghg−1 ∈ H and we are done. If
g is not in H, then gh is not in H and by the above remark we have that
ghg−1 = (gh)g−1 ∈ H (take g1 = gh, g2 = g−1). Alternatively by the same
above remark, since (g1g2)H(g1g2)−1 ∈ H for every g1, g2 not in H, it is enough
to wrote g as g1g2, say g1 = g (g is not in H) and g2 = g−1h (which is not in
H either).

Exercise 13. (*) If G1 is normal in G2 and G2 is normal in G3, then G1 is
normal in G3. True or false?

Answer. This is wrong (it takes the notion of characteristic subgroup to get
transitivity). An example is the dihedral group D4:

D4 = 〈r, f |f2 = 1, r4 = 1, fr = r−1f〉.

The subgroup
H = 〈rf, fr〉 = {1, rf, r2, fr} ' C2 × C2

is isomorphic to the Klein group. We have that H CG. Finally

K = 〈rf〉 = {1, rf}CH

but K is not normal in G, since f · rf · f−1 = f · rf · f = fr which is not in K.

Exercise 14. Let G be a group and let Z(G) be its center (that is the elements
of G which commute with every element in G). Show that if G/Z(G) is cyclic
then G is abelian. Give an example to show that if G/Z(G) is only abelian,
then G does not have to be abelian.

Answer. If G/Z(G) is cyclic, then G/Z(G) = 〈gZ(G)〉. Let x, y ∈ G, then
their corresponding cosets are xZ(G), yZ(G) which can be written

xZ(G) = (gZ(G))k = gkZ(G), yZ(G) = (gZ(G))l = glZ(G)

and
x = gkz1, y = glz2, z1, z2 ∈ Z(G).

Now
xy = gkz1g

lz2 = yx

since z1, z2 ∈ Z(G). For example, consider the dihedral group D4 = {r, f |f2 =
1, r4 = 1, fr = r−1f} = {1, r, r2, r3, f, rf, r2f, r3f}. Its center is Z(D4) =
{1, r2}: indeed, r cannot be in the center since fr = r−1f , then r2 commutes
with ri for all i, and r2 commutes with f since fr2 = (fr)r = r−1fr = r−2f =
r2f , so r2 is in the center. This also shows that r3 cannot be inside since r is
not. Then f cannot be in the center since fr = r−1f , and fr cannot be either
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since (fr)f = r−1ff = r−1 while ffr = r. Then fr2 cannot be since f is
not and r2 is, fr3 cannot be since fr is not and r2 is. Thus D4/Z(D4) is a
group of order 4, it contains 4 cosets: Z(D4), rZ(D4), fZ(D4), rfZ(D4), which
is isomorphic to the Klein group, which is abelian but not cyclic. One can check
directly that every element has order 2, and therefore it cannot be cyclic and it
must be abelian.

Exercise 15. 1. Let G be a group. Show that if H is a normal subgroup of
order 2, then H belongs to the center of G.

2. Let G be a group of order 10 with a normal subgroup H or order 2. Prove
that G is abelian.

Answer.

1. Since H is of order 2, then H = {1, h}. It is furthermore normal, so that
gHg−1 = {1, ghg−1} is in H, thus ghg−1 = h and we are done, since this
is saying that h commutes with every g ∈ G.

2. Since H is normal in G, G/H has a group structure, and |G/H| =
|G|/|H| = 10/2 = 5. Thus the quotient group G/H is a group of or-
der 5, implying that it is cyclic. Now take x, y in G, with respective coset
xH, yH. Since the quotient group is cyclic, there exists a coset gH such
that xH = (gH)k = gkH, and yH = (gH)l = glH for some k, l. Thus
x = gkh, y = glh′ for some h, h′ ∈ H. We are left to check that xy = yx,
that is gkhglh′ = glh′gkh, which is true since we know that h, h′ ∈ H
which is contained in the center of G (by the part above).

2.4 The isomorphism theorems

Exercise 16. Consider A the set of affine maps of R, that is

A = {f : x 7→ ax+ b, a ∈ R∗, b ∈ R}.

1. Show that A is a group with respect to the composition of maps.

2. Let

N = {g : x 7→ x+ b, b ∈ R}.

Show that N is a normal subgroup of A.

3. Show that the quotient group A/N is isomorphic to R∗.

Answer.

1. Let f, g ∈ A. Then

(f ◦ g)(x) = f(ax+ b) = a′(ax+ b) + b′ = a′ax+ a′b+ b′,
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where a′a ∈ R∗ thus the closure property is satisfied. The composition
of maps is associative. The identity element is given by the identity map
since

Id ◦ f = f ◦ Id = f.

Finally, we need to show that every f ∈ A is invertible. Take f−1(x) =
a−1x− a−1b. Then

f−1 ◦ f(x) = f−1(ax+ b) = a−1(ax+ b)− a−1b = x.

2. To show that N is a subgroup, the same above proof can be reused with
a = 1. Let g ∈ N and let f ∈ A. We have to show that

f ◦ g ◦ f−1 ∈ N.

We have

f ◦ g(a−1x− a−1b) = f(a−1(x)− a−1b+ b′) = x− b+ ab′ + b ∈ N.

3. Define the map
ϕ : A→ R∗, f(x) = ax+ b 7→ a.

It is a group homomorphism since

ϕ(f ◦ g) = a′a = ϕ(f)ϕ(g).

The kernel of ϕ is N and its image is R∗. By the 1st isomorphism theorem,
we thus have that

A/N ' R∗.

Exercise 17. Use the first isomorphism theorem to

1. show that
GLn(R)/SLn(R) ' R∗.

2. show that
C∗/U ' R∗+,

where
U = {z ∈ C∗ | |z| = 1}.

3. compute
R/2πZ.

Answer.

1. Consider the map:

det : GLn(R)→ R∗, X 7→ det(X).

It is a group homomorphism. Its kernel is SLn(R), its image is R∗ and
thus by the 1st isomorphism theorem, we have

GLn(R)/SLn(R) ' R∗.
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2. Consider the map

| · | : C∗ → R∗+, z 7→ |z|.

It is a group homomorphism. Its kernel is U , and its image is R∗+ and thus
by the 1st isomorphism theorem, we have

C∗/U ' R∗+.

3. Define the map

f : R→ C∗, x 7→ eix.

It is a group homomorphism. Its kernel is 2πZ. Its image is {eix, x ∈
R} = U . Thus by the 1st isomorphism theorem

R/2πZ ' U.

Exercise 18. Let G = 〈x〉 be a cyclic group of order n ≥ 1. Let hx : Z → G,
m 7→ xm.

• Show that hx is surjective and compute its kernel.

• Show that G ' Z/nZ.

Answer.

• Let g ∈ G. Since G = 〈x〉, g = xk for some 0 ≤ k ≤ n− 1 and thus hx is
surjective. Its kernel is the set of m such that xm = 1, thus m must be a
multiple of n and Ker(hx) = nZ.

• By the 1st isomorphism theorem, since hx is a group homomorphism, we
have

G ' Z/nZ.

Exercise 19. Prove the third isomorphism theorem for groups, namely that if
N and H are normal subgroups of G, with N contained in H, then

G/H ' (G/N)/(H/N).

Answer. This follows from the 1st isomorphism theorem for groups, if we can
find an epimorphism of G/N into G/H with kernel H/N : take f(aN) = aH.
Now f is well-defined, since if aN = bN , then a−1b ∈ N ⊂ H so aH = bH.
Since a is arbitrary in G, f is surjective. By definition of coset multiplication,
f is a homomorphism. The kernel is

{aN, aH = H} = {aN, a ∈ H} = H/N.
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2.5 Direct and semi-direct products

Exercise 20. Let G be a group with subgroups H and K. Suppose that
G = HK and H ∩ K = {1G}. Then every element g of G can be written
uniquely in the form hk, for h ∈ H and k ∈ K.
Answer. Since G = HK, we know that g can be written as hk. Suppose it
can also be written as h′k′. Then hk = h′k′ so h′

−1
h = k′k−1 ∈ H ∩K = {1}.

Therefore h = h′ and k = k′.

Exercise 21. The quaternion group Q8 is defined by

Q8 = {1,−1, i,−i, j,−j, k,−k}

with product · computed as follows:

1 · a = a · 1 = a, ∀ a ∈ Q8

(−1) · (−1) = 1, (−1) · a = a · (−1) = −a, ∀ a ∈ Q8

i · i = j · j = k · k = −1

i · j = k, j · i = −k,
j · k = i, k · j = −i,
k · i = j, i · k = −j.

Show that Q8 cannot be isomorphic to a semi-direct product of smaller groups.

Answer. By definition, a semi direct product must contain two smaller sub-
groups of trivial intersection {1}. Now the smaller subgroups of Q8 are {1,−1},
{1, i,−i,−1}, {1, j,−j,−1}, {1, k,−k,−1}, and each contains −1 so that it is
not possible that Q8 is a semi-direct product.

Exercise 22. Consider the set of matrices

G =

{(
a b
0 a−1

)
, a 6= 0, a, b ∈ Fp

}
(where Fp denotes the integers mod p).

1. Show that G is a subgroup of SL2(Fp).

2. Write G as a semi-direct product.

Answer.

1. That G is a subset of SL2(Fp) is clear because the determinant of every
matrix in G is 1. We have to show that for X,Y ∈ G, XY −1 ∈ G. This
is a straightforward computation:(

a b
0 a−1

)(
c−1 −d
0 c

)
=

(
ac−1 −da+ bc

0 a−1c

)
∈ G.
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2. Take

K =

{(
a 0
0 a−1

)
, a 6= 0, a ∈ Fp

}
and

H =

{(
1 b
0 1

)
, b ∈ Fp

}
.

Both K and H are subgroups of G. Their intersection is the 2-dimensional
identity matrix, and HK = G, since(

1 b
0 1

)(
a 0
0 a−1

)
=

(
a ba−1

0 a−1

)
and ba−1 runs through every possible element of Fp (since b does). Also
H is normal in G, since(

a b
0 a−1

)(
1 b
0 1

)(
a−1 −b
0 a

)
=

(
1 a2b
0 1

)
∈ H.

Note that K is not normal, which can be seen by doing the same compu-
tation. Thus G is the semi-direct product of H and K.

Exercise 23. Show that the group Zn × Zm is isomorphic to Zmn if and only
if m and n are relatively prime. Here Zn denotes the integers modulo n.

Answer. If m and n are relatively prime, then for a multiple of (1, 0) to be
zero, it must be a multiple of n, and for a multiple of (0, 1) to be zero, it must
be a multiple of m. Thus for a multiple k of (1, 1) to be zero, it must be a
multiple of both n and m, and since they are coprime, the smallest possible
value of k is mn. Hence Zn × Zm contains an element of order mn, showing
that Zm × Zn is isomorphic to Zmn. Conversely, suppose that gcd(m,n) > 1.
Then the least common multiple of m and n is smaller than mn, let us call it d.
This shows that every element of Zm×Zn has order at most d and thus none of
them can generate the whole group, so that it cannot be cyclic, and thus cannot
be isomorphic to Zmn.

Note that one can also prove this result by the definition of direct product:
we have that Zm and Zn are both normal subgroups of Zmn because this is an
abelian group. We are thus left to look at the intersection of Zm and Zn. Recall
that Zm and Zn are embedded into Zmn as respectively

Zm = {0, n, 2n, . . . , (m− 1)n}, Zn = {0,m, 2m, . . . , (n− 1)m}.

If m and n are coprime, then Zm ∩ Zn = {0}. Conversely, if x belongs to the
intersection and is non-zero, then x must be a multiple of both n and m which
is not congruent to 0 modulo mn, and thus m and n cannot be coprime.

Exercise 24. Let Z3 denote the group of integers modulo 3.
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1. Show that the map

σ : Z3 × Z3 → Z3 × Z3, (x, y) 7→ (x+ y, y)

is an automorphism of Z3 × Z3 of order 3.

2. Show that the external semi-direct product of Z3 × Z3 and Z3 by ρ, ρ :
Z3 → Aut(Z3 × Z3), i 7→ σi, is a non-abelian group G satisfying that

a3b3 = (ab)3

for any a, b in G.

Answer.

1. So to be an automorphism, σ has to be a group homomorphism, but

σ((x+x′, y+y′)) = (x+x′+y+y′, y+y′) = (x+y, y)+(x′+y′, y′) = σ(x, y)+σ(x′, y′).

It clearly goes from the group to itself, and it is a bijection. It is an
injection

σ(x, y) = σ(x′, y′)⇒ (x+ y, y) = (x′ + y′, y′)⇒ y = y′, x = x′,

and thus it is a surjection since the group is finite. It is of order 3, since

σ(x, y) = (x+ y, y), σ2(x, y) = (x+ 2y, y), σ3(x, y) = (x+ 3y, y) = (x, y).

2. An element in the external semi-direct product is of the form ((x, y), i),
and we have

((x, y), i)((x, y), i) = ((x, y) + σi(x, y), 2i),

((x, y), i)3 = ((x, y) + σi(x, y) + σ2i(x, y), 3i)

= ((x, y) + (x+ iy, y) + (x+ 2iy, y), 3i)

= ((3x+ 3iy, 3y), 3i)

= ((0, 0), 0).

This shows that for any element a of the semi-direct product a3 = 0, thus
b3 = 0, ab is another element of the group thus (ab)3 = 0 which shows
that a3b3 = 0 = (ab)3, though the group is non-abelian (because σ is not
the identity).

Exercise 25. (**)

1. Given a group G and a subgroup H, suppose that H has two left cosets
(and thus two right cosets), that is [G : H] = 2. Consider the two cases
g ∈ H and g 6∈ H and show that in both cases gH = Hg, that is H is
normal in G.
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2. Consider the dihedral group Dn = {risj , rn = s2 = (rs)2 = 1}. Prove or
disprove that D6 ' D3 ×C2 where C2 is the cyclic group with 2 elements
(you may want to use 1.).

Answer.

1. If g ∈ H, then gH = H = Hg. Now if g 6∈ H, then gH cannot intersect
with H (cosets are either disjoint or the same), but since we have only
two cosets, both of them of size |H| (and thus |G| = 2|H|), we have that
gH must be everything in G which is not in H: G\H. But the same is
true for the right coset Hg, and so gH = Hg.

2. Let us first see if we can find a copy of D3 inside D6. In order to compute
in D6, we need to remember that:

rsrs = 1 ⇐⇒ rsr = s ⇐⇒ rs = sr−1 ⇒ r2s = rsr−1 = sr−2 ⇒ ris = sr−i

for any i. To have D3, we need rotations by (2π/3)l, l = 0, 1, 2, so they
are found by considering the rotations r2l, l = 0, 1, 2. We thus have that
(r2l)3 = 1 and (r2s)2 = r2sr2s = 1 and D3 ' {r2lsk, r3 = s2 = (rs)2 = 1}.
We need to see whether the two subgroups H ' D3 and K ' C2 are
normal and such that D6 = HK and H ∩K = {1}. For D3, it is normal
because of 1., while for C2 we still need to identify which subgroup this
is, and whether it is normal. We know that we will need H ∩ K = {1}
to be true, so we look for a subgroup of order 2 which does not intersect
the one we have. Rotations r, r3, r5 are good candidates since they do not
intersect with r2lsk, so we choose the one of order 2, that is C2 ' 〈r3〉. It
is a normal subgroup since for j = 1,

risj(r3)s−jr−i = ris(r3s)r−i = ris(sr−3)r−i = r−3

and for j = 0, we have rir3r−i. So we have found two normal subgroups
H ' D3 and K ' C2, their intersection is trivial, and since HK =
{r2lsk} ∪ {r2lskr3} = {r2lsk} ∪ {r2lr−3sk} (with the same powers and
relations as above), we see that HK = D6 and the isomorphism is true.

2.6 Group action

Exercise 26. 1. Let G = GLn(C) and X = Cn−{0}. Show that G acts on
X by G×X → X, (M,ν) 7→Mν.

2. Show that the action is transitive.
Answer.

1. We have to show that

M · (M ′ · ν) = (MM ′) · ν, 1G · ν = ν.

The first point is clear by properties of matrix vector multiplication. The
second is also clear since 1G is the identity matrix.
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2. We have to show that there is only one orbit (which is why we have to
remove the whole zero vector from Cn). For that, we need to show that
for any two vectors ν, ν′ ∈ X, there is a matrix M ∈ G such that Mν = ν′.
We thus have a system of n linear equations for n2 unknowns, so that we
have enough degrees of freedom to find such a matrix. Alternatively, if
ν = (a1, . . . , an), ν′ = (b1, . . . , bn), where ai, bi are all non-zero, take the
matrix

diag(a−1
1 , . . . , a−1

n )

and notice that

diag(b1, . . . , bn)diag(a−1
1 , . . . , a−1

n )ν = ν′.

The case where some ai, bj are zero can be done similarly.

Exercise 27. Let G be group, and H be a subgroup of G. Show that

g · g′H = gg′H

defines an action of G on the set G/H of cosets of H. Find the stabilizer of gH.

Answer. To show that the action is well defined we have to check that it
does not depend on the choice of the representative, and that it satisfies the
definition of group action. First suppose that g′H = g′′H. We have to show
that g · g′′H = gg′H. But g′H = g′′H ⇐⇒ (g′′)−1g′ ∈ H ⇐⇒ (gg′′)−1(gg′) ∈
H ⇐⇒ gg′H = gg′′H. The definition of group action can be checked easily:

g1 · (g2 · g′H) = g1 · g2g
′H = g1g2g

′H = g1g2 · g′H, 1 · g′H = g′H.

The stabilizer of gH is formed by g′ such that g′gH = gH that is g−1g′g ∈ H.
Thus g−1g′g = h, for some h ∈ H, or equivalently g′ = ghg−1, thus the stabilizer
is gHg−1.

Exercise 28. Consider the dihedral group D8 given by

D8 = {1, s, r, r2, r3, rs, r2s, r3s}

(that is s2 = 1, r4 = 1 and (rs)2 = 1).

1. Divide the elements of the dihedral group D8 into conjugacy classes.

2. Verify the class equation.

Answer.

1. There are 5 conjugacy classes

{1}, {r2}, {r, r3}, {s, sr2}, {sr, sr3}.

2. We have that {1} and {r2} are in the center. Thus

|D4| = 8 = |Z(D4)|+ |Orb(r)|+ |Orb(rs)|+ |Orb(s)|.
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Exercise 29. The quaternion group Q8 is defined by

Q8 = {1,−1, i,−i, j,−j, k,−k}

with product · computed as follows:

1 · a = a · 1 = a, ∀ a ∈ Q8

(−1) · (−1) = 1, (−1) · a = a · (−1) = −a, ∀ a ∈ Q8

i · i = j · j = k · k = −1

i · j = k, j · i = −k,
j · k = i, k · j = −i,
k · i = j, i · k = −j.

1. Show that if x 6∈ Z(Q8), then |CQ8(x)| = 4.

2. Show that as a consequence, the class of conjugacy of x 6∈ Z(D8) has only
two elements.

Answer.

1. The center Z(Q8) is Z(Q8) = {1,−1}. We have by definition that

CQ8(x) = {g ∈ Q8, gx = xg}.

Thus

CQ8(i) = {1,−1, i,−i}, CQ8(j) = {1,−1, j,−j}, CQ8(k) = {1,−1, k,−k}.

2. When the action is defined by conjugation, we have that Stab(x) =
CQ8

(x). Thus by the Orbit-Stabilizer, the size of an orbit, which is a
conjugacy class, is

|B(x)| = |Q8|/|CQ8(x)| = 8/4 = 2.

Exercise 30. Let G be a group and let H and K be two subgroups of G.

1. Show that the subgroup H acts on the set of left cosets of K by multipli-
cation.

2. Consider the coset 1K = K. Compute its orbit B(K) and its stabilizer
Stab(K).

3. Compute the union of the cosets in B(K) and deduce how many cosets
are in the orbit.

4. Use the Orbit-Stabilizer Theorem to get another way of counting the num-
ber of cosets in B(K). By comparing the two expressions to count the
cardinality of B(K), find a formula for the cardinality of HK.



2.6. GROUP ACTION 59

Answer.

1. Let X = {gK, g ∈ G} be the set of left cosets of K. We have to check
that h′ · (h · gK) = (h′h) · gK which clearly holds, as does 1H · gK = gK.

2. We have that B(K) = {h ·K, h ∈ H} and Stab(K) = {h ∈ H, h ·K =
K} = H ∩K.

3. The union of the cosets in B(K) is HK, the cosets in B(K) are disjoint
and each has cardinality K, so that we have |HK|/|K| cosets in B(K).

4. By the Orbit-Stabilizer Theorem, we have

|B(K)| = |H|/|Stab(K)| ⇒ |HK|/|K| = |H|/|H ∩K|

and thus

|HK| = |H||K|
|H ∩K|

.

Exercise 31. Let G be a finite group, and let p be the smallest prime divisor
of the order of G.

1. Let H be a normal subgroup of G. Show that G acts on H by conjugation.

2. Let H be a normal subgroup of G of order p.

• Show that the orbits of H under the action of G are all of size 1.

• Conclude that a normal subgroup H of order p is contained in the
center of G.

Answer.

1. We check the definition, that is, the group G acts on H if for the map
(g, x) 7→ g · x = gxg−1, x ∈ H, defined from G ×H → H (note that we
need here H normal to guarantee that gxg−1 ∈ H!), we have

• h · (g · x) = h · (gxg−1) = h(gxg−1)h−1 = (hg) · x
• 1 · x = x for all x ∈ H

2. • By the orbit stabilizer theorem, the size of an orbit B(x), x ∈ H
divides the size of G, the group that acts on H, thus if |B(x)| is
not 1, it must be at least p, since p is the smallest divisor of the
order of G. Now the orbits partition H, that is H = ∪B(x) and
thus |H| =

∑
|B(x)|, that is the sum of the cardinals of the orbits is

|H| = p. Among all the B(x), we can take x = 1 ∈ H since H is a
subgroup. The orbit B(1) = {g · 1, g ∈ G} = {g1g−1 = 1} has only
1 element, there is at least one orbit of size 1, and thus no orbit can
have size greater or equal to p, since then p+ 1 > p. Thus all orbits
of H are of size 1.
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• We have that B(x) = {g · x, g ∈ G} = {gxg−1, g ∈ G} is always
of size 1, and since for g = 1 ∈ G we have x ∈ B(x), we deduce
that B(x) = {x}, that is gxg−1 = x, or gx = xg showing that for
all x ∈ H, x actually commutes with every g ∈ G, that is, H is
contained in the center.

Exercise 32. Let G be a group acting on a finite set X.

1. We assume that every orbit contains at least 2 elements, that |G| = 15,
and that |X| = 17. Find the number of orbits and the cardinality of each
of them.

2. We assume that |G| = 33 and |X| = 19. Show that there exists at least
one orbit containing only 1 element.

Answer.

1. The cardinal of every orbit divides the order of G. Furthermore, the sum
of the orbit cardinalities is equal to the cardinality of X. If |G| = 15,
|X| = 17, and there is no orbit of size 1, there is only one possibility: 4
orbits of length 3 and 1 of length 5. Indeed, we are looking for integers
such that their sum is 17, but each integer must divide 15, that is we need
to realize 17 as a sum of integers belonging to {3, 5, 15} (1 is excluded by
assumption). Then 15 is not possible, and we can use only 3 and 5: 15+2
is not possible, 10+7 is not possible, so only 5+12 works.

2. Now |G| = 33 and |X| = 19. The divisors of 33 are 1,3,11 and 33. We
need to obtain as above 19 as a sum of these divisors. 33 is too big, and
we cannot possibly use only 11 and 3. Thus there must be at least one
orbit of size 1.

Exercise 33. (**) Let G be a finite group of order n ≥ 1 and let p be a prime.
Consider the set

X = {x = (g1, g2, . . . , gp) ∈ Gp | g1 · g2 · · · gp = 1G}.

1. Compute the cardinality |X| of the set X.

2. Show that if (g1, . . . , gp) ∈ X, then (g2, . . . , gp, g1) ∈ X. Denote by σ the
corresponding permutation. Show that < σ > acts on X as follows:

σk · (g1, . . . , gp) = (gσk(1), . . . , gσk(p)), k ∈ Z

3. What is the cardinal of one orbit of X?

4. What are the orbits with one element? Show that there is at least one
such orbit.

5. Deduce that if p does not divide n, then

np−1 ≡ 1 mod p.
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6. Deduce Cauchy Theorem from the above, namely, if p | n then G has at
least one element of order p.

Answer.

1. Since g1, . . . , gp−1 can take any value in G (only gp is constrained so as to
have g1 · g2 · · · gp = 1G), we have |X| = |G|p−1 = np−1.

2. Since (g1, . . . , gp) ∈ X, then g1 · g2 · · · gp = 1G and g2 · · · gp · g1 = g−1
1 ·

1G · g1 showing that (g2, . . . , gp, g1) ∈ X. To show that < σ > acts on X,
check the definition, namely σl · (σk · (g1, . . . , gp)) = σlσk · (g1, . . . , gp) and
σ0 · (g1, . . . , gp) = (g1, . . . , gp).

3. The answer is either 1 or p. There are two ways to do it: one can notice
that < σ > has order p, and thus by the Orbit-Stabilizer Theorem the
size of the orbit divides p, so it can be either 1 or p. Also one can just
write down the definition of one orbit: the orbit of (g1, . . . , gp) is formed
by all the shifts of the components, and thus since p is prime, there will
be p distinct shifts, apart if all the components are all the same, in which
case there is only one element in the orbit.

4. Since an element always belongs to its orbit, we have that orbits with one
element are of the form B(x) = {x}, and if there is only one element,
that means that the shifts are doing nothing on x = (g1, . . . , gp) thus
x = (g, . . . , g) and since x ∈ X, that further means that gp = 1G. To
show one such orbit exists, take the orbit of (1, . . . , 1).

5. Since the orbits partition X, we have

|X| =
∑
|B(x)|+

∑
|B(x′)|

where the first sum is over orbits of size 1, and the second over orbits of
size greater or equal to 2. By the above, if the size is at least 2, it is p, and
thus |B(x′)| ≡ 0 mod p. Then if there were more than (1, . . . , 1) with
orbit of size 1, that means an element g such that gp = 1, which would
mean p|n, a contradiction. Thus only there is only one orbit of size 1, and

|X| = np−1 ≡ 1 mod p.

6. Again, we have that

np−1 = |X| =
∑
|B(x)|+

∑
|B(x′)|

and if p|n then 0 ≡
∑
|B(x)| and there must be at least another element

with orbit size 1, that is an element g of order p.
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2.7 Classification of Abelian groups

Exercise 34. Let φ : G→ H be a group homomorphism, for G,H two groups.

1. Prove that the order of φ(g) divides the order of g.

2. Prove that if φ is injective, then the order of φ(g) is equal to that of g.

3. For N a normal subgroup of G, show that |gN |||g|.

Answer.

1. Suppose g has order n. Then gn = 1, thus φ(gn) = φ(g)n = φ(1) = 1.
This shows that φ(g)n = 1 so either φ(g) has order n, or its order is some
m smaller than n. Suppose there is such m, then φ(g)m = 1 and m is
then the smallest positive integer with this property. Divide n by m to
find n = mq + r with r < m, then

1 = gn = gmq+r = (gm)qgr = gr

thus r = 0 and m divides n as needed.

2. Say φ(g) has order m. Then φ(1) = 1 = φ(g)m = φ(gm) and since φ is
injective, we must have gm = 1, which shows that m = n.

3. Choose for φ the canonical map φ : G → G/N . Then φ(g) = gN and
apply 1.

Exercise 35. List all the abelian groups of order 36.
Answer. Write 36 = 22 · 32. Then 22 can give rise to either Z/2Z × Z/2Z

or Z/4Z. Similarly, 32 can give rise to either Z/3Z× Z/3Z or Z/9Z. This thus
gives 4 cases:

1. Z/4Z× Z/9Z ' Z/36Z,

2. Z/4Z× Z/3Z× Z/3Z ' Z/12Z× Z/3Z,

3. Z/2Z× Z/2Z× Z/9Z ' Z/2Z× Z/18Z,

4. Z/2Z× Z/2Z× Z/3Z× Z/3Z ' Z/6Z× Z/6Z.

Exercise 36. Decide whether the following groups are isomorphic:

• Z/4Z and Z/2Z× Z/2Z,

• Z/6Z and Z/2Z× Z/3Z,

• Z/48Z× Z/9Z and Z/8Z× Z/54Z.

Answer.
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• Z/4Z is not isomorphic to Z/2Z× Z/2Z, this is because Z/4Z is a cyclic
group (under addition), while Z/2Z×Z/2Z is not, it is isomorphic to the
Klein group. It can be easily checked there is no element of order 4, and
all elements but the identity (0, 0) have order 2.

• Z/6Z is isomorphic to Z/2Z × Z/3Z, both of them are cyclic of order 6.
To see this, it is enough to see that Z/2Z× Z/3Z contains an element of
order 6, namely (1, 1).

• Z/48Z× Z/9Z and Z/8Z× Z/54Z. We apply the classification of abelian
groups to decompose Z/48Z ' Z/3Z×Z/16Z and Z/54Z ' Z/2Z×Z/27Z,
therefore

Z/3Z× Z/16Z× Z/9Z 6' Z/8Z× Z/2Z× Z/27Z.

Note for example that Z/8Z × Z/2Z is not isomorphic to Z/16Z. The
reason is illustrated in the first two parts of the exercise. When m,n are
coprime then Z/mZ × Z/nZ ' Z/mnZ, this is because (1, 1) will have
order mn, which is not the case when m,n are not coprime.
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