
Chapter 1

Isometries of the Plane

“For geometry, you know, is the gate of science, and the gate is
so low and small that one can only enter it as a little child. (W.
K. Clifford)

The focus of this first chapter is the 2-dimensional real plane R2, in which
a point P can be described by its coordinates:

P ∈ R2, P = (x, y), x ∈ R, y ∈ R.

Alternatively, we can describe P as a complex number by writing

P = (x, y) = x+ iy ∈ C.

The plane R2 comes with a usual distance. If P1 = (x1, y1), P2 = (x2, y2) ∈
R2 are two points in the plane, then

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2.

Note that this is consistent with the complex notation. For P = x+ iy ∈ C,

recall that |P | =
√
x2 + y2 =

√
PP , thus for two complex points P1 =

x1 + iy1, P2 = x2 + iy2 ∈ C, we have

d(P1, P2) = |P2 − P1| =
√

(P2 − P1)(P2 − P1)

= |(x2 − x1) + i(y2 − y1)| =
√

(x2 − x1)2 + (y2 − y1)2,

where ( ) denotes the complex conjugation, i.e. x+ iy = x− iy.
We are now interested in planar transformations (that is, maps from R2

to R2) that preserve distances.
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Points in the Plane 

• A point P in the plane is a pair of real numbers P=(x,y). 

      d(0,P)2 =  x2+y2. 

• A point P=(x,y) in the plane can be seen as a complex number 
x+iy. 

    |x+iy|2= x2+y2. 
=d(0,P)2 

Planar Isometries 

     An isometry of the plane is a transformation f of the plane 
that keeps distances unchanged, namely 

     d(f(P1),f(P2)) = d(P1,P2) 

     for any pair of points P1,P2. 

 

 
• An isometry can be defined more generally than on a plane! 
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Definition 1. A map ϕ from R2 to R2 which preserves the distance between
points is called a planar isometry. We write that

d(ϕ(P1), ϕ(P2)) = d(P1, P2)

for any two points P1 and P2 in R2.

What are examples of such planar isometries?

1. Of course, the most simple example is the identity map! Formally, we
write

(x, y) 7→ (x, y)

for every point P = (x, y) in the plane.

2. We have the reflection with respect to the x-axis:

(x, y) 7→ (−x, y).

3. Similarly, the reflection can be done with respect to the y-axis:

(x, y) 7→ (x,−y).

4. Another example that easily comes to mind is a rotation.

Let us recall how a rotation is defined. A rotation counterclockwise
through an angle θ about the origin (0, 0) ∈ R2 is given by

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ).

This can be seen using complex numbers. We have that |eiθ| = 1, for θ ∈ R,
thus

|(x+ iy)eiθ| = |x+ iy|

and multiplying by eiθ does not change the length of (x, y). Now

(x+ iy)eiθ = (x+ iy)(cos θ + i sin θ)

= (x cos θ − y sin θ) + i(x sin θ + y cos θ)

which is exactly the point (x cos θ − y sin θ, x sin θ + y cos θ).



4 CHAPTER 1. ISOMETRIES OF THE PLANE

Examples of Isometries 

• The identity map: (x,y) → (x,y) 

• Mirror reflection w/r to the x-axis: (x,y) → (x,-y) 

• Mirror reflection w/r to the y-axis : (x,y) → (-x,y) 

 

 

Angry Birds are owned by Rovio. 

Rotation 

• We also have a counterclockwise rotation of angle θ:  

                         (x,y) → (x cosθ-y sinθ, x sinθ+y cosθ) 
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In matrix notation, a rotation counterclockwise through an angle θ about
the origin (0, 0) ∈ R2 maps a point P = (x, y) to P ′ = (x′, y′), where P ′ =
(x′, y′) is given by [

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
. (1.1)

We denote the rotation matrix by Rθ:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Intuitively, we know that a rotation preserve distances. However, as a
warm-up, let us prove that formally. We will give two proofs: one in the
2-dimensional real plane, and one using the complex plane.

First proof. Suppose we have two points P1 = (x1, y1), P2 = (x2, y2) ∈ R2.
Let d(P1, P2) be the distance from P1 to P2, so that the square distance
d(P1, P2)

2 can be written as

d(P1, P2)
2 = (x2 − x1)2 + (y2 − y1)2

= (x2 − x1, y2 − y1)
[
x2 − x1
y2 − y1

]
=

([
x2
y2

]
−
[
x1
y1

])T ([
x2
y2

]
−
[
x1
y1

])
,

where ()T denotes the transpose of a matrix.
Now we map two points P1, P2 to P ′1 and P ′2 via (1.1), i.e.[

x′i
y′i

]
=

[
cos θ − sin θ
sin θ cos θ

] [
xi
yi

]
= Rθ

[
xi
yi

]
, i = 1, 2.

Hence we have [
x′2
y′2

]
−
[
x′1
y′1

]
= Rθ

([
x2
y2

]
−
[
x1
y1

])
,

and

d(P ′1, P
′
2)

2 =

([
x′2
y′2

]
−
[
x′1
y′1

])T ([
x′2
y′2

]
−
[
x′1
y′1

])
=

([
x2
y2

]
−
[
x1
y1

])T
RT
θ Rθ

([
x2
y2

]
−
[
x1
y1

])
.
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Rotations  in Matrix Form 

• If (x,y) is rotated counter-clockwise to get (x’,y’), then  

 [   ] = [          ][  ] 
  where the rotation is written in matrix form. 

 

x’ 
y’ 

cosθ  -sinθ 
sinθ  cosθ 

x 
y 

Note: rotation around 
the origin! 

Matrix transformation by xkcd 

   [    ]    [    ]    [      ] [      ]  
           
    R = rotation matrix we saw on the previous slide 

 

Rotations are Isometries : matrix proof 

= identity 
matrix 

  P1                      P2                                       P1’                         P2’ 
 

(x1,y1)             (x2,y2)             rotate         (x1’,y1’)                (x2’,y2’) 

= = = = 

                                                    ? 
        d(P1,P2)2                           =                   d(P1’,P2’)2         

= = 

         x2 – x1   T  RT R      x2 –x1                    x2’  -  x1’    T      x2’  -   x1’ 
        y2 – y1                    y2 –y1       =            y2’   - y1’           y2’  -   y1’ 
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But

RT
θ Rθ =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
1 0
0 1

]
which establishes that d(P ′1, P

′
2) = d(P1, P2).

Second proof. Let P1 = x1 + iy1, P2 = x2 + iy2 be two points in C, with
distance

d(P1, P2) = |P2 − P1| =
√

(P2 − P1)(P2 − P1).

Since a rotation of angle θ about the origin is represented by a multiplication
by eiθ, we have

d(P ′1, P
′
2) = |P ′2 − P ′1| =

∣∣eiθP2 − eiθP1

∣∣ =
∣∣eiθ(P2 − P1)

∣∣
=

∣∣eiθ∣∣ |P2 − P1| = |P2 − P1| = d(P1, P2).

An arbitrary planar transformation maps P = (x, y) to P ′ = (ϕ(x, y), ψ(x, y)),
or in complex notation, P = x+ iy to P ′ = ϕ(x, y) + iψ(x, y) = H(P ).

We are interested in special planar transformations, those which preserve
distances, called isometries. We gave a few examples of planar isometries,
we will next completely classify them.

To do so, we will work with the complex plane, and write an isometry as
H(z), z ∈ C, such that

|z1 − z2| = |H(z1)−H(z2)| .

We shall show that

Theorem 1. If |H(z1)−H(z2)| = |z1 − z2| , for all z1, z2 ∈ C, then H(z) =
αz + β or H(z) = αz + β with |z| = 1, i.e. α = eiθ for some θ.

The theorem says that any function that preserves distances in R2 must
be of the form [

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
+

[
tx
ty

]
or [

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
x
y

]
+

[
tx
ty

]
.
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Rotations are Isometries: complex proof 

                                                                           |eθiP2-eθiP1| 

                                                                                  

                                                                          |eθi| |P2-P1|                                                     

   

P1                      P2                                       P1’                         P2’ 
 

X1+iy1             x2+iy2             rotate         x1’+iy1’                x2’+iy2’ 

= 

= 

= = 

             d(P1,P2)                             =                   d(P1’,P2’)         
? 

= 
= 

= 

 |P2-P1|                            =  

Classification of Isometries of the plane 

• Consider an arbitrary planar transformation map H, which 
maps a point P=x+iy to H(P). 

• We are interested in classifying the maps H which are 
isometries, that is maps H satisfying |H(z1)-H(z2)|=|z1-z2|. 
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Notice what we recognize the reflections with respect to both the x- and
y-axis, rotations around the origin, as well as translations.

In order to prove the theorem, we need the following cute lemma.

Lemma 1. An isometry which maps (0, 0) to (0, 0), (1, 0) to (1, 0), and (0, 1)
to (0, 1), i.e. (0 to 0 ∈ C, 1 to 1 ∈ C, and i to i ∈ C) must be the identity
map (x, y)→ (x, y).

Proof. The proof is done by identifying R2 with the complex plane. Let h(z)
be a planar isometry satisfying the assumptions of the lemma, in particular,
h(z) satisfies

|h(z1)− h(z2)| = |z1 − z2| ∀z1, z2 ∈ C.

We then have
|h(z)− h(0)| = |z − 0|,

also
|h(z)− h(0)| = |h(z)− 0|

by assumption that h(0) = 0, thus

|h(z)− h(0)| = |h(z)− 0| = |z − 0|.

Using the fact that
h(1) = 1, h(i) = i,

we similarly get

|h(z)− 0| = |h(z)| = |z − 0| = |h|
|h(z)− h(1)| = |h(z)− 1| = |z − 1|
|h(z)− h(i)| = |h(z)− i| = |z − i| .

This shows that

h(z)h(z) = zz

(h(z)− 1)(h(z)− 1) = (z − 1)(z − 1)

(h(z)− i)(h(z)− i) = (z − i)(z − i).

We now multiply out

(h(z)−1)(h(z)− 1) = h(z)h(z)−h(z)−h(z)+1 = (z−1)(z − 1) = zz̄−z−z̄+1,
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3)                      |z-i|2=|H(z)-H(i)|2=|H(z)-i|2  

2)                        |z-1|2=|H(z)-H(1)|2=|H(z)-1|2  

1)              |z|2 = |H(z)-H(0)|2 = |H(z)|2  

A Lemma (I) 

Lemma An isometry which maps 0 to 0, 1 to 1 and i to i must be 
the identity map. 

 

 ))(( iziz

 )1)(1( zz

zz )()( zHzH

)1)()(1)((  zHzH

))()()(( izHizH 

 H isometry H(0)=0 

 H isometry H(1)=1 

 H isometry H(i)=i 

Proof 
Let H be an isometry: |H(z1)-H(z2)|2=|z1-z2|2 for every z1, z2.  
By assumption H(0)=0, H(1)=1, H(i)=i. 

A Lemma (II) 

Proof (next) 

From 2) :                 -H(z)-         +1 =     - z-     +1 → H(z)+       =z+ 

    

 

 

From 3) :                 +iH(z)-i        +1=      +zi-i   +1 → H(z)-         =z-   
 
We sum the last two equations to get H(z)=z. 
 
                                                                                                          QED 
 
 
 

)()( zHzH )(zH zz z )(zH z

)()( zHzH )(zH zz z )(zH z

     A point P which is fixed by a transformation f of the plane ,  
that is a point such that f(P)=P is called a fixed point.  
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which can be simplified using that h(z)h(z) = zz, and similarly multiply-
ing out (h(z)− i)(h(z)− i) = (z − i)(z − i), we obtain

h(z) + h(z) = z + z

h(z)− h(z) = z − z.

By summing both equations, we conclude that h(z) = z.

In words, we have shown that if h(z) has the same distances to 0, 1, i as
z then h(z) and z must be the same. This technique of looking at points
which are fixed by a given planar transformation is useful and we will see it
again later. It is thus worth giving a name to these special fixed points.

Definition 2. Let ϕ be a planar transformation. Then a point P in the
plane such that ϕ(P ) = P is called a fixed point of ϕ.

We are now ready to classify planar isometries, that is to prove Theorem 1.

Proof. Given H(z), an isometry H : C→ C, define

β = H(0),

α = H(1)−H(0)

(|α| = |H(1)−H(0)| = |1− 0| = 1).

Now consider a new function

K(z) =
H(z)−H(0)

H(1)−H(0)
= α−1(H(z)− β).

Note the denominator is non-zero! Claim: K(z) is also an isometry. Indeed,
for every z, w ∈ C, we have

|K(z)−K(w)| =

∣∣∣∣H(z)− β
α

− H(w)− β
α

∣∣∣∣
=

∣∣∣∣H(z)−H(w)

α

∣∣∣∣ =
|H(z)−H(w)|

|α|
= |H(z)−H(w)| = |z − w| .

Now

K(0) =
H(0)−H(0)

H(1)−H(0)
= 0

K(1) =
H(1)−H(0)

H(1)−H(0)
= 1.
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Main Result (I) 

Theorem   An isometry H of the complex plane is necessarily of 
the form  

• H(z)= αz + β, or 

• H(z)=αz̅ + β 

with |α|=1 and some complex number β. 

Proof Given H an isometry, define  

 β=H(0) 

 α=H(1)-H(0) 

Note that |α|=|H(1)-H(0)|=|1-0|=1 as stated. 

Theorem statement claims 
|α|=1, needs a check!  

H isometry 

Main Result (II) 

• Consider a new function K(z)=(H(z)-H(0))/(H(1)-H(0)) 

 

 

• We have K(z)=α-1 (H(z)-β)  

 

• K(z) is an isometry: 

     |K(z)-K(w)| = | α-1 ||(H(z)-β)-(H(w)-β)| = |H(z)-H(w)|=|z-w|. 

β=H(0), α=H(1)-H(0) 

|α|=1 H isometry 



13

Then

|K(i)| = |i| = 1

|K(i)− 1| = |i− 1| =
√

2.

These two equations tell us that K(i) is either i or −i. This can be seen from
a geometric point of view, by noticing that K(i) is both on the unit circle
around the origin 0 and on a circle of radius

√
2 around 1. Alternatively,

multiplying out (K(i) − 1)(K(i)− 1) = 2 and simplifying the expression
obtained with K(i)K(i) = 1 leads to the same conclusion.

If K(i) = i, then by Lemma 1, we have that

K(z) = z ⇒ H(z) = αz + β.

If instead K(i) = −i, then K(z) is an isometry that fixes 0, 1, i hence

K(z) = z ⇒ K(z) = z, ∀z ∈ C,

and in this case
H(z) = αz + β.

Let us stare at the statement of the theorem we just proved for a little bit.
It says that every planar isometry has a particular form, and we can recognize
some of the planar isometries that come to our mind (rotations around the
origin, reflections around either the x- and y-axis, translations,...). But then,
since we cannot think of other transformations, does it mean that no other
exists? One can in fact prove the following:

Theorem 2. Any planar isometry is either

1. a pure translation,

2. a pure rotation about some center z0,

3. a reflection about a general line,

4. a glide reflection (that is, a reflection followed by a translation).

We will come back to this theorem later!
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Main Result (III) 

 

• K(0)=α-1 (H(0)-β) =0 

 

• K(1)=α-1 (H(1)-β) =1 

• K(i) =?  

• We know:|K(i)|=|i|=1 

 

• We also know |K(i)-1|=|i-1|=√2    

                   K(i)=i or -i. 

 

β=H(0) 

β=H(0), α=H(1)-H(0) 
Why are we computing 

that? Remember the 
lemma… K isometry 

K isometry 

Main  Result (IV) 

• If K(i)=i, then by the previous lemma, we know that K(z)=z. 

• K(z)= α-1 (H(z)-β) =z             H(z) =αz+β 

• If K(i)=-i, then                                        

• Also                                                       

• Again by the previous lemma, we know that                 

• Equivalently : K(z)=    

•  K(z)= α-1 (H(z)-β) =             

              H(z)= α    +β.     

 

                                                                                                      QED                  

,)( iiK  0)0(,1)1(  KK

|||)()(||)()(| wzwKzKwKzK 

zzK )(

z

z

z
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Next we shall show an easy consequence.

Theorem 3. Any planar isometry is invertible.

Proof. We check by direct computation that both possible formulas for isome-
tries, namely

H(z) = αz + β and H(z) = αz + β, α = eiθ, β ∈ C

are invertible. If z′ = H(z) = αz + β, then

z = H−1(z′) =
z′ − β
α

= e−iθ(z′ − β).

If instead z′ = H(z) = αz + β, then

z =
z′ − β
α

= e−iθ(z′ − β)

and
z = H−1(z′) = e−iθ(z′ − β).

Remark. It is important to note that we have shown that a planar isometry
is a bijective map. In general, one can define an isometry, but if it is not
planar (that is, not from R2 to R2), then the definition of isometry usually
includes the requirement that the map is bijective by definition. Namely a
general isometry is a bijective map which preserves distances.

We now show that we can compose isometries, i.e. apply them one after
the other, and that the result of this combination will yield another isometry,
i.e., if H1 and H2 are two isometries then so is H2H1.

Here are two ways of doing so.

First proof. We can use the definition of planar isometry. We want show
that H2H1 is an isometry. We know that

|H2(H1(z))−H2(H1(w))| = |H1(z)−H1(w)|,
because H2 is an isometry, and furthermore

|H1(z)−H1(w)| = |z − w|,
this time because H1 is an isometry. Thus

|H2(H1(z))−H2(H1(w))| = |z − w|,
for any z, w ∈ C which completes the proof.
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Corollary 

Corollary Any planar isometry is invertible. 

 

Proof We know by the theorem: every isometry H is of the form 

• H(z)= αz + β, or 

• H(z)=α    + β. 

Let us compute H-1 in the first case.  

• Define H-1(y)=(y-β)α-1  

• Check! H(H-1(y))=H((y-β)α-1)=y. 

• Other case is done similarly!          
                                                                                                     QED  
 

 

 

z

Combining Isometries 

• The composition of two isometries is again an isometry! 

• Let H and F be two isometries, then F(H(z)) is the composition 
of F and H.  

• We have |F(H(z))-F(H(w))|=|H(z)-H(w)|=|z-w|. 

  F isometry  H isometry 
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Second proof. Alternatively, since H1, H2 both have two types (we know
that thanks to Theorem 1), there are 4 cases to be verified.

1. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2),

2. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2),

3. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2),

4. H2(H1(z)) = α2(α1z + β1) + β2 = (α2α1)z + (α2β1 + β2).

Note that isometries do not commute in general, that is

H2(H1(z)) 6= H1(H2(z))

since for example α2β1 + β2 6= α1β2 + β1.
But we do have associativity, i.e.

H3(H2(H1(z))) = (H3H2)(H1(z)) = H3(H2H1(z)).

We also see that the identity map 1 : z 7→ 1(z) = z is an isometry, and when
any planar isometry H is composed with its inverse, we obtain as a result
the identity map 1:

H(H−1(z)) = 1(z)

H−1(H(z)) = 1(z).

What we have proved in fact is that planar isometries form a set of maps
which, together with the natural composition of maps, have the following
properties:

1. associativity,

2. existence of an identity map (that is a map 1 such that when combined
with any other planar isometry H does not change H: H(1(z)) =
1(H(z)) = z),

3. inverse for each map.

As we shall see later, this proves that the set of isometries together with
the associative binary operation of composition of isometries is a group.
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Exercises for Chapter 1

Exercise 1. Let X be a metric space equipped with a distance d. Show that
an isometry of X (with respect to the distance d) is always an injective map.

Exercise 2. Show that an isometry of the complex plane that fixes three
non-colinear points must be the identity map.

Exercise 3. In this exercise, we study the fixed points of planar isometries.

1. Recall the general formula that decribes isometries H of the complex
plane.

2. Determine the fixed points of these transformations. Discuss the vari-
ous cases that arise.


