
Chapter 2

Symmetries of Shapes

“Symmetries delight, please and tease !” (A.M. Bruckstein)

In the previous chapter, we studied planar isometries, that is maps from
R2 to R2 that are preserving distances. In this chapter, we will focus on
different sets of points in the real plane, and see which planar isometries are
preserving them.

We are motivated by trying to get a mathematical formulation of what
is a “nice” regular geometric structure. Intuitively we know of course! We
will see throughout this lecture that symmetries explain mathematically the
geometric properties of figures that we like.

Definition 3. A symmetry of a set of points S in the plane is a planar
isometry that preserves S (that is, that maps S to itself).

Note that “symmetries” also appear with letters and numbers! For ex-
ample, the phrase

NEV ER ODD OR EV EN
-

�

reads the same backwards! It is called a palindrome.
The same holds for the number 11311 which happens to be a prime num-

ber, called a palindromic prime.
Palindromes can be seen as a conceptual mirror reflection with respect to

the vertical axis, which sends a word to itself.
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What is structure? 

One intuitively knows … 
that this is structured…                                  and this is random. 

Symmetry 

     A symmetry of a set of points S is a planar isometry that 
preserves the set S (that is, that maps S to itself).         

Among planar isometries, which can be symmetries of finite sets?  

• Translations 
• Rotations 
• Reflections 
• The identity map! 
• Combinations of the above 
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Recall from Theorem 2 that we know all the possible planar isometries,
and we know the composition of planar isometries is another planar isometry!
All the sets of points that we will consider are finite sets of points centered
around the origin, thus we obtain the following list of possible symmetries:

• the trivial identity map 1 : (x, y) 7→ (x, y),

• the mirror reflections mv : (x, y) 7→ (−x, y), mh : (x, y) 7→ (−x, y)
with respect to the y-axis, respectively x-axis, and in fact any reflection
around a line passing through the origin,

• the rotation rω about 0 counterclockwise by an angle ω

rω : (x, y) 7→
[

cosω − sinω
sinω cosω

] [
x
y

]
= (x cosω − y sinω, x sinω + y cosω) .

Translations are never possible! Consider first the set of points

S = {(a, 0), (−a, 0)}
(shown below) and let us ask what are the symmetries of S.

6

-"!
# 

x

y

v (a, 0)v(−a, 0)

Clearly the identity map is one, it is a planar isometry and 1S = S.
The mirror reflection mv with respect to the y-axis is one as well, since
mv is a planar isometry, and

mv(a, 0) = (−a, 0), mv(−a, 0) = (a, 0)⇒ mv(S) = S,

that is S, is invariant under m. Now choosing ω = π, we have

rπ(x, y) = (x cos π − y sin π, x sin π + y cos π) = (−x,−y) ,

and
rπ(a, 0) = (−a, 0), rπ(−a, 0) = (a, 0)⇒ rπ(P ) = mv(P )

for both points P ∈ S, which shows formally that rotating counterclockwise
these two points by π about 0 is the same thing as flipping them around the
y-axis.
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Symmetries of Two Aligned Points (I) 

Consider the set of points 
S={(a,0),(-a,0)}. 
What are its symmetries? 
 

1. The identity map 1 is a 
trivial symmetry of S! 

2. Reflection mv with respect 
to the y-axis 

     (a,0)→(-a,0),(-a,0)→(a,0) 

(a,0) (-a,0) 

Symmetries of Two Aligned Points (II) 

Have we found all its symmetries?  
 

(a,0) (-a,0) 

YES! 

1 m 

1 1 m 

m m 1=m2    

Combining these symmetries does not give 
a new symmetry! We  summarize these 
symmetries using a multiplication table. 
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We have identified that the set S = {(a, 0), (−a, 0)} has 2 symmetries.
These are 1 and mv, or 1 and rπ. We know that planar isometries can be
composed, which yields another planar isometry. Then symmetries of S can
be composed as well, and here we might wonder what happens if we were to
compose mv with itself:

mv(mv(x, y)) = mv(−x, y) = (x, y)

which shows that mv(mv(x, y)) = 1(x, y). We summarize the symmetries of
S = {(a, 0), (−a, 0)} using a multiplication table:

1 mv

1 1 mv

mv mv 1 = m2
v

The multiplication table is read from left (elements in the column) to right
(elements in the row) using as operation the composition of maps.

Let us collect what we have done so far. We defined a set of points
S = {(a, 0), (−a, 0)} and we looked at three transformations 1,mv and rπ
which leave the set of points of S ∈ R2 invariant:

1S = S
mvS = S
rπS = S

(2.1)

We saw that for this particular choice of S, we have that rπ(P ) = mv(P ) for
both points P ∈ S.

The transformations are however different if we look at a “test point”
(x0, y0) /∈ S 

1(x0, y0)→ (x0, y0)
m(x0, y0)→ (−x0, y0)
rπ(x0, y0)→ (−x0,−y0)

In fact, one may wonder what happens if we choose for S other sets of
points, for example, different polygons. As our next example, we will look
at a rectangle S. We write the rectangle S as

S = {(a, b), (−a, b), (−a,−b), (a,−b)} , a 6= b, a, b 6= 0. (2.2)

(It is important that a 6= b! see (2.3 if a = b).)
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Symmetries of different shapes… 

• Let us start with geometric objects: 

Symmetries of the Rectangle (I) 

• Let m be the vertical mirror reflection. 

• Let r be a rotation of 180 degrees. 

• Let 1 be the do-nothing symmetry. 

• What is rm?  

 

 

 

a b 

c d 

a b 

c d 

c 

a b 

d 

This is the 
horizontal 
mirror 
reflection! 
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Let us apply mv on S:

mv(a, b) = (−a, b), mv(−a, b) = (a, b),

mv(−a,−b) = (a,−b), mv(a,−b) = (−a,−b)
as well as rπ:

rπ(a, b) = (−a,−b), rπ(−a, b) = (a,−b),
rπ(−a,−b) = (a, b), rπ(a,−b) = (−a, b).

These two maps are different and have different effects on S since rπ(a, b) =
(−a,−b) 6= (−a, b) = mv(a, b). We now try to compose them. We already
have mv(mv(x, y)) = 1(x, y), and

rπ (rπ(x, y)) = rπ(−x,−y) = (x, y) = 1(x, y).

We continue with

rπ (mv(x, y)) = rπ(−x, y) = (x,−y), mv (rπ(x, y)) = mv(−x,−y) = (x,−y)

which both give a horizontal mirror reflection mh, also showing that

rπmv = mvrπ = mh,

i.e., the transformations rπ and mv commute. In turn, we immediately have

(rπmv)
2 = rπmvrπmv = rπmvmvrπ = rπ1rπ = rπrπ = 1.

The rules for combining elements from {1,mv, rπ,mvrπ}
mv1 = mv = 1mv

rπ1 = rπ = 1rπ
m2
v = 1

r2π = 1
mvrπ = rπmv

show that no new transformations will ever be obtained since we have

r(αi)
π = rαi mod 2

π , m(βi)
v = mβi mod 2

v , πα1mβ1
v r

α2
π m

β2
v · · · = r(

∑
αi) mod 2

π m(
∑
βi) mod 2

v .

Hence we have obtained a complete set of transformations for the shape S
summarized in its multiplication table (we write m = mv for short):

1 m rπ mrπ

1 1 m rπ mrπ
m m 1 mrπ rπ
rπ rπ mrπ 1 m
mrπ mrπ rπ m 1
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Symmetries of the Rectangle (II) 

We thus have identified 4 symmetries: 

• 1=the identity map 

• m=vertical mirror reflection 

• r=rotation of 180 degrees 

• rm=horizontal mirror reflection 

 

Note that 

• m2=1 

• r2=1 

• (rm)2=1 

• rm=mr 

 

 

Symmetries of the Rectangle (III) 

1 r m rm 

1 1 r m rm 

r r 1 rm m 

m m rm 1 r 

rm rm m r 1 
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We next study the symmetries of a square, that is we consider the set

S4 : {(a, a), (−a, a), (a,−a)(−a,−a)} (2.3)

(this is the case where a = b in (2.2)).
As for the two previous examples, we first need to see what are all the

planar isometries we need to consider. There are four mirror reflections that
map S4 to itself:

m1 = mv : (x, y) 7→ (−x, y) with respect to the y-axis

m2 : (x, y) 7→ (y, x) with respect to the line y = x

m3 = mh : (x, y) 7→ (x,−y) with respect to the x-axis

m4 : (x, y) 7→ (−y,−x) with respect to the line y = −x

Note that
mi(mi(x, y)) = 1(x, y), i = 1, 2, 3, 4.

There are also three (counterclockwise) rotations (about the origin 0=(0,0)):

rπ/2 : (x, y) 7→ (x cosπ/2− y sinπ/2, x sin π/2 + y cosπ/2) = (−y, x)

rπ : (x, y) 7→ (x cosπ − y sin π, x sin π + y cos π) = (−x,−y)

r3π/2 : (x, y) 7→ (x cos 3π/2− y sin 3π/2, x sin 3π/2 + y cos 3π/2) = (y,−x)

and r2π = 1. Rotations are easy to combine among each others! For example

rπ = rπ/2rπ/2

r3π/2 = rπ/2rπ/2rπ/2

and we can give the part of the multiplication table which involves only
rotations. We summarize all the rotations by picking one rotation r whose
powers contain the 4 rotations rπ/2, rπ, r3π/2, 1. We can choose r = rπ/2 and
r = r3π/2, though in what follows we will focus on r = r3π/2 = r−π/2, the
rotation of 90 degrees clockwise, or 270 degrees counterclockwise:

1 r r2 r3

1 1 r r2 r3

r r r2 r3 1
r2 r2 r3 1 r
r3 r3 1 r r2
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Symmetries of the Square (I) 

 

1. Reflection in mirror m1 

2. Reflection in mirror m2 

3. Reflection in mirror m3 

4. Reflection in mirror m4 

m3 

m1 
m2 

m4 What are the symmetries of the square? 

There is the trivial symmetry 1. 

There are mirror reflections: 

 

1. Rotation of 90 degrees 

2. Rotation of 180 degrees 

3. Rotation of 270 degrees 

There are rotations: 

Symmetries of the Square (II) 

• Let r = rotation of 90 degrees (clockwise), 270 degrees 
(counterclockwise) 

• Let m denote the horizontal mirror reflection (m=m3). 

• Let 1 be the identity map. 

 

 

Let us first look at rotations: 
r2 = rotation of 180 degrees 
r3= rotation of 270 degrees 
r4= rotation of 360 degrees =  1. 
 

We now look at the mirror reflection m: 
m2=1. 
(this is true for every mirror reflection!) 
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Let us try to compose mirror reflections with rotations. For that, we pick
first

m = mh : (x, y) 7→ (x,−y), r = r3π/2 : (x, y) 7→ (y,−x),

and compute what is rm and mr (you can choose to do the computations
with another reflection instead of mh, or with r = rπ/2 instead of r = r3π/2.)
We get

r(m(x, y)) = r(x,−y) = (−y,−x), m(r(x, y)) = m(y,−x) = (y, x)

and since S4 = {(a, a), (−a, a), (a,−a)(−a,−a)}, we see that for example

r(m(a, a)) = (−a,−a), m(r(a, a)) = (a, a)

and these two transformations are different! We also notice something else
which is interesting:

rm = m4 = reflection with respect to the line y = −x

and
mr = m2 = reflection with respect to the line y = x.

Since rm 6= mr and we want to classify all the symmetries of the square S4,
we need to fix an ordering to write the symmetries in a systematic manner.
We choose to first write a mirror reflection, and second a rotation (you could
choose to first write a rotation and second a mirror reflection, what matters
is that both ways allow you to describe all the symmetries, as we will see
now!) This implies that we will look at all the possible following symmetries,
written in the chosen ordering:

rm, r2m, r3m.

We have just computed rm, so next we have

r2m(x, y) = r2(x,−y) = r(−y,−x) = (−x, y) (2.4)

and by applying r once more on (2.4) we get

r3m(x, y) = r(−x, y) = (y, x)

showing that

r2m = reflection with respect to the y−axis

and
r3m = mr = reflection with respect to the line y = x.
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Symmetries of the Square (III) 

a b 

c 

c d 

a b 

d 

a 

c 

b 

d a 

a 

a 

b 

b 

b 

c 

c 

c 

d 

d 

d 

= rm 

= mr 

• The composition of two symmetries = another symmetry! 

• r=rotation of 90 deg (CW) or 270 deg (CCW), m=horizontal 
reflection 

m4 

m2 

Symmetries of the Square (IV) 

So what is mr? 
c 

a b 

d a 

b 

c 

d 

a b 

c d a 

c 

b 

d 

a 

b 

c 

d 

= r3 m 

•  We saw that mr is not equal to rm.  
•  Thus we need to decide an ordering to write the  symmetries.     
•  We choose rm,r2m,r3m. 
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It is a good time to start summarizing all what we have been doing!
Step 1. We recognize that among all the planar isometries, there are 8 of
them that are symmetries of the square S4, namely:

1. m1= reflection with respect to the y-axis,

2. m2= reflection with respect to the line y = x,

3. m3= reflection with respect to the x-axis,

4. m4= reflection with respect to the line y = −x,

5. the rotation rπ/2,

6. the rotation rπ,

7. the rotation r3π/2,

8. and of course the identity map 1!

Step 2. We fixed m = m3 and r = r3π/2 and computed all the combinations
of the form rimj, i = 1, 2, 3, 4, j = 1, 2, and we found that

rm = m4

r2m = m1

r3m = m2

which means that we can express all the above 8 symmetries of the square
as rimj, and furthermore, combining them does not give new symmetries!

We can thus summarize all the computations in the following multiplica-
tion table.

1 m r r2 r3 rm r2m r3m

1 1 m r r2 r3 rm r2m r3m
m m 1 r3m r2m rm r3 r2 r
r r rm r2 r3 1 r2m r3m m
r2 r2 r2m r3 1 r r3m m rm
r3 r3 r3m 1 r r2 m rm r2m
rm rm r m r3m r2m 1 r3 r2

r2m r2m r2 rm m r3m r 1 r3

r3m r3m r3 r2m rm m r2 r 1
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Symmetries of the Square (V) 

1 m r r2 r3 rm r2m r3m 

1 1 m r r2 r3 rm r2m r3m 

m m 1 r3m r2m rm r3 r2 r 

r r rm r2 r3 1 r2m r3m m 

r2 r2 r2m r3 1 r r3m m rm 

r3 r3 r3m 1 r r2 m rm r2m 

rm rm r m r3m r2m 1 r3 r2 

r2m r2m r2 rm m r3m r 1 r3 

r3m r3m r3 r2m rm m r2 r 1 

Symmetries and Structure 

A figure with many symmetries looks more structured! 
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In the first chapter, we defined and classified planar isometries. Once
we know what are all the possible isometries of plane, in this chapter, we
focus on a subset of them: given a set of points S, what is the subset of
planar isometries that preserves S. We computed three examples: (1) the
symmetries of two points, (2) the symmetries of the rectangle, and (3) that
of the square. We observed that the square has more symmetries (8 of them!)
than the rectangle (4 of them). In fact, the more “regular” the set of points
is, the more symmetries it has, and somehow, the “nicer” this set of points
look to us!
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Exercises for Chapter 2

Exercise 4. Determine the symmetries of an isosceles triangle, and compute
the multiplication table of all its symmetries.

Exercise 5. Determine the symmetries of an equilateral triangle, and com-
pute the multiplication table of all its symmetries.

Exercise 6. Determine the symmetries of the following shape, and compute
the multiplication table of all its symmetries.

Exercise 7. Let z = e2iπ/3.

1. Show that z3 = 1.

2. Compute the multiplication table of the set {1, z, z2}.

3. Compare your multiplication table with that of Exercise 6. What can
you observe? How would you interpret what you can see?


