
Chapter 5

More Group Structures

“The theory of groups is a branch of mathematics in which one
does something to something and then compares the results with
the result of doing the same thing to something else, or something
else to the same thing. Group theory lets you see the similarities
between different things, or the ways in which things can’t be dif-
ferent, by expressing the fundamental symmetries.”(J. Newman,
Mathematics and the Imagination.)

In the 4 previous chapters, we saw many examples of groups, coming from
planar isometries and from numbers. In Chapter 4, we started to classify a
bit some of our examples, using the notion of group isomorphism. The goal
of this chapter is to continue this classification in a more systematic way!

What happened in Examples 10 and 11 is that the three groups considered
(the integers mod 4, the 4rth roots of unity, and the rotations of the square)
are all cyclic of order 4. As we shall see next, all cyclic groups of a given
order are in fact isomorphic. Hence, from a structural point they are the
same. We shall call the equivalent (up to isomorphism) cyclic group of order
n, or the infinite cyclic group, as respectively

the cyclic group Cn of order n if n <∞, or the infinite cyclic group C∞ otherwise.

Theorem 6. Any infinite cyclic group is isomorphic to the additive group
of integers (Z,+). Any cyclic group of order n is isomorphic to the additive
group (Z/nZ,+) of integers mod n.

Before starting the proof, let us recall that (Z,+) is cyclic, since Z =
〈1〉 = 〈−1〉. Its order is |Z| =∞.
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The Cyclic Group C
n 

• We just saw 3 cyclic groups of order 4, all of them with same 
multiplication table. They are essentially the “same group”, 
thus to analyze them, there is no need to distinguish them. 

Theorem. An infinite cyclic group is isomorphic to the additive 
group of integers, while a cyclic group of order n is isomorphic 
to the additive group of integers modulo n. 

This is also saying that there is exactly one cyclic group (up 
to isomorphism) whose order is n, denoted by Cn and there 
is exactly one infinite cyclic group. 

Proof of Theorem 

Part 1 

• Let G be an infinite cyclic group, G=<x>, g of order infinite. 
Define the map f:{group of integers}→G, f(n)=xn. 

• This is a group homorphism: f(m+n)= xn+m = xn xm=f(m)f(n). 

• This is a bijection, thus we have a group isomorphism. 

 

 

 

 

A cyclic group is generated by one 
element (multiplicative notation) 

Part 2 
•  Let G be a cyclic group of order n, G=<x>, with g of order n.  
    Define the map f:{group of integers mod n}→G, f(n)= xn. 
•  This is a group homorphism: f(m+n)= xn+m = xn xm=f(m)f(n). 
•  This is a bijection, thus we have a group isomorphism. 
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Proof. Let G be a cyclic group. Whether it is finite or not, a cyclic group is
generated by one of its elements g, i.e., 〈g〉 = G. Define the map{

f : Z→ G, k 7→ f(k) = gk if |G| =∞
f : Z/nZ→ G, k 7→ f(k) = gk if |G| = n <∞.

Note that f : Z/nZ → G is well-defined, since it does not depend on the
choice of k as a representative of the equivalence class of k mod n. Indeed,
if k′ ≡ k mod n, then k′ = k + sn for some integer s, and

f(k′) = f(k + sn) = gk+sn = gkgsn = gk.

This map is bijective (one-to-one and onto) and

f(k + l) = gk+l = gk · gl = f(k) · f(l),

hence it is a homomorphism that is bijective. It is then concluded that f is
an isomorphism between the integers and any cyclic group.

Example 12. With this theorem, to prove that the integers mod 4, the 4rth
roots of unity, and the rotations of the square are isomorphic, it is enough
to know that are all cyclic of order 4. Thus

C4 ' (Z/4Z,+) ' (ω(4), ·) ' (rotations of the square, ◦).

We can summarize the cyclic groups encountered so far:

group Cn order n
integers mod n (+) Cn order n
nth roots of unity (·) Cn order n
rotations of regular polygons with n sides Cn order n
symmetries of isosceles triangles C2 order 2
(Z,+) C∞ infinite order

Now that we know that cyclic groups are all just instances of the abstract
cyclic group Cn for some n ∈ N or n = ∞, we can ask ourselves how much
structure exists in Cn as a function of the properties of the number n ∈ N.
This is important, because every instance of Cn will naturally inherit the
structure of Cn! We start with the subgroups of Cn.
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Idea of the Proof 

1=g0 g-1 g1 g2 g-2 

-2                -1              0               1                2 

integers 

cyclic group 
         <g> 

f 

Cyclic Groups seen so far 

Group order Cn 

integers mod n n Cn 

nth roots of unity n Cn 

Symmetries of the 
isosceles triangle 

2 C2 

 

Subgroup of rotations of 90 
degrees of the square 

4 C4 

 

Subgroup {0,2} of the 
integers mod 4 

2 C2 
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Theorem 7. Subgroups of a cyclic group are cyclic.

Proof. Let (G, ·) be a cyclic group, denoted multiplicatively, finite or infinite.
By definition of cyclic, there exists an element g ∈ G so that G = 〈g〉. Now
let H be a subgroup of G. This means that H contains 1. If H = {1}, it is a
cyclic group of order 1. If H contains more elements, then necessarily, they
are all powers of g. Let m be the smallest positive power of g that belongs
to H, i.e., gm ∈ H (and g, g2, . . . , gm−1 /∈ H). We must have by closure
that 〈gm〉 is a subgroup of H. Assume for the sake of contradiction that
there exists gt ∈ H, t > m and gt /∈ 〈gm〉. Then by the Euclidean division
algorithm,

t = mq + r, 0 < r < m− 1.

Therefore
gt = gmq+r = gmqgr ∈ H,

and since gmq is invertible, we get

g−mq︸︷︷︸
∈H

gt︸︷︷︸
∈H

= gr ⇒ gr ∈ H.

But r is a positive integer smaller than m, which contradicts the minimality
of m. This shows that g must belong to 〈gm〉 (i.e., r = 0) and hence 〈gm〉
will contain all elements of the subgroup H, which by definition is cyclic and
generated by g.

We next study the order of elements in a cyclic group.

Theorem 8. In the cyclic group Cn, the order of an element gk where 〈g〉 =
Cn is given by |gk| = n/ gcd(n, k).

Proof. Recall first that g has order n. Let r be the order of gk. By definition,
this means that (gk)r = 1, and r is the smallest r that satisfies this. Now
we need to prove that r = n/ gcd(n, k), which is equivalent to show that (1)
r| n

gcd(n,k)
and (2) n

gcd(n,k)
|r.

Step 1. We know that gkr = 1 and that g has order n. By definition of
order, kr ≥ n. Suppose that kr > n, then we apply the Euclidean division
algorithm, to find that

kr = nq + s, 0 ≤ s < n⇒ gkr = gnqgs = gs ∈ G

and s must be zero by minimality of n. This shows that n | rk .
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Subgroups of a Cyclic Group 

Proposition  

Subgroups of a cyclic group are cyclic. 

Proof.  G is a cyclic group, so G=<x>. Let H be a subgroup of G. If 
H={1}, then it is cyclic. Otherwise, it contains some powers of x.  
We denote by m the smallest power of x in H, and <xm> ≤ H. 

<xm> subgroup 
of H 

Let us assume that there is some other xi in H, then 
by minimality of m, i>m, and we can compute the 
Euclidean division of i by m: xi = xmq+r, 0 ≤r<m.  

Thus xr in H and by minimality of m, r=0, so that xi = xmq and 
every element in H is in <xm> . 

A cyclic group is generated by one 
element (multiplicative notation) 

Order of  Elements in a Cyclic Group 

Proposition. Let G be a cyclic group of order n, generated by g.  

Then the order of gk  is |gk|=n/gcd(n,k).  

Before we start the proof, let us check this statement makes sense! 

  If k =n, then gk = gn =1 and n/gcd(n,k)=n/n=1 thus |1|=1. 
  If k=1, then gk =g and n/gcd(n,k)=n thus |g|=n. 

Recall that G is cyclic generated by g means that G={1, g, g2,…, 
gn-1}, and gn=1. 

Order is the smallest positive 
integer r such that (gk)r is 1 
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Step 2. Using
gcd(n, k)|n and gcd(n, k)|k,

with n|kr, we get n
gcd(n,k)

| k
gcd(n,k)

r.

Step 3. But gcd( n
gcd(n,k)

, k
gcd(n,k)

) = 1 from which we obtain n
gcd(n,k)

|r
which conclude the proof of (2)! We are now left with (1), namely show that
r must divide n/ gcd(n, k).
Step 4. Note that

(gk)n/ gcd(n,k) = (gn)k/ gcd(n,k) = 1.

Now we know that r is the smallest integer that satisfies (gk)r = 1 thus
n/ gcd(n, k) ≥ r, and using again the Euclidean division algorithm as we did
in Step 1, we must have that

n

gcd(n, k)
= qr + s⇒ (gk)

n
gcd(n,k) = (gk)qr+s, 0 ≤ s < r.

This would imply
1 = 1 · gs ⇒ s = 0.

Hence r| n
gcd(n,k)

.

Example 13. The order of 1 is |1| = |gn| = n
gcd(n,n)

= 1, and the order of g

is |g| = n
gcd(n,1)

= n.

Combining the fact that a cyclic group of order n has cyclic subgroups
generated by its elements {gk}, and the fact that the orders of these elements
are |gk| = n/ gcd(n, k), we can prove one more result regarding the order of
subgroups in a cyclic group.

Theorem 9. The order of a (cyclic) subgroup of a group Cn divides the order
of the group.

Proof. We have seen in Theorem 7 that if G = 〈g〉 and H is a subgroup of
G, then

H = 〈gm〉
for some m. We have also seen in Theorem 8 that |gm| is n/ gcd(n,m), hence
|H| = |gm| = n

gcd(n,m)
. Now by definition,

n

gcd(n,m)
|n.
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Proof of the Proposition 

• Given gk, we have to check that its order r is n/gcd(k,n). This is 
equivalent to show that r| n/gcd(k,n) and n/gcd(k,n) | r. 

•   Step 1 : gk  has order r means gkr = 1, which implies n | kr. 

•  Step 2:  gcd(k,n) |k and gcd(k,n)|n thus n/gcd(k,n) | (k/ gcd(k,n))r. 

•  Step 3 : n/gcd(k,n)  and k/gcd(k,n) are coprime thus n/gcd(k,n)|r. 

•  Step 4: only left to show that r | n/gcd(k,n). But (gk )n/gcd(k,n)=1 
thus r | n/gcd(k,n) [if you understood Step 1, this is the same 
argument!]   

n is the smallest integer such that gn =1, thus if gkr =1, kr>n and by Euclidean 
division, kr =nq+s, 0 ≤s<n. But then 1=gk r= gnq+s = gs showing that s=0 my 
minimality of n.    

Order of Subgroups in a Cyclic Group 

• We have seen: every subgroup of a cyclic group is cyclic, and if 
G is cyclic of order n generated by g, then gk  has order 
n/gcd(k,n). 

• What can we deduce on the order of subgroups of G? 

•Let H be a subgroup of G. Then H is cyclic by the first result. 
•Since H is cyclic, it is generated by one element, which has to be 
some power of g, say gk. 
•Thus the order of H is the order of its generator, that is n/gcd(n,k). 
 

In particular, the order of a subgroup divides 
the order of the group! 
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The beauty of these results is that they apply to every instance of the
cyclic group Cn. One may work with the integers mod n, with the nth roots
of unity, or with the group of rotations of a regular polygon with n sides, it
is true for all of them that

• all their subgroups are cyclic as well,

• the order of any of their elements is given by Theorem 8,

• and the size of every of their subgroups divides the order of the group.

If we think of the type of searches we did in the first chapters, where we were
looking for subgroups in the Cayley tables, it is now facilitated for cyclic
groups, since we can rule out the existence of subgroups which do not divide
the order of the group!

Example 14. Let us see how to use Theorem 8, for example with 4rth roots
of unity. We know that −1 = i2, thus n = 4, k = 2, and the order of −1 is

n

gcd(n, k)
=

4

2
= 2,

as we know!

Example 15. Let us see how to use Theorem 8, this time with the integers
mod 4. Let us be careful here that the notation is additive, with identity
element 0. Recall that the integers mod 4 are generated by 1. Now assume
that we would like to know the order of 3 mod 4. We know that k = 3 and
n = 4, thus

n

gcd(n, k)
=

4

1
= 4,

and indeed

3+3 = 6 ≡ 2 mod 4, 3+3+3 = 9 ≡ 1 mod 4, 3+3+3+3 = 12 ≡ 0 mod 12.

This might not look very impressive because these examples are small
and can be handled by hand, but these general results hold no matter how
big Cn is!
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Examples 

   Thus these results apply to all the cyclic groups we have seen: 

• nth roots of unity  

• integer mod n 

• rotations of 2π/n 

4rth root of unity/ Integers mod 4 

• We saw that i is a primitive root, thus it generates the cyclic 
group of 4rth roots of unity. 

• To determine the order of -1, we notice that -1= i2.  

• Now we only need to compute n/gcd(n,k)=4/gcd(4,2)=2. 

• What is the order of 3 mod4 ? 

• We recall that the integers mod 4 are generated by 1. 

• Thus 3=k, n=4, and we compute n/gcd(k,n)=4/gcd(3,4)=4. 
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We will now start thinking the other way round! So far, we saw many
examples, and among them, we identified several instances of the cyclic group
Cn (integers mod n with addition, nth roots of unity with multiplication,
rotations of regular polygons with n sides...). We also saw that Cn exists for
every positive integer n. Surely, there are more groups than cyclic groups,
because we know that the group of symmetries of the equilateral triangle
seen in the exercises (let us call it D3 where 3 refers to the 3 sides of the
triangle) and the group of symmetries of the square (let us call it D4, where
4 again refers to the 4 sides of the square) are not cyclic, since they are not
abelian! (and we proved that a cyclic group is always abelian...) The “D”
in D3 and D4 comes from the term “dihedral”.

order n abelian non-abelian
1 C1 ' {1}
2 C2

3 C3

4 C4

5 C5

6 C6 D3

7 C7

8 C8 D4

The next natural question is: what are possible other groups out there?
To answer this question, we will need more tools.

Definition 13. Let (G, ·) be a group and let H be a subgroup of G. We call
the set

gH = {gh|h ∈ H}

a left coset of H.

We have that gH is the set of elements of G that we see when we multiply
(i.e., combine using the group operation ·) the specific element g ∈ G with
all the elements of H. Similarly, a right coset of H is given by

Hg = {hg|h ∈ H}.

If the group is not abelian, there is a need to distinguish right and left cosets,
since they might not be the same set!
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Classification so far 

Order abelian groups non-abelian groups 

1 {1} x 

2 C2 

3 C3 

4 C4 

5 C5 

6 C6 D3 

7 C7 

8 C8 D4 

infinite 

Find more groups: either we look for some other examples, or 
for some more structure! 

More Structure: Cosets 

Let G be a group, and H a subgroup of G. 

The set  gH={gh, h in H} is called a left coset of H. 

The set Hg={hg, h in H} is called a right coset of H. 

For example: take G to be the dihedral group D4, and 
H=<r>={1,r,r2,r3}. Then <r>m ={m,rm,r2m,r3m} is a right coset of H. 

The operation used is the binary 
operation of the group! 
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It might help to think of a coset as a “translation of a subgroup H” by
some element g of the group.

Example 16. Let G be the group of integers mod 4, and let H be the
subgroup {0, 2}. The coset 1 +H is 1 +H = {1, 3}.

Example 17. Let G be the group of symmetries of the square, denoted by
D4, and let H be the subgroup {1, r, r2, r3} of rotations. The coset Hm is
Hm = {m, rm, r2m, r3m}.

Let us see a few properties of cosets.

Lemma 2. Let G be a group, and H be a subgroup.

1. For every g ∈ G, g ∈ gH and g ∈ Hg.

2. We have gH = H if and only if g ∈ H.

Proof. 1. Since H is a subgroup, 1 ∈ H, hence g · 1 ∈ gH that is g ∈ gH.
Similarly 1 · g ∈ Hg showing that g ∈ Hg.

2. Suppose first that g ∈ H. Then gH consists of elements of H, each
of them multiplied by some element g of H. Since H is a subgroup,
gh ∈ H and gH ⊂ H. To show that H ⊆ gH, note that

g−1h ∈ H ⇒ g(g−1h) ∈ gH ⇒ h ∈ gH

for every h ∈ H!
Conversely, if gH = H, then gh ∈ H for every h, and g · 1 ∈ H.

The next lemma tells us when two cosets are the same set!

Lemma 3. Let G be a group with subgroup H. Then

g1H = g2H ⇐⇒ g−11 g2 ∈ H, g1, g2 ∈ G.

Proof. If g1H = g2H, then {g1h|h ∈ H} = {g2h|h ∈ H} and there exists an
h ∈ H such that g1h = g2 · 1, which shows that h = g−11 g2 ∈ H.

Conversely, if g−11 g2 ∈ H, then g−11 g2 = h ∈ H and g2 = g1h which shows
that g2H = g1hH = g1H, where the last equality follows from the above
lemma.
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How to Visualize Cosets? 

     Write a left coset using the additive notation of the binary 
operation of the group, that is  

                                    g+H={g+h, h in H}. 

      Then a coset of H can be seen as a translation of H! 

 
G= {0,1,2,3} integers modulo 4 
H={0,2} is a subgroup of G. 
The coset 1+H  = {1,3}. 
 

G 
0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G. 
The coset <r>m={m,rm,r2m,r3m} 

D4 
1  r  r2  r3 m  rm  r2m  r3m 

Same Cosets? 

Again G= {0,1,2,3} integers modulo 4, with subgroup H={0,2}. 

 

 

 All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} . 
 

Some cosets are the same! When does it happen? 

Lemma. We have g1H=g2H if and only if  g1
-1 g2 is in H. 

Proof. If g1H=g2H then g1 ·1 = g2h that is h -1 =g1
-1 g2 which shows 

that g1
-1 g2  is in H.   H is a subgroup! 

Conversely, if g1
-1 g2 is in H, then g1

-1 g2 =h for some h in H, and  
g2 = g1h which shows that g2H= g1

 hH = g1H. 



105

We next show that cosets of a given subgroup H of G have the property
of partitioning the group G. This means that G can be written as a disjoint
union of cosets! That

G =
⋃

gH

comes from the fact that g runs through every element of G (and g ∈ gH),
thus the union of all cosets gH will be the group G. To claim that we have a
partition, we need to argue that this is a disjoint union, namely that cosets
are either identical or disjoint.

Proposition 8. Let G be a group with subgroup H, and let g1, g2 be two
elements of G. Then either g1H = g2H or g1H ∩ g2H = ∅.

Proof. If the intersection of g1H and g2G is empty, we are done. So suppose
there exists an element g both in g1H and in g2H. Then

g = g1h = g2h
′

thus
g1hH = g2h

′H ⇒ g1H = g2H,

using Lemma 2.

Example 18. We continue Example 16. Let G be the group of integers mod
4, and let H be the subgroup {0, 2}. The cosets of H are 1 +H = {1, 3} and
0 +H = {0, 2}. We have

G = (1 +H) ∪ (0 +H).

Example 19. . We continue Example 17. Let G be the group of symmetries
of the square, denoted by D4, and let H be the subgroup {1, r, r2, r3} of rota-
tions. The cosets of H are Hm = {m, rm, r2m, r3m} and H = {1, r, r2, r3}.
We have

D4 = Hm ∪H.

We need a last property of cosets before proving a fundamental theorem
of group theory!
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Cosets partition the Group! 

     Let G be a group, with subgroup H, and take all the cosets gH of H.  

     Since g takes every value in G, and H contains 1, the union of all 
cosets is the whole group: G= U gH. 

We now prove that two cosets g1H and g2H  are either identical or 
disjoint!  

Suppose there exists an element g both in g1H and in g2H, then g = 
g1h =g2h’. Thus g1hH = g1H = g2h’ H=g2H. 

Cosets partition the Group: Examples 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G. 
The coset 1+H  = {1,3}. 
 

G 
0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G. 
The coset <r>m={m,rm,r2m,r3m} 

D4 
1  r  r2  r3 m  rm  r2m  r3m 

G = {0,2} U {1, 3} = H U (1+H) 
 D4 = {1,r,r2,r3} U {m  rm  r2m  r3m} 
      = <r> U <r>m 
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Proposition 9. Let G be a group with subgroup H. Then

|H| = |gH|, g ∈ G.

In words, cosets of H all have the same cardinality.

Proof. To prove that the two sets H and gH have the same number of ele-
ments, we define a bijective map (one-to-one correspondence) between their
elements. Consider the map:

λg : H → gH, h 7→ λg(h) = gh.

This map is injective (one to one): indeed

λg(h1) = λg(h2)⇒ gh1 = gh2

and since g is invertible, we conclude that h1 = h2.
This map is surjective (onto): indeed, every element in gH is of the form

gh, and has preimage h.

Example 20. We continue Example 22. Let G be the group of integers mod
4, and let H be the subgroup {0, 2}. We have

|1 +H| = |{1, 3}| = 2

|H| = |{0, 2}|.

Example 21. We continue Example 23. Let G be the group of symmetries
of the square, denoted by D4, and let H be the subgroup {1, r, r2, r3} of
rotations. We have

|Hm| = |{m, rm, r2m, r3m}| = 4,

|H| = |{1, r, r2, r3}|.

We are finally ready for Lagrange Theorem!
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Cardinality of a Coset 

     We have |gH|=|H| (the cardinality of a coset of H is the 
cardinality of H). 

The two sets gH and H are in bijection.  
Indeed, consider the map λg:H→ gH, that sends h to gh. 
•  for every gh in gH, there exists a preimage, given by h. 
•  if two elements h and h’ are mapped to the same element, 
then gh=gh’, and it must be that h=h’. 

Both steps rely on g 
being invertible! 

Cardinality of a Coset: Examples 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G.  
 

G 
0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G.  

D4 
1  r  r2  r3 m  rm  r2m  r3m 

| H |= |1+H| =2 
 |<r>| = |<r>m| 
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Theorem 10. Let G be a group and H be a subgroup of G. Then

|G| = [G : H]|H|

where [G : H] is the number of distinct left (or right) cosets of H in G. If
|G| is finite, then

[G : H] =
|G|
|H|

and |H| divides |G|.

Note that this also shows that the number of distinct left or right cosets
is the same. It is called the index of H in G.

Proof. We know that the cosets of H partition G, that is

G =
r⋃

k=1

gkH,

where r = [G : H] is the number of distinct cosets of H.
We have also seen that |gH| = |H| in Proposition 9, i.e., all the cosets

have the same cardinality as H. Therefore

|G| =
r∑

k=1

|gkH| = r|H| = [G : H]|H|.

Example 22. We finish Example 16. Let G be the group of integers mod 4,
and let H be the subgroup {0, 2}. The cosets of H are 1 + H = {1, 3} and
0 +H = {0, 2}. Then [G : H] = 2 and

|G| = [G : H]|H| = 2|H| = 4.

Example 23. . We also finish Example 17. LetG be the group of symmetries
of the square, denoted by D4, and let H be the subgroup {1, r, r2, r3} of rota-
tions. The cosets of H are Hm = {m, rm, r2m, r3m} and H = {1, r, r2, r3}.
Then [G : H] = 2 and

|D4| = [G : H]|H| = 2|H| = 8.
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Lagrange Theorem 

Joseph Louis Lagrange 
(1736 – 1813) 

Lagrange Theorem.  Let G be a group, 
then |G| =[G:H] |H|. If |G|<∞, then 
|G|/|H|=[G:H] that is  the order of a 
subgroup divides the order of the group. 

The number of cosets of H in G is called the index of H in G , 
denoted by [G:H]. 

Proof.  The cosets of H partition G, thus  
|G| = Σ |gH|. Since |gH|=|H|, we have  
|G| = Σ |H|, and thus |G|=|H|·(number of 
terms in the sum)= |H| [G:H]. 

Lagrange Theorem: Examples 

G= {0,1,2,3} integers modulo 4 

H={0,2} is a subgroup of G.  
 

G 
0        2 1       3 

D4 ={1, r,r2,r3,m,rm,r2m,r3m}  

H=<r>={1,r,r2,r3} subgroup of G.  

D4 
1  r  r2  r3 m  rm  r2m  r3m 

|G|=4= [G:H]|H|=2∙2 
 |D4|=8 = [G:H]|H|=2∙4 



111

Lagrange Theorem has many consequences.

Corollary 2. Let G be a finite group. For any g ∈ G, the order |g| of g
divides the order of the group |G|.

Proof. Consider the subgroup of G generated by g:

〈g〉 = {g, g2, · · · , g|g| = 1}.

The order of this subgroup is |g|. Hence by Lagrange Theorem, we have

|g| divides |G|.

This for example explains why the group of symmetries of the square
contains only elements of order 1,2, and 4!

Corollary 3. A group of prime order is cyclic.

Proof. Let G be a group of order p, for a prime p. This means elements of G
can only have order 1 or p. If g is not the identity element, then g has order
p, which shows that G is cyclic.

Let us now go back to our original question about finding new groups.
What we just learnt is that if the order is a prime, then there is only the
cyclic group Cp. Thus (boldface means that the classification is over for this
order):

order n abelian non-abelian
1 C1 ' {1} x
2 C2 x
3 C3 x
4 C4

5 C5 x
6 C6 D3

7 C7 x
8 C8 D4
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Corollary 1of Lagrange Theorem 

     Corollary. Let G be a finite group. The order of an element of 
G divides the order of the group. 

Proof.  Let g be an element of G. Then H=<g> is a subgroup of G, 
with order the order of g (by definition of cyclic group!). Since the 
order of H divides |G|, the order of g divides |G|. 

Example. D4 ={1, r,r2,r3,m,rm,r2m,r3m}.  
Since |D4 |=8, elements of D4 have order 1, 2, 4 (it cannot be 8 
because this is not a cyclic group!)  We also know  it for 

cyclic groups! 
|gk|=n/gcd(n,k).  

Corollary 2 of Lagrange Theorem 

Corollary. If |G| is a prime number, then G is a cyclic group. 

Proof. If |G| is a prime number p, then we know that the order 
of an element must divide p, and thus it must be either 1 or p, by 
definition of prime number. Thus every element g which is not 
the identity has order p, and G=<g>. 

Example. If |G|=3, then G must be the cyclic group C3. 
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Since we cannot find any new group of order 2 or 3, let us look at order
4.

We can use a corollary of Lagrange Theorem that tells us that in a group
of order 4, elements can have only order 1, 2 or 4.

• If there exists an element of order 4, then we find the cyclic group C4.

• If there exists no element of order 4, then all elements have order 2
apart the identity. Thus we have a group G = {1, g1, g2, g3}. Let us
try to get the Cayley table of this group. For that, we need to know
whether g1g2 is the same thing as g2g1...But g1g2 is an element of G by
closure, thus it has order 2 as well:

(g1g2)
2 = g1g2g1g2 = 1⇒ g1g2 = g−12 g−11 .

But now, because every element has order 2

g21 = 1⇒ g−11 = g1, g
2
2 = 1⇒ g−12 = g2

and we find that
g1g2 = g2g1.

Furthermore, g1g2 is an element of G, which cannot be 1, g1 or g2, thus
it has to be g3.

Let us write the Cayley table of the group of order 4 which is not cyclic.

1 g1 g2 g1g2

1 1 g1 g2 g1g2
g1 g1 1 g1g2 g2
g2 g2 g1g2 1 g1
g1g2 g1g2 g2 g1 1

We recognize the table of the symmetries of the rectangle! This group is
also called the Klein group.
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Classification so far 

Order abelian groups non-abelian groups 

1 {1} x 

2 C2 x 

3 C3 x 

4 C4 

5 C5 x 

6 C6 D3 

7 C7 x 

8 C8 D4 

infinite 

Find more groups: either we look for some other examples, or 
for some more structure: nothing new for prime orders! 

Order 4 

• By Lagrange Theorem, a group of order 4 has elements with 
order 1,2 or 4. 

•     If there exists an element of order 4, this is C4! 

•    If not, all elements different than the identity  are of order 2… 

1 g1 g2 g3=g1g2 

1 

g1 

g2 

g3=g1g2 

 

This is the 
Klein 

Group! 1 

1 

1 

1 

g2 

g1 

g1 

g2 

g2 

g3 

g3 g1 

g2 

g3 

g3 

g1 

Take g1, g2 in G={1, g1, g2, g3} thus g1g2 is in G and (g1g2)(g1g2)=1!  
This implies g1g2=g2

-1g1
-1=g2g1 and g1 commute with g2 ! 
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We can update our table of small groups:

order n abelian non-abelian
1 C1 ' {1} x
2 C2 x
3 C3 x
4 C4, Klein group x
5 C5 x
6 C6 D3

7 C7 x
8 C8 D4

Good news: we have progressed in our list of small groups, but we still
have not found a group which is not a group of symmetries (up to isomor-
phism!). We will get back to this question in the next chapter. For now, let
us see a few more applications of Lagrange Theorem.

Corollary 4. Let G be a finite group. Then

g|G| = 1

for every g ∈ G.

Proof. We have from Lagrange Theorem that |g| | |G|, thus |G| = m|g| for
some integer m and hence:

g|G| = (g|g|)m = 1m = 1.
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Classification so far 

Order abelian groups non-abelian groups 

1 {1} x 

2 C2 x 

3 C3 x 

4 C4, Klein group x 

5 C5 x 

6 C6 D3 

7 C7 x 

8 C8 D4 

infinite 

Find more groups: either we look for some other examples, or 
for some more structure: nothing new for order 4! 

Corollary 3 of Lagrange Theorem 

Corollary. If |G| is finite, then g|G| =1. 

Proof. We know that the order of an element must divide |G|, 
thus the order of g, say |g|=k,  must divide |G|, that is |G|=km 
for some m. Then g|G| = gkm = (gk )m=1. 

Example. If G=D4, then r8=1 (in fact r4=1) and m8=1 (in fact 
m2=1). 
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We continue and prove a result from number theory, known as Euler
Theorem.

Theorem 11. Let a and n be two integers. Then

aϕ(n) ≡ 1 mod n

if gcd(a, n) = 1.

Proof. If gcd(a, n) = 1, then a is invertible modulo n, and we know that the
order of the group of integers mod n under multiplication is ϕ(n). By the
previous result

a|G| = aϕ(n) ≡ 1 mod n.

Finally, another nice theorem from number theory is obtained, called
Fermat little theorem.

Corollary 5. For every integer a and every prime p, we have ap ≡ a mod p.

Proof. Just replace n by a prime p in Euler Theorem, and recall that ϕ(p) =
p− 1 by definition of ϕ(p).

The key result of this chapter is really Lagrange Theorem! Thanks to this
result and its corollaries, we have learnt a lot about the structure of a group:
(1) that the order of a subgroup always divides the order of the group, (2)
that the order of an element always divides the order of the group. We also
obtained some partial classification of groups of small orders: we showed that
for every order we have a cyclic group, and that all the groups we have seen
so far are isomorphic to groups of symmetries!

The group structure of integers modulo n, and that of invertible elements
modulo n are important in practice in the areas of coding theory and cryp-
tography. A famous example coming from cryptography is the cryptosystem
called RSA.
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Corollary 4 of Lagrange Theorem 

Euler Theorem. We have that a            =1 mod n if gcd(a,n)=1.  

Proof. Take G the group of invertible 
elements mod n. We know that its order 
is           , because a is invertible mod n if 
and only if gcd(a,n)=1. We also know 
that a|G| =1 by the previous corollary!  

Leonhard Euler 
(1707 – 1783)  

Corollary 5 of Lagrange Theorem 

Little Fermat Theorem. We have ap-1 =1 mod p for a ≠0. 

Proof.  Take n=p a prime in Euler 
Theorem. 

Pierre de Fermat 
(1601 –1665)  
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Application of Euler Theorem: RSA 

    RSA is an encryption scheme discovered by River, Shamir and 

Adleman (in 1978). 

Alice and Bob Story 

Alice and Bob want to exchange confidential data in the 
presence of an eavesdropper Eve. 



120 CHAPTER 5. MORE GROUP STRUCTURES

Alice and Bob story by xkcd 

RSA Protocol (I) 

• Select two distinct large primes p and q (“large” means 100 
digits ). 

• Compute n=pq. 

• The Euler totient function of n is           = (p-1)(q-1). 

 

 

•   Pick an odd integer e such that e is coprime to           . 
•   Find d such that ed = 1 modulo           .  

This function counts the 
integers coprime to n. 

Publish e and n as public keys, keep d private. 

e exists because it is 
coprime to the Euler 

totient function! 
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RSA Protocol (II) 

• Alice: public key = (n,e), d is private. 

• Bob sends m to Alice via the following encryption: c =me mod n. 

• Alice decrypts: m = cd mod n. 

 Why can Alice decrypt? 

Step 1 cd mod n = (me)d mod n. 

Step 2  We have  ed =1 +k          .  

Step 3 Now (me)d mod n = m 1+k               = m mod n when m is 
coprime to n. 
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Exercises for Chapter 5

Exercise 29. Let G be a group and let H be a subgroup of G. Let gH be
a coset of H. When is gH a subgroup of G?

Exercise 30. As a corollary of Lagrange Theorem, we saw that the order
of an element of a group G divides |G|. Now assume that d is an arbitrary
divisor of |G|. Is there an element g in G with order d?

Exercise 31. Take as group G any group of order 50. Does it contain an
element of order 7?

Exercise 32. Take as group G the Klein group of symmetries of the rectan-
gle. Choose a subgroup H of G, write G as a partition of cosets of H, and
check that the statement of Lagrange Theorem holds.

Exercise 33. This exercise looks at Lagrange Theorem in the case of an
infinite group. Take as group G = R and as subgroup H = Z. Compute the
cosets of H and check that the cosets of H indeed partition G. Also check
that the statement of Lagrange Theorem holds.


