
Chapter 6

Back to Geometry

“The noblest pleasure is the joy of understanding.” (Leonardo da
Vinci)

At the beginning of these lectures, we studied planar isometries, and
symmetries. We then learnt the notion of group, and realized that planar
isometries and symmetries have a group structure. After seeing several other
examples of groups, such as integers mod n, and roots of unity, we saw
through the notion of group isomorphism that most of the groups we have
seen are in fact cyclic groups. In fact, after studying Lagrange Theorem,
we discovered that groups of prime order are always cyclic, and the only
examples of finite groups we have seen so far which are not cyclic are the
Klein group (the symmetry group of the rectangle) and the symmetry group
of the square. We may define the symmetry group of a regular polygon more
generally.

Definition 14. The group of symmetries of a regular n-gon is called the
Dihedral group, denoted by Dn.

In the literature, both the notation D2n and Dn are found. We use Dn,
where n refers to the number of sides of the regular polygon we consider.

Example 24. If n = 3, D3 is the symmetry group of the equilateral triangle,
while for n = 4, D4 is the symmetry group of the square.
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Recall  so far 

 We studied planar isometries. 

 We extracted the notion of groups. 

 We saw several examples of groups: integer mod n, roots of 
unity,… 

 But after defining group isomorphism, we saw that many of 
them were just the same group in disguise: the cyclic group. 

 

 

 

 

 

 

Cyclic groups are nice, but 
haven’t we seen some other 

groups? 

The Dihedral Group D
n 

    For n >2, the dihedral group is defined as the rigid motions of 

the plane preserving a regular n-gon, with respect to 
composition. 

We saw 
 D3= group of symmetries of the equilateral triangle 
 D4= group of symmetries of the square 

(In the literature, the notation Dn  and D2n   are equally used.) 
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Recall that the group of symmetries of a regular polygon with n sides
contains the n rotations {rθ, θ = 2πk/n, k = 0, . . . , n − 1} = 〈r2π/n〉,
together with some mirror reflections. We center this regular n-sided polygon
at (0, 0) with one vertex at (1, 0) (we might scale it if necessary) and label
its vertices by the nth roots of unity: 1, ω, ω2, . . . , ωn−1, where ω = ei2π/n.
Now all its rotations can be written in the generic form of planar isometries
H(z) = αz + β, |α| = 1 as

H(z) = αz, α = ωk = ei2πk/n, k = 0, . . . , n− 1.

We now consider mirror reflections about a line l passing through (0, 0) at
an angle ϕ0, defined by l(λ) = λeiϕ0 , λ ∈ (−∞,+∞). To reflect a complex
number z = ρeiϕ about the line l, let us write zR = ρRe

iϕR for the complex
number z after being reflected. Since a reflection is an isometry, ρR = ρ. To
compute ϕR, suppose first that ϕR ≤ ϕ0. Then ϕR = ϕ+2(ϕ0−ϕ). Similarly
if ϕR ≥ ϕ0, ϕR = ϕ− 2(ϕ− ϕ0), showing that in both cases ϕR = 2ϕ0 − ϕ.
Hence

zR = ρeiϕR = ρei2ϕ0−iϕ = ei2ϕ0ρe−iϕ = ei2ϕ0z.

We now consider not any arbitrary complex number z, but when z is a
root of unity ωk. Mirror reflections that leave {1, ω, ω2, . . . , ωn−1} invariant,
that is which map a root of unity to another, will be of the form

H(ωt) = eiθω−t = ωk

where θ = 2ϕ0 depends on the reflection line chosen. Then eiθ = ωk+t =
ω(k+t)mod n = ωs, and we find the planar isometries

H(z) = ωsz̄, s = 0, 1, . . . , n− 1.

Hence, given a vertex wt, there are exactly two maps that will send it to a
given vertex wk: one rotation, and one mirror reflection. This shows that
the order of Dn is 2n.

Furthermore, defining a rotation r and a mirror reflection m by

r : z 7→ ei2π/nz = ωz, m : z 7→ z

we can write all the symmetries of a regular n-gon as

Dn = {r0 = 1, r, r2, . . . , rn−1,m, rm, rm, . . . , rn−1m}.

In particular, ωsz = rsm(z).
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The Dihedral group D
6 

Order of  D
n
 

• We know: isometries of the plane are given by z→αz + β and 
z→ α z̅ + β, |α|=1. 

• Thus an element of Dn is either z→ αz, or z→ α z̅. 

• We may write the n vertices of a regular n-gon as nth roots of 
unity: 1,w,…,wn-1. 

• Now there are exactly 2 maps that send the vertex 1 to say 
the vertex wk: z→ wk z, and z→ wk z̅. 

Thus the order of Dn is 2n. 
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These symmetries obey the following rules:

• rn = 1, that is r is of order n, and 〈r〉 is a cyclic group of order n,

• m2 = 1, that is m is of order 2, as z = z,

• rsm is also of order 2, as (rsm)(rsm)(z) = ωsωsz = ωsω−sz = z.

Since m and rsm are reflections, they are naturally of order 2, since repeating
a reflection twice gives the identity map. Now

rsmrsm = 1⇒ mrsm = r−s, ∀s ∈ {0, 1, . . . , n− 1}.

The properties
rn = 1,m2 = 1,mrm = r−1

enable us to build the Cayley table of Dn. Indeed ∀s, t ∈ {0, 1, . . . , n− 1}

rtrs = rt+s mod n, rtrsm = rt+sm = rt+s mod nm,

and

mrs = r−sm = rn−sm, rtmrsm = rtr−s = rt−s mod n, rtmrs = rtr−sm = rt−s mod nm.

We see that Dn is not an Abelian group, since rsm 6= mrs. Hence we shall
write

Dn = {〈r,m〉|m2 = 1, rn = 1,mr = r−1m},

that is, the group Dn is generated by r,m via concatenations of r’s and m’s
reduced by the rules rn = 1,m2 = 1,mrm = r−1 or mr = r−1m.

Proof. Consider any string of r’s and m’s

rr · r︸ ︷︷ ︸
s1

mm · · ·m︸ ︷︷ ︸
t1

rr · · · r︸ ︷︷ ︸
s2

mm · · ·m︸ ︷︷ ︸
t2

· · ·

=rs1mt1rs2mt2rs3mt3 · · · rskmtk .

Due to m2 = 1 and rn = 1 we shall reduce this immediately to a string of

rα1mrα2m · · · rαkm

where αi ∈ {0, 1, · · · , n − 1}. Now using mrsm = r−s gradually reduce all
such strings, then we are done.
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The Dihedral Group D
8 

Description of the Dihedral Group 

• The rotation r:z→ wz generates a cyclic group <r> of order n. 

• The reflection m: z→ z̅ is in the dihedral group but not in <r>. 

• Thus Dn = <r> U <r>m. 

• Furthermore: mrm-1(z) =mrm(z)= mr(z̅)=m(wz̅)=w̅z=w-1z= r-1(z)  

That is mrm-1 =r-1 

This shows that:  

m2=1 m(z)=z̅ r(z)=wz w root of 1 

Dn ={ <r,m> | m2=1, rn=1, mr =r-1m} 

Indeed: we know we get 2n terms with <r> and <r>m, and any 
term of the form mri can be reduced to an element in <r> or 
<r>m using mr =r-1m: mri = (mr)ri-1  = r-1mri-1  = r-1(mr)ri-2  etc 
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What happens if n = 1 and n = 2? If n = 1, we have r1 = 1, i.e., the
group D1 will be D1 = {1,m} with m2 = 1, with Cayley table

1 m

1 1 m
m m 1

This is the symmetry group of a segment, with only one reflection or one
180◦ rotation symmetry.

If n = 2 we get D2 = {1, r,m, rm}, with Cayley table

1 r m rm

1 1 r m rm
r r 1 rm m
m m rm 1 r
rm rm m r 1

This is the symmetry group of the rectangle, also called the Klein group.
Let us now look back.

• Planar isometries gave us several examples of finite groups:

1. cyclic groups (rotations of a shape form a cyclic group)

2. dihedral groups (symmetry group of a regular n-gon)

• Let us remember all the finite groups we have seen so far (up to iso-
morphism): cyclic groups, the Klein group, dihedral groups.

These observations address two natural questions:

Question 1. Can planar isometries give us other finite groups (up to
isomorphism, than cyclic and dihedral groups)?

Question 2. Are there finite groups which are not isomorphic to
subgroups of planar isometries?

We start with the first question, and study what are all the possible
groups that appear as subgroups of planar isometries.
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The Klein Group  

Christian Felix Klein (1849 –1925) 
 
 

When n=2, the description of D2 gives the group of 
symmetries of the rectangle, also called the Klein group. 

Two Natural Questions 

    Planar isometries gave us cyclic and dihedral groups. All our 

finite group examples so far are either cyclic or dihedral up to 
isomorphism. 

 
QUESTION 1:  can planar isometries give us other finite groups? 

QUESTION 2: are there finite groups which are not isomorphic 
to planar isometries? 
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For that, let us recall what we learnt about planar isometries.
From Theorem 1, we know that every isometry in R2 can be written as

H : C→ C, with

H(z) = αz + β, or H(z) = αz̄ + β, |α| = 1.

We also studied fixed points of planar isometries in Exercise 5. If H(z) =
αz + β, then

• if α = 1, then H(z) = z + β = z and there is no fixed point (apart if
β = 0 and we have the identity map), and this isometry is a translation.

• if α 6= 1, then αz + β = z ⇒ z = β
1−α , and

H(z)− β

1− α
= αz +

(
β − β

1− α

)
= α

(
z − β

1− α

)
showing that H(z) = α

(
z − β

1−α

)
+ β

1−α , that is we translate the fixed
point to the origin, rotate, and translate back, that is, we have a rota-
tion around the fixed point β

1−α .

If H(z) = αz̄ + β, we first write this isometry in matrix form as[
x′

y′

]
=

[
cos θ sin θ
sin θ − cos θ

] [
x
y

]
+

[
t1
t2

]
(6.1)

and fixed points (xF , yF ) of this isometry satisfy the equation[
xF
yF

]
=

[
cos θ sin θ
sin θ − cos θ

] [
xF
yF

]
+

[
t1
t2

]
⇐⇒

[
1− cos θ − sin θ
− sin θ 1 + cos θ

]
︸ ︷︷ ︸

M

[
xF
yF

]
=

[
t1
t2

]

The matrix M has determinant det(M) = (1− cosθ)(1 + cosθ)− sin2θ = 0.
By rewriting the matrix M as

M =

[
2sin θ

2
sin θ

2
− 2sin θ

2
cos θ

2

−2sin θ
2
cos θ

2
2cos θ

2
cos θ

2

]
= 2

[
sin θ

2

−cos θ
2

] [
sin θ

2
− cos θ

2

]
and fixed points (xF , yF ) have to be solutions of

2

[
sin θ

2

−cos θ
2

] [
sin θ

2
−cos θ

2

] [xF
yF

]
=

[
t1
t2

]
.
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First Question: Planar isometries 

• Let us assume that we are given a finite group of planar 
isometries. 

• What are all the isometries that could be in this finite group? 

Remember all the isometries of the plane we saw in the first chapter? 

  translations 
  rotations 
  reflection 
  glide reflection = composition of reflection and translation   
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If [t1, t2] = λ[sin(θ/2),− cos(θ/2)] then

2〈[xF , yF ], [sin(θ/2),− cos(θ/2)]〉 = λ⇒ xF sin(θ/2)− yF cos(θ/2) = λ/2

showing that (xF , yF ) form a line, and the isometry (6.1) is now of the form[
x′

y′

]
=

[
cos2 θ

2
− sin2 θ

2
2 sin θ

2
cos θ

2

2 sin θ
2

cos θ
2

− cos2 θ
2

+ sin2 θ
2

] [
x
y

]
+ λ

[
sin θ

2

− cos θ
2

]
=

[
cos θ

2
sin θ

2

sin θ
2
− cos θ

2

] [
1 0
0 −1

] [
cos θ

2
sin θ

2

sin θ
2
− cos θ

2

] [
x
y

]
+ λ

[
sin θ

2

− cos θ
2

]

Multiplying both sides by the matrix (rotation):

[
cos θ

2
sin θ

2

sin θ
2
− cos θ

2

]
we get

[
cos θ

2
sin θ

2

sin θ
2
− cos θ

2

] [
x′

y′

]
︸ ︷︷ ︸x̃′

ỹ′


=

[
1 0
0 −1

] [
cos θ

2
sin θ

2

sin θ
2
− cos θ

2

] [
x
y

]
︸ ︷︷ ︸x̃

ỹ


+λ

[
0
1

]

and in the rotated coordinates (x̃′, ỹ′) and (x̃, ỹ), we have x̃′ = x̃ and (ỹ′−λ
2
) =

−(ỹ− λ
2
) which shows that in the rotated coordinates this isometry is simply

a reflection about the line y = +λ
2
.

If [t1, t2] 6= λ[sin(θ/2),− cos(θ/2)], then we have no fixed points. Just like
in the previous analysis we have here[

x′

y′

]
=

[
cos θ

2
sin θ

2

sin θ
2
−cos θ

2

] [
x
y

]
+

[
t1
t2

]
and we have as before in the rotated coordinates that[

x̃′

ỹ′

]
=

[
1 0
0 −1

] [
x̃
ỹ

]
+

[
cos θ

2
sin θ

2

sin θ
2
−cos θ

2

] [
t1
t2

]
=

[
1 0
0 −1

] [
x̃
ỹ

]
+

[
m
n

]
and we recognize a translation along the direction of the reflection line x̃′ =
x̃+m and a reflection about the line y = n

2
, since (ỹ′− n

2
) = −(ỹ− n

2
). This

gives a proof of Theorem 2, which we recall here.
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Planar Isometries in a Finite Group 

• A translation generates an infinite subgroup! 

• Thus translations cannot belong to a finite group. 

• A glide reflection is the composition of a reflection and a 
translation. 
• Thus again, it generates an infinite subgroup, and cannot 
belong to a finite group. 

We are left with rotations and reflections! 
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Theorem 12. Any planar isometry is either

a) A rotation about a point in the plane

b) A pure translation

c) A reflection about a line in the plane

d) A reflection about a line in the plane and a translation along the same
line (glide reflection)

Since we are interesting in subgroups of planar isometries, we now need
to understand what happens when we compose isometries, since a a finite
subgroup of isometries must be closed under composition.

A translation T (β) is given by T (β) : z → z + β, thus

T (β2) ◦ T (β1) = (z + β1) + β2 = z + β1 + β2 = T (β1 + β2)

and translations form a subgroup of the planar isometries that is isomorphic
to (C,+) or (R2,+). The isomorphism f is given by f : T (β) 7→ β.

A rotation RΩ about a center Ω = z0 is given by

RΩ(θ)z → eiθ(z − z0) + z0,

thus

RΩ(θ2) ◦RΩ(θ1) = eiθ2(eiθ1(z − z0) + z0 − z0) + z0 = RΩ(θ1 + θ2)

which shows that rotations about a given fixed center Ω(= z0) form a sub-
group of the group of planar isometries.

We consider now the composition of two rotations about different centers:

RΩ1(θ1) = eiθ1(z − z1) + z1, RΩ2(θ2) = eiθ2(z − z2) + z2

so that

RΩ2(θ2) ◦RΩ1(θ1) = eiθ2(eiθ1(z − z1) + z1 − z2) + z2

= ei(θ2+θ1)(z − z1) + eiθ2(z1 − z2) + z2

= ei(θ1+θ2)[z − γ] + γ
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Rotations 

• Recall: to define a rotation, we fix a center, say the origin, 
around which we rotate (counter-clockwise). 

•  What if we take a rotation around a point different than 0? 

R(θ) : z → e θi z 

Rz0
(θ) : z → e θi (z-z0)+z0 

First translate z0 to the origin, then 
rotate, then move back to z0 

Rotations around Different centers 

•   What if we take two rotations around different centers? 

•  If both Rz1
(θ1) and Rz2

(θ2) are in a finite group, then both 
their composition, and that of their inverse must be there! 

Rz2
(θ2) Rz1

(θ1)(z)=ei(θ1+θ2)z – ei(θ1+θ2)z1 + eiθ2(z1-z2) +z2 

(Rz2
(θ2))-1(Rz1

(θ1))-1(z)= e-i(θ1+θ2)z – e-i(θ1+θ2)z1 + e-iθ2(z1-z2) +z2 
(Rz2

(θ2))-1(Rz1
(θ1))-1Rz2

(θ2)Rz1
(θ1)(z)=z+(z2-z1)[e-i(θ1+θ2)–(e-iθ2+ e-iθ1)+1] 

Pure translation if z1 is not z2! Thus such 
rotations cannot be in a finite group! 
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where we determine γ:

−ei(θ1+θ2)z1+eiθ2z1 − eiθ2z2 + z2 = −ei(θ1+θ2)γ + γ

(1− ei(θ1+θ2))γ = z2 + eiθ2(z1 − z2)− ei(θ1+θ2)z1

γ =
z2 + eiθ2(z1 − z2)− ei(θ1+θ2)z1

1− ei(θ1+θ2)

Hence, we have a rotation by (θ1 + θ2) about a new center γ.
If z1 6= z2 and θ2 = −θ1, we get in fact a translation:

RΩ2(−θ1) ◦RΩ1(θ1) = z − z1 + e−iθ1(z1 − z2) + z2

= z + (z1 − z2)(e−iθ1 − 1)︸ ︷︷ ︸
a translation!

After rotations and translations, we are left with reflections and glide
reflections about a line l. Suppose we have two reflections, or two glide
reflections, of the form

ϕ1 : z → eiθ1 z̄ + β1, ϕ2 : z → eiθ2 z̄ + β2,

so that

ϕ2 ◦ ϕ1(z) = eiθ2(eiθ1z + β1) + β2 = ei(θ2−θ1)z + β1e
iθ2 + β2.

Hence if θ2 = θ1 = θ we get a translation:

ϕ2 ◦ ϕ1(z) = z + β1e
iθ + β2︸ ︷︷ ︸

a translation vector

which is happening when the lines defining the reflections and glide reflections
are parallel (reflect a shape with respect to a line, and then again with respect
to another line parallel to the first one, and you will see that the shape is
translated in the direction perpendicular to the lines.)

If instead θ2 − θ2 6= 0, we get a rotation, since the ϕ2 ◦ ϕ1(z) will have
one well defined fixed point, given by

zFP = ei(θ2−θ2)zFP + β1e
iθ2 + β2

⇒ zFP =
β1e

iθ2 + β2

1− ei(θ2−θ1)
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Reflections 

• Among the planar isometries, so far, only rotations with same 
center z0 are allowed! 

• Reflections are also allowed, assuming that their lines 
intersect at z0 (otherwise, we could get rotations about a 
different point.) 

 

First Question: Leonardo Theorem 

     QUESTION 1:  can planar isometries give us other finite 
groups than cyclic and dihedral groups? 

 ANSWER: No! This was already shown 
by Leonardo da Vinci! 

Leonardo da Vinci (1452-1519) `` painter, sculptor, 
architect, musician, scientist, mathematician, 
engineer, inventor, anatomist, geologist, 
cartographer, botanist and writer “ (dixit wikipedia) 
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Now, we have built up enough prerequisites to prove the following result.

Theorem 13 (Leonardo Da Vinci). The only finite subgroups of the group
of planar symmetries are either Cn (the cyclic group of order n) or Dn (the
dihedral group of order 2n).

Proof. Suppose that we have a finite subgroup G = {ϕ1, ϕ2, · · · , ϕn} of the
group of planar isometries. This means that for every ϕk, 〈ϕk〉 is finite, that
there exists ϕ−1

k ∈ G, and that ϕk ◦ ϕl = ϕs ∈ G = {ϕ1, ϕ2, . . . , ϕn}. Thus

1. ϕk cannot be a translation, since 〈ϕk〉 = {ϕnk , n ∈ Z} is not a finite set.

2. ϕk cannot be a glide reflection, since ϕk ◦ϕk is a translation hence 〈ϕ2
k〉

is then not a finite set.

3. ϕk and ϕr cannot be rotations about different centers, since

RΩ2(θ2)RΩ1(θ1) = ei(θ2+θ1)z − ei(θ2+θ1)z1 + eiθ2(z1 − z2) + z2

R−1
Ω2

(θ2)R−1
Ω1

(θ1) = e−i(θ2+θ1)z − e−i(θ2+θ1)z1 + e−iθ2(z1 − z2) + z2

and

RΩ2(−θ2)RΩ1(−θ1)RΩ2(θ2)RΩ1(θ1)

= e−i(θ2+θ1)[ei(θ2+θ1)z − ei(θ2+θ1)z1 + eiθ2(z1 − z2) + z2]

− e−i(θ2+θ1)z1 + e−iθ2(z1 − z2) + z2

= z − z1 + e−iθ1(z1 − z2) + e−i(θ2+θ1)z2 − e−i(θ2+θ1)z1 + e−iθ2(z1 − z2) + z2

= z + (z2 − z1) + e−i(θ2+θ1)(z2 − z1)− (z2 − z1)(e−iθ1 + eiθ2)

= z + (z2 − z1)[e−i(θ2+θ1) − (e−iθ2 + e−iθ1) + 1]︸ ︷︷ ︸
a pure translation if z1 6= z2

Therefore in the subgroup G = {ϕ1, ϕ2, · · · , ϕn} of finitely many isome-
tries, we can have

1) rotations (which must all have the same center Ω)

2) reflections (but their lines must intersect at Ω otherwise we would
be able to produce rotations about a point different from Ω and
hence produce translations contradicting the finiteness of the set.)
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Motivation  for Leonardo Theorem 

Leonardo da Vinci systematically 
determined all possible 
symmetries of a central building, 
and how to attach chapels and 
niches without destroying its 
symmetries.  

Extract of Leonardo’s notebooks. 

Proof of Leonardo Theorem (I) 

• We have already shown that a finite group of planar 
isometries can contain only rotations around the same center, 
and reflections through lines also through that center. 

• Among all the rotations, take the one with smallest strictly 
positive angle θ, which generates a finite cyclic group of order 
say n, and every rotation belongs to this cyclic group! 

• [if θ’ is another rotation angle, then it is bigger than θ, thus 
we can decompose this rotation between a rotation of angle 
(a multiple of) θ and a smaller angle, a contradiction+ ← same 
argument as we did several times for cyclic groups! 
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Let us look at the rotations about Ω in the subgroupG = {ϕ1, ϕ2, · · · , ϕn}
and list the rotation angles (taken in the interval [0, 2π)) in increasing order:θ1 <
θ2 < · · · < θl−1. Now r(θ1) is the smallest rotation, and r(2θ1), r(3θ1),. . .,r(kθ1)
for all k ∈ Z must be in the subgroup as well.

We shall prove that these must be all the rotations in G, i.e., there can-
not be a θt which is not kθ1 mod 2π for some k. Assume for the sake of
contradiction that θt 6= kθ1. Then θt = sθ1 + ζ where 0 < ζ < θ1, and

r(θt)r(−sθ1) = r(θt)r(θ1)−s = r(ζ)

but r(θt)r(θ1)−s belongs to the group of rotations and thus it is a rotation
of an angle that belongs to {θ1, θ2, · · · , θl−1}, with ζ < θ1 contradicting the
assumption that θ1 is the minimal angle.

Also note that θ1 = 2π/l since otherwise lθ1 = 2π + η with η < θ1 and
rl(θ1) = r(η) with η < θ1, again contradicting the minimality of θ1.

Therefore we have exactly l rotations generated by r(θ1) and 〈r(θ1)〉 is
the cyclic group Cl of order l.

If Cl = 〈r(θ1)〉 exhausts all the elements of G = {ϕ1, ϕ2, · · · , ϕn}, we are
done. If not, there are reflections in G too. Let m be a reflection that belongs
to {ϕ1, ϕ2, . . . , ϕn}. If m and 〈r(θ1)〉 are both in G, then by closure

m,mr,mr2, . . . ,mrp−1 ∈ G

and all these are (1) reflections since mrα = rβ ⇒ m = r(β−α) and m would
be a rotation, (2) distinct elements since mrα = mrβ ⇒ rα = rβ.

Can another reflection be in the group say m̃? If m̃ 6= mrα, then mm̃ is
by definition a rotation in G, that is mm̃ = rα, since we have shown that all
rotations of G are in 〈r(θ1)〉. Now this shows that

m̃ = m−1rα = mrα, and (mrα)(mrα) = 1⇒ mrαm = r−α.

Since m2 = 1 as for any reflection, we proved that

G = {1, r, r2, . . . , rl−1,m,mr, . . . ,mrl−1}, m2 = 1, rl = 1,mrαm = r−α.

The group G is therefore recognized as the dihedral group

Dp = {〈r,m〉|m2 = 1, rl = 1,mr = r−1m}.

Therefore we proved that a finite group of planar symmetries is either cyclic
of some order l or dihedral of order 2l for some l ∈ N.
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Proof of Leonardo Theorem (II) 

• If the finite group of isometries contain only rotations, done!  

• If not, we have reflections! 

• Let r be the rotation of smallest angle θ and m be a reflection. 

• Then m, mr, mr2,…, mrn-1 are distinct reflections that belong to 
the group [if mri=rj then m would be a rotation too]. 

• No other reflection! *for every reflection m’, then mm’ is a 
rotation, that is mm’=rj for some j, and m’ is in the list!+ 

 We proved: the finite group of planar isometries is either a 
cyclic group made of rotations, or a group of the form        
{1, r,r2,.., rn-1,m,mr,…,mrn-1} with relations  m2=1, rn=1 and 
mrj = r-jm, namely the dihedral group! 

Classification so far 

Order abelian groups non-abelian groups 

1 {1} x 

2 C2 x 

3 C3 

4 C4, Klein group 

5 C5 

6 C6 D3 

7 C7 

8 C8 D4 

infinite 

(What we saw, no claim that this is complete , all the 
finite ones written here are planar isometries ) 
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Let us look at our table of small groups, up to order 8.

order n abelian non-abelian
1 C1 ' {1} x
2 C2 x
3 C3 x
4 C4, Klein group x
5 C5 x
6 C6 D3

7 C7 x
8 C8 D4

Using Leonardo Theorem, we know that planar isometries only provide
cyclic and dihedral groups, so if we want to find potential more groups to
add in this table, we cannot rely on planar geometry anymore! This leads to
the second question we addressed earlier this chapter:

Are there finite groups which are not isomorphic
to subgroups of the group of planar isometries?
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Classification so far 

Order abelian groups non-abelian groups 

1 {1} x 

2 C2 x 

3 C3 

4 C4, Klein group 

5 C5 

6 C6 D3 

7 C7 

8 C8 D4 

infinite 

Invertible mod 2,3,4,5,6,7 are cyclic, invertible mod 8 are C2xC2  

[done in Exercises for 5 and 8, same computation for others!] 

We are left with the second Question… 

     QUESTION 2: are there finite groups which are not 
isomorphic to planar isometries? 

?   ?          ?              ?                    ? 
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Exercises for Chapter 6

Exercise 34. Show that any planar isometry of R2 is a product of at most
3 reflections.

Exercise 35. Look at the pictures on the wiki (available on edventure), and
find the symmetry group of the different images shown.


