Chapter 7

Permutation Groups

<7 ()

We started the study of groups by considering planar isometries. In the
previous chapter, we learnt that finite groups of planar isometries can only
be cyclic or dihedral groups. Furthermore, all the groups we have seen so far
are, up to isomorphisms, either cyclic or dihedral groups! It is thus natural to
wonder whether there are finite groups out there which cannot be interpreted
as isometries of the plane. To answer this question, we will study next
permutations. Permutations are usually studied as combinatorial objects,
we will see in this chapter that they have a natural group structure, and in
fact, there is a deep connection between finite groups and permutations!

We know intuitively what is a permutation: we have some objects from
a set, and we exchange their positions. However, to work more precisely, we
need a formal definition of what is a permutation.
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Question 2 after Lagrange Theovem

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries (cyclic or dihedral groups)?

_ abelian groups non-abelian groups

1 {1} X
2 G, X
3 G X
4 C,, Klein group X
5 C X
6 Ce D,
7 (&7 X
8 Cg D,
infinite B

What iy a Permutation ? (1)

* Intuitively, we know what a permutation is...

http://www.virtualmagie.com/ubbthreads/ubbthreads.php/ubb/download/Number/3018/filename/
3415%20net.ipg
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Definition 15. A permutation of a set X is a function ¢ : X — X that is
one-to-one and onto, i.e., a bijective map.

Let us make a small example to understand better the connection between
the intuition and the formal definition.

Example 25. Consider a set X containing 3 objects, say a triangle, a circle
and a square. A permutation of X = {A, o, [} might send for example

A A o1 O o,

and we observe that what just did is exactly to define a bijection on the set
X, namely a map o : X — X defined as

o(AN)=A, o(o) =0, o(0) =o.

Since what matters for a permutation is how many objects we have and
not the nature of the objects, we can always consider a permutation on a set
of n objects where we label the objects by {1,...,n}. The permutation of
Example 25 can then be rewritten as o : {1,2,3} — {1,2,3} such that

s(1) =1, 0(2) =3, 0(3) = 2, oraz(i § g)

Permutation maps, being bijective, have inverses and the maps combine nat-
urally under composition of maps, which is associative. There is a natural
identity permutation o : X — X, X = {1,2,3,...,n} which is

o(k) — k.
Therefore all the permutations of a set X = {1,2,...,n} form a group under
composition. This group is called the symmetric group S,, of degree n.

What is the order of 5,7 Let us count how many permutations of
{1,2,...,n} we have. We have to fill the boxes

I

1 2 3 -+ n

with numbers {1, 2, ...,n} with no repetitions. For box 1, we have n possible
candidates. Omnce one number has been used, for box 2, we have (n —1)
candidates, ... Therefore we have

nn—1)(n-2)---1=n!
permutations and the order of .S,, is
|Sy| = nl.
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What iy a Permutation? (I1)

What is formally a permutation?

* A permutation of an arbitrary set X is a bijection from X to
itself

Recall that a bijection is both an injection and a surjection.

What iy o Permutation? (III1)

Bridging intuition and formalism

A @ )
Define an arbitrary bijection
A A A A
o 0 » 0 -
X o
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Notation

If | X]|=n, we label the n elements by 1...n.

(48

123
132

o)

Combining Permutations

123 123 123
213 132 231

It’s a composition, so
this permutation first!

123 51325231
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Group Structure of Permutations (1)

* All permutations of a set X of n elements form a group under
composition, called the symmetric group

Composition of two
on n elements, denoted by S,. bijections is a bijection

* Identity = do-nothing (do no permutation)

* Every permutation has an inverse, the inverse permutation.

A permutation is a
bijection!

* Non abelian (the two permutations of the previous slide do

not commute for example!)

Group Structure of Permutations (II)

The order of the group S, of permutations on a set X of
elementsis n!

N N PP
i) i

i i 2 choices 1 i
choices choices choice

|S,| =n!
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Let us see a few examples of symmetric groups S,,.

Example 26. If n = 1, S; contains only one element, the permutation
identity!

Example 27. If n = 2, then X = {1, 2}, and we have only two permutations:
or:1—1, 22

and
o9:1—=2 21,

and Sy = {071, 05}. The Cayley table of Sy is

g1 | 02

o1 | 01| O2 |
02 | 02 | 01

Let us introduce the cycle notation. We write (12) to mean that 1 is sent to
2, and 2 is sent to 1. With this notation, we write

52 = {(), (12)}.

This group is isomorphic to Cy, and it is abelian.

(12 3
=1 3 2

of Example 25 in the cycle notation is written as (23). We can combine two
such permutations:

The permutation

(12)(23)

which means that we first permute 2 and 3: 1 2 3 — 1 3 2 and then we
permute 1 and 2: 1 3 2+ 2 3 1. Let us look next at the group Ss.
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Permutations o av Set of 2 Elementy
* |X] =2, X={1, 2}
*1S,1=2,5,={0,0,}, 6;:12>12,0,:12>21.
0y 0,
0y 0y 0,
0, 0, 01
Cycle Notation
123 2->3
(132) (23) =) 35,
thus 123 - 132
23
123 123 (12)(23)- 322
213 132 thus 123 > 132
152
251
thus 132->231




155

Example 28. If n = 3, we consider the set X = {1,2,3}. Since 3! = 6, we
have 6 permutations:

Sy ={o1 =(),00 = (12),03 = (13),04 = (23), 05 = (123), 06 = (132)}.

We compute the Cayley table of Ss.

| 1O (2 [(23) [(13) [(123)](132)]
0 () (12) | (23) | (13) |(123) | (132)
(12) | (12) |() (123) | (132) | (23) | (13)
(23) | (23) |(132)] () (123) | (13) | (12)
(13) | (13) |(123) | (132) | () (12) | (23)
(123) || (123) | (13) | (12) |(23) | (132)| ()
(132) || (132) | (23) | (13) | (12) |() (123)

We see from the Cayley table that S3 is indeed isomorphic to D3! This
can also be seen geometrically as follows. Consider an equilateral triangle,
and label its 3 vertices by A, B, C, and label the locations of the plane where
each is by 1,2,3 (thus vertex A is at location 1, vertex B at location 2 and
vertex C' as location 3). Let us now rotate the triangle by r (120 degrees
counterclockwise), to find that now, at position 1 we have C, at position 2
we have A and at position 3 we have B, and we apply all the symmetries of
the triangle, and see which vertex is sent to position 1,2, and 3 respectively:

y
B(2)
A1)
o « L J1]2]3] |
1 A|B|C|()
e r C|A|BJ(213)
2 | B C A (123)
m | A|C|B|(23)
rm | B|A|C|(12)
rm | C|B|A]|(13)

and we see that to each symmetry corresponds a permutation. For example,
r sends ABC' to CAB and thus we have (132).
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Permutations o av Set of 3 Elementy

« |X|=3,X={123}
+ 0,:123 >123(), 0,:123 213 (12) ,0,:123->321 (13),
0,:123 132 (23), 0,: 1235231 (123), 0, : 1235312 (132).

-_mmmm
() (1,2) (2,3) (1,3) (1,2,3) (1,3,2)
(1,2) (1,2) () (1,2,3) (1,3,2) (2,3) (1,3)
(2,3) (2,3) (1,3,2) () (1,2,3) (1,3) (1,2)
(1,3) (1,3) (1,2,3) (1,3,2) () (1,2) (2,3)
(1,2,3) (1,2,3) (1,3) (1,2) (2,3) (1,3,2) ()
(1,3,2) (1,3,2) (2,3) (1,3) (1,2) () (1,2,3)

The Symumetric Group S;
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Have we found New Groups?

+ S,?
since | S, |=2, it is the cyclic group C,!
*S;?

We know |S;|=3!=6, and it is non-abelian.
We also know |D,|=2-3=6 and it is non-abelian.

S; v¢D;
-n-mmmmm

0 (1,2) (23) (1,3) (123) (132) 1 1 r P m rm Pm
(1,2) (1,2) () (123) (132) (2,3) (1,3) r r r? 1 rm rm m
(2,3) (2,3) (132) () (123) (1,3) (1,2) r r? 1 r rm m rm
(1,3) (1,3) (123) (132) () (,2) (23) m m rm rm 1 2 r
(123) (123) (1,3) (1,2) (2,3) (132) () rm rm m rm r 1 72
(132) (132) (2,3) (1,3) (1,2) () (123) Pm rPm m m r? r 1

Are they isomorphic?
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D; revisgited

* Fix 3 locations on the plane: 1, 2, 3
* Call A,B,C the 3 triangle vertices

PSS Y P N
A B C 0
C A B (213)

r B C A (123)

m A c B (23)

rm B A C (12)

rm c B A (13)

Question 2: more Bad Newsy !

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries (cyclic or dihedral groups)?

_ abelian groups non-abelian groups

1 {1} %

2 C,=S, X

3 (0% X

4 C,, Klein group X

5 C X

6 Cs D, =S,
7 (o% X

8

e More work is needed!
infinite
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Thus despite the introduction of a new type of groups, the groups of
permutations, we still have not found a finite group which is not a cyclic or
a dihedral group. We need more work! For that, we start by noting that
permutations can be described in terms of matrices.

Any permutation o of the elements {1,2,...,n} can be described by

o(1) 0 -~ 1 0 1 T .
o (2) 1 0 0|2 c) .
- - T . )
a(n) 0 1 0 n Co(n) "
Py

where the kth row of the binary matrix is given by e?;(k) =(0,...,0,1,0,...,0),
where 1 is at location o(k). Now ey,..., e, are a set of orthogonal vectors,
that is, satisfying

0 if k#s
€{es:<ekaes>:6ks:{ 1 Z;k’i87 (71)

which form a standard basis of R™. Let us derive some properties of the
matrix P,.

Property 1. The matrix P, is orthogonal, that is P,PI = I,,, where I, is
the identity matrix. This follows from

T
€o(1) ‘
63(2) T T T :
: ey e 0 Com | =] (Cweom) | =
T .
€o(n)

using (7.1). Hence the inverse of a permutation matrix is its transpose.

Property 2. Using that det(AB) = det(A) det(B) and det(A”) = det(A),
we get

det(P,PT) = det(I) = 1.
Therefore det(P,) = +1. (det(P?) = det(P,) = (det P,)? = 1).
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Permutation Matrices : Definition

100 1 1
001 2 =13
010 3 2

If o is a permutation on X={1...n}, then it can be represented by a
permutation matrix P

kth row hasa 1 100 1 o(1)
at position o(k) : — ;
(0..010..0) 010 n o(n)

Permutation Makrices: Proberties

Every row/column
hasonlyal
; P41 1 )
Po Po = : plT pnT —_— :
Pn 1

A permutation matrix as an orthogonal matrix!

det(P,P_,T)=1 == det(P )=1o0r-1
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Property 3. We will show next that any permutation can be decomposed
as a chain of “elementary” permutations called transpositions, or exchanges.
We consider the permutation o given by

o(1) €o(1) 1
o(n) eg(n) n

We shall produce o from (1,2, ...,n) by successively moving o(1) to the first

place and 1 to the place of o(1), then ¢(2) to the second place and whoever

is in the second place after the first exchange to the place of o(2) place, etc..
After moving (1) to the first place, using a matrix P, we get

[ 0(1) T [ 1
2
1 = Pn><n 0_(1)

After this step, we use an (n — 1) x (n — 1) permutation matrix to bring o(2)
to the second place as follows (without affecting o(1)):

[ o(1) T [ o(1) ]
o(2) 2
: 1 0 :
2 a [ 0 Prh—1)x(n-1) ] o(2) |’

and so on. From this process, it is clear that at every stage we have either
a matrix of exchange in which two rows of the identity are exchanged, or if
the output happens to have the next value in its designated place an identity
matrix. The process will necessarily terminate after n steps and will yield
the permutation o as desired.
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Transpositions

A transposition (exchange) is a permutation that swaps two
elements and does not change the others.

* In cycle notation, a transposition has the form (i j).
Example: (1 2) on the set X={1,2,3,4} means 1234 ->2134.

* In matrix notation, a transposition is an identity matrix, but for
for two rows that are swapped.

0100
1000
0010
0001

Decomposition in Transpositions (1)

Any permutation can be decomposed as a product of
transpositions.

1st row, 1 at i=0(1)

ith position  pd 70..010..0 0(1)
ith row, 1 at @
15t position

Place similarly o(2) at the 2nd position, o(3) at the 3" position etc, this
process stops at most after n steps! (since at every step, either two rows
are exchanged, or we have an identity matrix if nothing needs to be
changed).
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Hence we will be able to write

o(1) 1
" _BE BB
o(n) n

either an elementary exchange matrix of size n X n

or an identity matrix of size n x n

Now, we know from the property of the determinant that exchanging two
rows in a matrix induces a sign change in the determinant. Hence we have

where E; =

—1 if it is a proper exchange

det E; = { 1 if it is I,

Therefore we have shown that for any permutation, we have a decomposition
into a sequence of transpositions (or exchanges), and we need at most n of
them to obtain any permutation. Hence for any o we have:

PU:EnEnfl"'El

and
det P, = det E,, det E,,_; - - - det F; = (—1)# of exchanges
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Example
(-0
(V10

Decomposition inv Transpositions (I1)

1 o(1)
E, ...E,E, o
— n a(n)
PO

where E; is either an identity matrix, or a transposition
(exchange) matrix.

det(E;)=-1 for a transposition, and 1 for the identity, thus
det(pc)=(_1)#exchanges
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The above development enable us to define the permutation to be even if
det P, =1,
and odd if
det P, = —1.

Definition 16. The sign/signature of a permutation o is the determinant
of P,. It is either 1 if the permutation is even or -1 otherwise.

We have a natural way to combine permutations as bijective maps. In
matrix form, we have that if

1 oa(l) 1 op(1)
Py N : , Py N :

’ n oa(n) ’ n op(n)

then
PO'APO'B = PO'BOO'A‘

The description of a permutation via transposition is not unique but the
parity is an invariant. We also have that

sign(caoopg) = sign(oa)sign(op)

det(P,,P,,) = det(P,,)det(F,,).

Then we have the multiplication rule.

even | odd
even | even | odd

odd | odd | even

This shows the following.
Theorem 14. All even permutations form a subgroup of permutations.

Proof. Clearly the identity matrix is an even permutation, since its determi-
nant is 1.

Product of even permutations is even, thus closure is satisfied.

The inverse of an even permutation must be even. To show this, we know

PP, =1,
so det(PT) = det(P,) = det(PT) =1 if det(P,) = 1. O

Definition 17. The subgroup A, of even permutations of the symmetric
group .S, is called the alternating group.
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Pawrity of o Permutation

A permutation is even if det(P,)=1 and odd if det(P,)=-1.
The sign/signature of a permutation o is sign(c)=det(P,,).

Example
(132) : 123 5312 _

3 4§ 312 thus (13) : 123 5321 sign(132)=(-1)*=1.
32D)->31) thus (12)(13) : 123 53215312 [ same result from the

matrix approach!

The decomposition in transpositions is far from unique! It '7
is the signature which is unique!! ®

The Alternating Group

The subset of S, formed by even permutations is a group,
called the alternating group A,.

- The identity is the do-nothing permutation o= (), its
permutation matrix is the identity, and its determinantis 1 and
sign(())=1, that is () is even.

* The composition of two even permutations is even, since
det(P,,P,,)= det(P,) det(P_,)=1-1=1.

* If o is a permutation with matrix P, then its inverse
permutation has matrix P, . Now det(P,P,")=1 and since
det(P,)=1, we must have det(P,")=1!
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Example 29. When n = 3, we consider the symmetric group S3, and identify
those permutations which are even. Among the 6 permutations of S3, 3 are
odd and 3 are even. Thus Aj is isomorphic to the cyclic group C3 of order 3.

An interesting immediate fact is that the size of the subgroup of even
permutations is %n!, since for every even permutation, one can uniquely as-
sociate an odd one by exchanging the first two elements!

Let us go back once more to our original question. We are looking for a
group which is not isomorphic to a group of finite planar isometries. Since
Ajs is isomorphic to a cyclic group, let us consider the next example, namely
A4.

Since 4! = 24, we know that |A4| = 12. There is a dihedral group Dg
which also has order 12. Are the two groups isomorphic?

Lagrange theorem tells us that elements of A4 have an order which divides
12, so it could be 1,2,3,4 or 12. We can compute that there are exactly 3
elements of order 2:

(12)(34), (13)(24), (14)(23),
and 8 elements of order 3:
(123), (132), (124), (142), (134), (143), (234), (243).

This shows that A4 and Dg cannot be isomorphic! We thus just found our
first example, to show that there is more than cyclic and dihedral groups!
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Exaumple: A,

-E-IEIEIMM

() (1,2) (2,3) (1,3) (123) (132)
(1,2) (1,2) () (123) (132) (2,3) (1,3)
(2,3) (2,3) (132) () (123) (1,3) (1,2)
(1,3) (1,3) (123) (132) () (1,2) (2,3)
(123) (123) (1,3) (1,2) (2,3) (132) ()
(132) (132) (2,3) (1,3) (1,2) () (123)

0 0 (ST It is the cyclic group
(123) (123) (132) () of order 3!

(132) (132) () (123)

Ovder of A,,

The order of A is |A,[=]S,]/2 =n!/2.

Proof. To every even permutation can be associated
uniquely an odd one by permuting the first two
elements!

Examples.
* A,isoforder1 === thisis{1}.

* Ajis of order 31/2=6/2=3 === thisis C,.
* A,is of order 41/2 =24/2=12 == ?
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Question 2: one move Bad Newsy ??

QUESTION 2: are there finite groups which are not isomorphic
to planar isometries (cyclic or dihedral groups)?

_ abelian groups non-abelian groups

1 {1} X

2 C,=S, X

3 G, X

4 C,, Klein group X

5 C; X

6 Ce D; =S,
7 C X

8 Cg D,

=
N
(@]
iy

~
I..U

Ovrder of Elementy A,

* Lagrange Theorem tells us: 1,2,3,4,6,12.
* Infact: 3 elements of order 2, namely (12)(34), (13)(24), (14)(23)

* And 8 elements of order 3, namely
(123),(132),(124),(142),(134),(143),(234),(243)

A, and D¢ are not isomorphic! n

http://kristin-williams.blogspot.com/2009/09/yeah.html
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Exercises for Chapter 7

Exercise 36. Let o be a permutation on 5 elements given by o = (15243).
Compute sign(o) (that is, the parity of the permutation).

Exercise 37. 1. Show that any permutation of the form (ijk) is always
contained in the alternating group A, n > 3.

2. Deduce that A, is a non-abelian group for n > 4.

Exercise 38. Let H = {oc € S5 | 0(1) =1, o(3) = 3}. Is H a subgroup of
Ss?

Exercise 39. In the lecture, we gave the main steps to show that the group
Dg cannot be isomorphic to the group A4, though both of them are of order
12 and non-abelian. This exercise is about filling some of the missing details.

e Check that (1 2)(3 4) is indeed of order 2.
e Check that (1 2 3) is indeed of order 3.

e By looking at the possible orders of elements of Dg, prove that A, and
Dg cannot be isomorphic.



