
Chapter 9

Quotient Groups

“Algebra is the offer made by the devil to the mathematician...All
you need to do, is give me your soul: give up geometry.” (Michael
Atiyah)

Based on the previous lectures, we now have the following big picture.
We know that planar isometries are examples of groups, and more precisely,
that finite groups of planar isometries are either cyclic groups or dihedral
groups (this is Leonardo Theorem). We also know that there other groups
out there, for example the alternating group, but still, most of the groups we
have seen can be visualised in terms of geometry. The goal of this lecture is
to introduce a standard object in abstract algebra, that of quotient group.
This is likely to be the most “abstract” this class will get! Thankfully, we
have already studied integers modulo n and cosets, and we can use these to
help us understand the more abstract concept of quotient group.

Let us recall what a coset is. Take a group G and a subgroup H. The set
gH = {gh, g ∈ H} is a left coset of H, while Hg = {hg, h ∈ H} is a right
coset of H. Consider all the distinct cosets of G (either right or left cosets).
The question is: does the set of all distinct cosets of G form a group?

Example 31. Consider G = {0, 1, 2, 3} to be the set of integers modulo 4,
and take the subgroup H = {0, 2} (you might want to double check that you
remember why this is a subgroup). We have two cosets H and 1+H = {1, 3}.
To have a group structure, we need to choose a binary operation. Let us say
we start with +, the addition modulo 4. How do we add two cosets? Let us
try elementwise. To compute {0, 2}+{1, 3}, we have {0+1, 0+3, 2+1, 2+3} =
{1, 3}. It seems not bad, the sum of these two cosets does give another coset!
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Quotient Group Recipe 

Ingredients: 

• A group G, a subgroup H, and cosets gH 

 

 

 

• Group structure 

The set  gH={gh, h in H} is called a left coset of H. 

The set Hg={hg, h in H} is called a right coset of H. 

When does the set of all cosets of H form a group? 

1
st
 Example (I) 

G= {0,1,2,3} integers modulo 4 
H={0,2} is a subgroup of G. 
The coset 1+H  = {1,3}. 
 

G 
0        2 1       3 

 All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} . 
 

The set of cosets is { {0,2}, {1,3} }. Does it form a group? 

We need a binary operation, say we keep +. 

Let us compute! 
 
•  {0,2}+{0,2}={0,2} 
•  {0,2}+{1,3}={1,3} 
•  {1,3}+{1,3}={0,2} 

1+{1,3}={2,0},3+{1,3}={0,2} 



Let us try to do that with both cosets, and summarize it in a Cayley
table.

{0, 2} {1, 3}
{0, 2} {0, 2} {1, 3}
{1, 3} {1, 3} {0, 2}

We notice that we indeed have a group structure, since the set of cosets is
closed under the binary operation +, it has an identity element {0, 2}, every
element has an inverse, and associativity holds. In fact, we can see from the
Cayley table that this group is in fact isomorphic to the cyclic group C2.

In the above example, we defined a binary operation on the cosets of H,
where H is a subgroup of a group (G,+) by

(g +H) + (k +H) = {g + h+ k + h′ for all h, h′}.

We now illustrate using the same example that computations could have been
done with a choice of a representative instead.

Example 32. We continue with the same setting as in Example 31. Since
0 +H = {0, 2} and 1 +H = {1, 3}, we have

(0 +H) + (1 +H) = (0 + 1) +H = 1 +H

using the representative 0 from 0 +H and 1 from 1 +H. Alternatively, if 2
and 3 are chosen as representatives instead, we have

(2 +H) + (3 +H) = (2 + 3) +H = 1 +H

since 5 ≡ 1 mod 4. There are in total 4 ways of choosing the coset repre-
sentatives, since 0 and 2 can be chosen for the first coset, and 1 and 3 could
be chosen in the second coset. Any choice will give the same answer as the
sum of the two cosets.



1
st
 Example (II) 

+ {0,2} {1,3} 

{0,2} {0,2} {1,3} 

{1,3} {1,3} {0,2} 

We observe 
1. The set of cosets is closed under the binary operation +. 
2. It has an identity element {0,2}. 
3. Every element has an inverse. 
4. Associativity 

This is the cyclic 
group C2! 

1
st
 Example (III) 

+ {0,2} {1,3} 

{0,2} {0,2} {1,3} 

{1,3} {1,3} {0,2} 

How to compute with cosets: 
• {0,2}=0+H=2+H: {0,2}+{0,2}=(0+H)+(0+H)=(0+0)+H=H={0,2} 

G= {0,1,2,3} integers modulo 4. H={0,2} is a subgroup of G.  
  All cosets of H: 0+H={0,2}, 1+H = {1,3},2+H={0,2},3+H={3,1} . 

 

=(0+H)+(2+H)=(0+2)+H=H={0,2} 

• {1,3}=1+H=3+H: {0,2}+{1,3}=(0+H)+(1+H)=(0+1)+H=1+H={1,3} 
                                                     =(2+H)+(3+H)=(2+3)+H=1+H={1,3} 

Can be computed 
using coset 

representatives! 



Let us now revisit integers modulo n. We recall that a and b are said to be
congruent modulo n if their difference a− b is an integer which is a multiple
of n. We saw that being congruent mod n is an equivalence relation, and
that addition modulo n is well defined, which led to the definition of group
of integers modulo n with respect to addition.

Now consider the group G = Z of integers, and the subgroup H = nZ,
that is

H = nZ = {. . . ,−2n,−n, 0, n, 2n, . . .}

is the set of multiples of n (you might check that this is indeed a subgroup).
We now consider the cosets of H, that is

−2 +H,−1 +H, 0 +H, 1 +H, 2 +H, . . . .

Example 33. If n = 3, then H = 3Z consists of the multiple of 3. We have
exactly 3 distinct cosets, given by

0 +H, 1 +H, 2 +H

since Z is partitioned by these 3 cosets. Indeed, 0 + H contains all the
multiples of 3, 1 +H contains all the multiples of 3 to which 1 is added, and
0 +H all the multiples of 3, to which 2 is added, which cover all the integers.

Now when we do computations with integers modulo 3, we choose a coset
representative. When we compute (0 mod 3) + (1 mod 3), we are looking
at the sum of the coset (0 +H) and of the coset (1 +H).



2
nd

 Example:  Recall integers mod n   

    For a positive integer n, two integers a and b are said to be 
congruent modulo n if their difference a − b is an integer 
multiple of n:  a = b mod n. 

 Being congruent mod n is an equivalence relation. 
 

 

Addition modulo n was defined on equivalence classes, since we 
showed that it is well defined  independently of the choice of 
the representative! 

Group of integers modulo n 

2
nd

 Example: Integers mod n revisited 

Consider the group G of integers      . Let H =n      be the subgroup 
formed by multiple of n. Check it’s a 

subgroup! All cosets of H: …,-2+H,-1+H,0+H, 1+H, 2+H … 

 …   -8  -7  -6 -5  -4  -3  -2   -1    0   1    2   3   4    5   6   7    8  … 

Example: n= 3, 0+H, 1+H, 2+H partition G 

+ 0+H 1+H 2+H 

0+H 0+H 1+H 2+H 

1+H 1+H 2+H 0+H 

2+H 2+H 0+H 1+H 

• 0+H =equivalence class of 0 mod 3 
• 1+H =equivalence class of 1 mod 3 
• 2+H =equivalence class of 2 mod 3 
 

Coset representatives are used for 
coset computations 



In the case of integers modulo n, we do have that cosets form a group.
Now we may wonder whether this is true in general. To answer this question,
let us take a general group G, and its set of cosets. We need to define a binary
operation:

(gH, g′H) 7→ (gH)(g′H)

multiplicatively, or

(g +H, g′ +H) 7→ (g +H) + (g′ +H)

additively. Now, is the set {gH, g ∈ G} closed under this binary operation,
that is, is it true that

(gH)(g′H) = gg′H

multiplicatively, or

(g +H) + (g′ +H) = (g + g′) +H

additively. Let us see what happens multiplicatively. If we choose two ele-
ments gh ∈ gH and g′h′ ∈ g′H, then

(gh)(g′h′) 6= gg′hh′

in general. We do have equality if the group is Abelian, but otherwise there
is no reason for that to be true. This leads us to the following definition.

Definition 18. A subgroup H of (G, ·) is called a normal subgroup if for all
g ∈ G we have

gH = Hg.

We shall denote that H is a subgroup of G by H < G, and that H is a normal
subgroup of G by H C G.

One has to be very careful here. The equality gH = Hg is a set equal-
ity! It says that a right coset is equal to a left coset, it is not an equality
elementwise.



When do Cosets form a Group? (I) 

• G a group, H a subgroup, gH={gh, h in H} a coset. 

• Consider the set {gH, g in G}. 

• We need to define a binary operation:  

map gH and g’H to (gH)(g’H)  multiplicatively 
map (g+H) and (g’+H) to (g+H)+(g’+H) additively 

(gH)(g’H)=gg’H  multiplicatively 
(g+H)+(g’+H)=(g+g’)+H additively 

Is the set {gH, g in G} closed under this binary operation? 

? 

When do Cosets form a Group? (II) 

(gH)(g’H)=gg’H  multiplicatively 
(g+H)+(g’+H)=(g+g’)+H additively 

If gH=Hg, then gh=h’g, and the set {gH, g in G} is closed under      
the binary operation. 

? 
Take gh in gH and g’h’ in g’H. 
Do we have that (gh)(g’h’) =gg’h’’?  

Not necessarily…True if G is abelian, otherwise not clear. 

This does NOT 
mean gh=hg, this 

means gh=h’g. 



Now suppose we have (G, ·) a group, H a normal subgroup of G, i.e.,
H C G, and the set of cosets of H in G, i.e., the set G/H defined by
G/H = {gH|g ∈ H} .

Theorem 16. If H C G, then (G/H, (g1H)(g2H) = (g1g2)H) is a group.

Proof. To check what we have a group, we verify the definition.

1. Closure: (g1H)(g2H) = g1(Hg2)H = g1g2H ∈ G/H using that g2H =
Hg2.

2. Associativity follows from that of G.

3. eH = H is the identity in G/H.

4. Finally g−1H is the inverse of gH in G/H, since

(gH)(g−1H) = (gg−1)H = H.

We also need to show that the operation combining two cosets to yield a
new coset is well defined. Notice that

(gH, g′H) 7→ gg′H

involves the choice of g and g′ as representatives. Suppose that we take
g1 ∈ gH and g2 ∈ g′H, we need to show that

(g1H, g2H) 7→ gg′H.

Since g1 ∈ gH, then g1 = gh for some h, and similarly, since g2 ∈ g′H, then
g2 = g′h′ for some h′ in H, so that

g1H = ghH = gH, g2H = g′h′H = g′H

and
(g1H)(g2H) = (gH)(g′H) = gg′H

as desired.

The group G/H is called quotient group.



Quotient Group (I) 

Let G be a group, with H a subgroup such that gH=Hg for any g in G.  

The set G/H ={gH, g in G} of cosets of H in G is called a quotient group. 

We need to check that G/H is indeed a group! 

• Binary operation: G/H x G/H , (gH,g’H) → gHg’H is associative 

• Since gH=Hg, gHg’H=gg’H and G/H is closed under binary operation. 

• The identity element is  1H since (1H)(gH)=(1g)H=gH for any g in G. 

• The inverse of gH is g-1H: (gH)(g-1H)=(g-1H)(gH)=(gg-1)H=(g-1g)H=H. 

Anything 
missing? 

Quotient Group (II) 

     We need to check the binary operation does not depend on 
the choice of coset representatives. ! 

(gH,g’H) → gHg’H=gg’H  Involves choosing g and g’ as 
respective coset representatives!! 

Suppose we take g1 in gH and g2 in g’H, we need that g1Hg2H = gg’H.   

 g1 in gH thus g1 =gh for some h, g2 in g’H thus g2 = g’h’ for some h’.      

 Now g1H =(gh)H for some h, and g2 H =(g’h’)H for some h’.  

Thus g1H g2H =(gh)H (g’h’)H=gHg’H=gg’H as desired.  



The order of the quotient group G/H is given by Lagrange Theorem

|G/H| = |G|/|H|.

Example 34. Continuing Example 31, where G = {0, 1, 2, 3} and H =
{0, 2}, we have

|G/H| = 4/2 = 2

and G/H is isomorphic to C2.

Example 35. When G = Z, and H = nZ, we cannot use Lagrange since
both orders are infinite, still |G/H| = n.

Example 36. Consider Dihedral group Dn. The subgroup H = 〈r〉 of rota-
tions is normal since

1. if r′ is any rotation, then r′r = rr′,

2. if m is any reflection ∈ Dn, mr = r−1m always.

Hence rH = Hr, mH = Hm and rimjH = riHmj = Hrimj for j = 0, 1 and
i = 0, . . . , n− 1.

Suppose now G is a cyclic group. Let H be a subgroup of G. We know
that H is cyclic as well! Since G is cyclic, it is Abelian, and thus H is normal,
showing that G/H is a group! What is this quotient group G/H?

Proposition 10. The quotient of a cyclic group G is cyclic.

Proof. Let H be a subgroup of G. Let xH be an element of G/H. To show
that G/H is cyclic, we need to show that xH = (gH)k for some k and gH.
Since G is cyclic, G = 〈g〉 and x = gk for some k. Thus

xH = gkH = (gH)k.



Quotient Group (III) 

     Let G be a group, H a subgroup of G such that gH=Hg and G/H 
the quotient group of H in G. 

What is the order of G/H? 

By Lagrange Theorem, we have: 

|G/H|=[G:H]=|G|/|H|. 

1
st
 Example Again 

G= {0,1,2,3} integers modulo 4. H={0,2} is a subgroup of G.  
 

G is abelian, thus g+H = H+g. 

G/H is thus a group of order 2: G/H = C2. 



2
nd

 Example Again 

Consider the group G of integers      . Let H =n      be the subgroup 
formed by multiple of n. 

Since      is abelian, g+H = H+g for every g in G. 

G/H is thus a group of order n. 
Here not from 

Lagrange since the 
order is infinite! 

3
rd

 Example: the Dihedral Group (I) 

Dn ={ <r,m> | m2=1, rn=1, mr =r-1m} 

Let r’ be a rotation. 
•  rr’=r’r since the group of rotations is abelian. 
•  mr’ = (r’)-1m  

H=<r>=group of rotations, then rH=Hr and mH=Hm. 

rimjH=riHmj =Hrimj for j=0,1 and i=0,…,n-1. 



Quotient of Cyclic Groups (I) 

• Let G be a cyclic group. Let H be a subgroup of G. 

• We know that H is a cyclic group too. 

• Since G is abelian, we have gH=Hg for every g in G. 

• Thus G/H is a group! 

What is the quotient group of a cyclic subgroup in a cyclic group? 

Quotient of Cyclic Groups (II) 

Proposition. The quotient of a cyclic group G is cyclic. 

Proof. Let H be a subgroup of G, and let xH be an element of G/H.  

Since G is cyclic, we have G=<g> and x=gk for some k. 

To show, G/H is cyclic, namely xH =(gH)k for some k and gH. 

 xH=gk H =(gH)k.  

gH is thus the 
generator of G/H! 



The notion of quotient is very important in abstract algebra, since it
allows us to simplify a group structure to what is essential!

Example 37. The reals under addition (R,+), the subgroup (Z,+) of in-
tegers. We have (Z,+) C (R,+) because of the fact that (R,+) is abelian!
Now

R/Z = {r + Z|r ∈ R} .

The cosets are r+Z with r ∈ [0, 1). R/Z is isomorphic to the circle group S of
complex numbers of absolute value 1. The isomorphism is φ[(r+Z)] = ei2πr.



Why do we care about Quotient Groups? 

    The notion of quotient allows to identify group elements that 

are “the same” with respect to some criterion, and thus to 
simplify the group structure to what is essential. 

Example: Parity 

    Suppose we only care about the parity of an integer. For 

example, to compute (-1)k, it is enough to know whether k is 
odd or even. k modulo 2 

Looking at k modulo 2 = to work in the quotient group      /2     . 

In this quotient group, every even number is identified to 
0, and every odd number to 1. 

This identification is done via equivalence classes! Even numbers 
are an equivalence class, and so are odd numbers. 



Recall Cosets 

Recall We have g1H=g2H if and only if  g1
-1 g2 is in H. 

Generating the same coset is an equivalence relation! 

• It is reflexive: g-1 g =1 is in H 

• It is symmetric: if g1
-1 g2 is in H, then (g1

-1 g2) -1= g2
-1 g1 is in H. 

• It is transitive: if g1
-1 g2 in H and g2

-1 g3 , then  

    (g1
-1 g2)(g2

-1 g3)= g1
-1 g3 in H.  

 

 

a coset = an equivalence class 
 group elements that are “the same” 

with respect to some criterion 

One more Example (I) 

   Take G=(     ,+), it has H=(    ,+) as a subgroup. Since G is abelian, 

we have that g+    =    +g.  

What is the quotient group G/H ?  

G/H = S1 (circle) 

1.http://www.dreamteamcar.fr/upload/RessortOMEAJ2.jpg 



One more Example (II) 

Let us show the isomorphism formally. 

We define a map f:      /       →      .    S1 

r+        → e2iπr  

• f is a group homomorphism:  
   f((r+     )+(s+    ))=f((r+s)+     )=             =                = f(r+     )f(s+    )    e2iπ(r+s)  e2iπr  e2iπs  

• f is a bijection:  it is clearly a surjection, and if          =         , then 
   r = s+      that is r-s is in      , showing that r+     =s+     . 

e2iπr  e2iπs 

Pure Maths… 



Exercises for Chapter 9

Exercise 43. Consider the Klein group G = {1, f, g, h}.

• What are all the possible subgroups of G?

• Compute all the possible quotient groups of G.

Exercise 44. Consider the dihedral group D4. What are all the possible
quotient groups of D4?

Exercise 45. Consider A the set of affine maps of R, that is

A = {f : x 7→ ax+ b, a ∈ R∗, b ∈ R}.

1. Show that A is a group with respect to the composition of maps.

2. Let
N = {g : x 7→ x+ b, b ∈ R}.

Show that the set of cosets of N forms a group.

3. Show that the quotient group A/N is isomorphic to R∗.


