
Chapter 4
Exercises on Ring Theory

Exercises marked by (*) are considered difficult.

4.1 Rings, ideals and homomorphisms

Exercise 37. Let R be a ring and x ∈ R. Suppose there exists a positive
integer n such that xn = 0. Show that 1 + x is a unit, and so is 1− x.

Answer. The element 1− x is a unit since

(1− x)(1 + x+ . . .+ xn−1) = 1.

The element 1 + x is a unit since

(1 + x)(1− x+ x2 − x3 . . .± xn−1) = 1.

Exercise 38. Let R be a commutative ring, and I be an ideal of R. Show that
√
I := {x ∈ R | there exists m ∈ N∗ such that xm ∈ I}

is an ideal of R. Answer.

• Clearly, 0 ∈
√
I. If a ∈

√
I, then am ∈ I for some m ≥ 1. Then

(−a)m = (−1)mam ∈ I, so −a ∈
√
I. Now let a, b ∈

√
I, so an ∈ I

for some n ≥ 1 and bm ∈ I for some m ≥ 1. Now let us show that

(a + b)n+m ∈ I. We have (a + b)n+m =

n+m∑
j=0

n!

j!(n+m− j)!
ajbn+m−j

(because R is commutative). Now if 0 ≤ j ≤ n, we have n+m− j ≥ m,
so bn+m−j ∈ I in this case (since bm ∈ I ⇒ bi ∈ I for i ≥ m). If
n + 1 ≤ j ≤ n + m, we have j ≥ n + 1, so aj ∈ I in this case (since
an ∈ I ⇒ ai ∈ I for i ≥ n). Therefore all the terms in the previous sum
are in I and thus (a+ b)n+m ∈ I. Hence a+ b ∈

√
I. We just proved that√

I is an additive subgroup of R.
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• Now we have to check the second property. Let a ∈
√
I, and r ∈ R. We

have an ∈ I for some n ≥ 1. Now (ar)n = anrn because R is commutative,
so (ar)n ∈ I and therefore ar ∈

√
I. Therefore

√
I is an ideal of R.

Exercise 39. (*) Determine all rings of cardinality p and characteristic p.

Answer. Let R be a ring of characteristic p. Consider the ring homomorphism:
ϕ : Z→ R, the characteristic of R is the natural number p such that pZ is the
kernel of ϕ. We can now factorize ϕ in an injective map Z/pZ→ R. If now we
further assume that R has cardinality p, we have that Z/pZ and R have same
cardinality, and thus we have an isomorphism. This means that the only ring
of cardinality and characteristic p is Z/pZ.

Exercise 40. Let R be a commutative ring. Let

Nil(R) = {r ∈ R|∃n ≥ 1, rn = 0}.

1. Prove that Nil(R) is an ideal of R.

2. Show that if r ∈ Nil(R), then 1− r is invertible in R.

3. Show, with a counter-example, that Nil(R) is not necessarily an ideal
anymore if R is not commutative.

1. • Clearly, 0 ∈ Nil(R). If a ∈ Nil(R), then am = 0 for some m ≥ 1.
Then (−a)m = (−1)mam = 0, so −a ∈ Nil(R). Now let a, b ∈
Nil(R), so an = 0 for some n ≥ 1 and bm = 0 for some m ≥ 1.
Now let us show that (a + b)n+m = 0. We have (a + b)n+m =
n+m∑
j=0

n!

j!(n+m− j)!
ajbn+m−j (because R is commutative). Now if

0 ≤ j ≤ n, we have n+m− j ≥ m, so bn+m−j = 0 in this case (since
bm = 0⇒ bi = 0 for i ≥ m). If n+1 ≤ j ≤ n+m, we have j ≥ n+1,
so aj = 0 in this case (since an = 0 ⇒ ai = 0 for i ≥ n). Therefore
all the terms in the previous sum are 0 and thus (a + b)n+m = 0.
Hence a + b ∈ Nil(R). We just proved that Nil(R) is an additive
subgroup of R.

• Now we have to check the second property. Let a ∈ Nil(R), and
r ∈ R. We have an = 0 for some n ≥ 1. Now (ar)n = anrn because
R is commutative, so (ar)n = 0 and therefore ar ∈ Nil(R). Therefore
Nil(R) is an ideal of R.

2. If r ∈ Nil(R), then rm = 0 for some m ≥ 1. Then 1 + r+ r2 + · · ·+ rm−1

is the inverse of 1− r since

(1−r)(1+r+r2+· · ·+rm−1) = 1+r+r2+· · ·+rm−1−r−r2+· · ·+rm = 1−rm = 1.
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3. If R = M2(C), let a =

(
0 1
0 0

)
and b =

(
0 0
1 0

)
. Then a2 = b2 =(

0 0
0 0

)
, so a, b ∈ Nil(R), but a + b does not lie in Nil(R), since (a +

b)2 = I2, and In2 = I2 for all n ≥ 1.

Exercise 41. Determine whether the following maps are ring homomorphisms:

1. f1 : Z −→ Z with f1(x) = x+ 1.

2. f2 : Z −→ Z with f2(x) = x2.

3. f3 : Z/15Z −→ Z/15Z with f3(x) = 4x.

4. f4 : Z/15Z −→ Z/15Z with f4(x) = 6x.

Answer.

1. Since f1(0) = 1, f1, f cannot be a ring homomorphism.

2. Since f2(x+ y) = x2 + y2 + 2xy 6= x2 + y2 = f2(x) + f2(y), f2 cannot be
a ring homomorphism.

3. Since f3(xy) = 4xy 6= xy = f3(x)f3(y), f3 cannot be a ring homomor-
phism.

4. Since f4(1) 6= 1, f4 cannot be a ring homomorphism!

Exercise 42. Consider the ring Mn(R) of real n × n matrices. Are the trace
and the determinant ring homomorphisms?

Answer. The trace is not multiplicative, since

2 = Tr

((
1 0
0 1

))
6= Tr

((
1 0
0 1

))
· Tr

((
1 0
0 1

))
= 4.

The determinant is not additive:

4 = det

((
2 0
0 2

))
6= det

((
1 0
0 1

))
+ det

((
1 0
0 1

))
= 2.

Thus none of them are ring homomorphisms.

4.2 Quotient rings

Exercise 43. Compute the characteristic of the following rings R:

1. R = Zn = Z/nZ,

2. R = Z/2Z× Z/4Z× Z/10Z,
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3. R = Z[j]/(2 − 5j), where j denotes a primitive 3rd root of unity (j3 = 1
but j2 6= 1).

Answer. In this exercise, we use the notation x to denote an element in the
quotient group involved.

1. For 1 ≤ m ≤ n − 1, we have m · 1 = m 6= 0, since m is not a multiple of
n. But n · 1 = n = 0. So char(R) = n by definition of the characteristic.

2. If m ∈ Z, we will denote by respectively by m, [m], m̃ its class modulo 2, 4
and 10. Assume that m(1, [1], 1̃) = (0, [0], 0̃). Then we have

(m, [m], m̃) = (0, [0], 0̃),

which implies that m is a multiple of 2, 4 and 10. Hence m is a multiple
of the lowest common multiple of 2, 4 and 10, which is 20. Conversely,
20(1, [1], 1̃) = (20, [20], 2̃0) = (0, [0], 0̃). Therefore char(R) = 20.

3. Here we have (2− 5j)(2− 5j2) = 4− 10(j+ j2) + 25j3 = 4 + 10 + 25 = 39.
Hence 39 · 1 = 39 = (2− 5j) · (2− 5j2) = 0. Then the characteristic of
R is finite and divides 39. Therefore the characteristic of R is 1, 3, 13 or
39. Now let c = char(R) > 0. Since c · 1R lies in the ideal (2 − 5j), then
c = (2− 5j)(a+ bj) for some a, b,∈ Z. Hence |c|2 = |2− 5j|2|a+ bj|2, so

c2 = 39(a2 + b2 − ab)

and therefore 39|c2. The only value (among 1, 3, 13 and 39) for which it
is possible is c = 39. Thus char(R) = 39.

Exercise 44. Prove the following isomorphisms:

1. Z[i]/(1 + i) ' Z/2Z.

2. Z[X]/(n,X) ' Z/nZ, n ≥ 2.

3. Z[X]/(n) ' (Z/nZ)[X], n ≥ 2.

Answer.

1. Consider ϕ : m ∈ Z 7→ m · 1R = m ∈ Z[i]/(1 + i). This is a ring
homomorphism. It is surjective. Indeed, let a+ bi ∈ Z[i]/(1 + i). We
have a+ bi = (b− a) + a(1 + i) = b− a, so a+ bi = ϕ(b − a). Now
ker(ϕ) = c · Z, where c = char(R) by definition of the characteristic. By
direct computation, we get char(R) = 2 (since R is not the trivial ring and
(1+ i)(1− i) = 2). Therefore ker(ϕ) = 2Z. Now use the first isomorphism
theorem.

2. Let us consider ϕ : P ∈ Z[X] 7→ P (0) ∈ Z /nZ. This is the composition
of the ring homomorphisms P ∈ Z[X] 7→ P (0) ∈ Z and m ∈ Z 7→ m ∈
Z /nZ, so it is a ring homomorphism. It is surjective: for m ∈ Z /nZ, we
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have ϕ(m) = m, where m ∈ Z ⊂ Z[X] is considered as a constant poly-
nomial. Now we have ker(ϕ) = {P ∈ Z[X]|P (0) is divisible by n}, which
equals (n,X). Hence ker(ϕ) = (n,X); now applying the first isomorphism
theorem, we get the result.

3. Consider the reduction modulo n, ϕ : P ∈ Z[X] 7→ P ∈ (Z /nZ)[X]. We
have that ϕ is a ring homomorphism. It is surjective: let f ∈ (Z /nZ)[X],
f = a0 + · · ·+ amX

m, ai ∈ Z. Then let P = a0 + · · ·+ amX
m ∈ Z[X]. By

definition of P , we have ϕ(P ) = f . Now let us compute the kernel of ϕ.
Let P = a0 + · · ·+amX

m. We have ϕ(P ) = 0 ⇐⇒ a0 + · · ·+amX
m = 0.

This is equivalent to say that ai = 0 for all i, which means that n|ai for
all i. This is equivalent to say that P = n ·Q, for some Q ∈ Z[X]. Hence
ker(ϕ) = (n). Now apply the first isomorphism theorem.

4.3 Maximal and prime ideals

Exercise 45. Show that a non-zero principal ideal is prime if and only if it is
generated by a prime element.

Answer. If p is prime then consider the principal ideal pR = {pr, r ∈ R}. To
show that pR is prime, we have to show that if ab ∈ pR then either a or b is in
pR. If ab ∈ pR, then ab = pr for some r ∈ R. Since p is prime, it has to divide
either a or b, that is either a = pa′ or b = pb′. Conversely, take a principal ideal
cR which is prime, thus if ab ∈ cR, either a ∈ cR, that is a = ca′, or b ∈ cR,
that is b = cb′. We have thus shown that if c|ab, then c|a or c|b.

Exercise 46. Are the ideals (X,X + 1), (5, X2 + 4) and (X2 + 1, X + 2)
prime/maximal in Z[X]?

Answer.

• I = (X,X + 1) = Z since 1 = (X + 1) −X, thus I is not a proper ideal
and cannot be prime.

• Consider Z[X]/(5, X2+4) ' Z5[X]/(X2+4), and (X2+4) = (X−1̄)(X+1̄)
is reducible modulo 5, thus this quotient is not an integral domain and
thus the ideal is not prime.

• I = (X2 + 1, X + 2) = (X + 2, 5) since (X + 2)2 − 4(X + 2) + 5 = X2 + 1,
then Z[X]/I ' Z5[X]/(X + 2̄) where X + 2̄ is irreducible in Z5[X] thus
the quotient is a field and I is maximal.

Exercise 47. 1. Consider the ring R = Z[i] and the ideal I = (1 + i) in R.
Is I prime? Is I maximal?

2. Consider the ring R = Z[j] and the ideal I = (2 − rj) in R. Is I prime?
Is I maximal? (j is a primitive 3rd root of unity.)
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3. Consider the ring R = Z[X] and the ideal I = (n) in R. Is I prime? Is I
maximal?

Answer.

1. We have Z[i]/(1+ i) ' Z /2Z, which is a field, so (1+ i) is maximal (hence
prime).

2. The characteristic of Z[j]/(2− 5j) is 39 which is not a prime number (see
Exercise 43), so Z[j]/(2− 5j) is not an integral domain. Hence (2− 5j) is
not prime and therefore not maximal.

3. We have Z[X]/(n) ' Z /nZ[X]. We have that Z /nZ[X] is an integral
domain if and only if Z /nZ is an integral domain. Hence (n) is a prime
ideal if and only if n is a prime number. It is never maximal since Z /nZ[X]
is not a field for any n (X has no inverse).

Exercise 48. Consider the ring R = K[X] and the ideal of R given by I =
(X − a), where K is a field, and a ∈ K. Is I maximal? Is I prime?

Answer. Let ϕ : P ∈ K[X] 7→ P (a) ∈ K. This is a ring homomorphism,
which is surjective: indeed, if λ ∈ K, then ϕ(λ) = λ, where λ ∈ K ⊂ K[X]
is viewed as a constant polynomial. We now determine the kernel of ϕ. Let
P ∈ K[X]. We can write P = Q(X).(X − a) + c, for some Q ∈ K[X] and
c ∈ K. (Indeed, it suffices to proceed to the division of P by X − a. The
remainder is either zero or has degree < 1, that is degree 0, which means that the
remainder is a constant.) Then we have P (a) = Q(a).(a−a)+c = c. Therefore,
ϕ(P ) = 0 ⇐⇒ c = 0 ⇐⇒ P is a multiple of X − a. Hence ker(ϕ) = (X − a)
(the principal ideal generated by X − a). Using the first isomorphism theorem,
we get that K[X]/(X − a) ' K. Since K[X]/(X − a) ' K, and K is a field,
then K[X]/(X − a) is a field as well and (X − a) is maximal (hence prime).

Exercise 49. (*) Let R be a commutative ring. Let

Nil(R) = {r ∈ R|∃n ≥ 1, rn = 0}.

1. Show that Nil(R) is contained in the intersection of all prime ideals of R.

2. Show that Nil(R/Nil(R)) = 0.

Answer.

1. Let a ∈ Nil(R), so an = 0 for some n ≥ 1. Assume that there is a prime
ideal p for which a /∈ p. We have an = 0 ∈ p. Since an = an−1.a and p is a
prime ideal, then an−1 ∈ p or a ∈ p. By assumption on a, we have a /∈ p,
so necessarily an−1 ∈ p. But an−1 = an−2.a ∈ p, so an−2 ∈ p for the same
reasons, and by induction we get a ∈ p, a contradiction. Therefore a lies
in all the prime ideals of R.
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2. Let a ∈ Nil((R/Nil(R))), so an = 0 for some n ≥ 1. Then an = 0, which
means that an ∈ Nil(R) by definition of the quotient ring. Therefore,
there exists m ≥ 1 such that (an)m = 0, so anm = 0, which means that
a ∈ Nil(R). Hence a = 0.

Exercise 50. Let R = Z[X], and let n ≥ 1.

• Show that the ideal (n,X) is given by

(n,X) = {p(X) ∈ Z[X], p(0) is a multiple of n}.

• Show that (n,X) is a prime ideal if and only if n is a prime number.

Answer.

• Let P ∈ (n,X), so P = n.Q1 + X.Q2 for some Q1, Q2 ∈ Z[X]. Then
P (0) = n.Q1(0) ∈ nZ (we have Q1(0) ∈ Z since Q1 ∈ Z[X]), that is
P (0) is a multiple of n. Conversely, assume that P ∈ Z[X] is such that
P (0) is a multiple of n, and write P = anX

n + · · · + a1X + a0. Then
P (0) = a0, so by assumption a0 = n.m for some m ∈ Z. Now we get
P = n.m+X.(anX

n−1 + · · ·+ a2X + a1), so P ∈ (n,X).

• If n is not a prime number, then we can write n = n1.n2, 1 < n1, n2 < n.
Now consider P1 = n1, P2 = n2 ∈ Z[X] (constant polynomials). We have
P1.P2 = n1.n2 = n ∈ (n,X), but P1 and P2 are not elements of (n,X).
Indeed, P1(0) = n1 and P2(0) = n2, but n1, n2 are not multiples of n
by definition. Hence (n,X) is not a prime ideal. Now assume that n is
equal to a prime number p. First of all, (p,X) 6= Z[X], because 1 /∈ (p,X)
for example. Now let P1, P2 ∈ Z[X] such that P1.P2 ∈ (p,X). Then
(P1.P2)(0) is a multiple of p by the previous point, that is p|P1(0).P2(0).
Since p is a prime number, it means that p|P1(0) or p|P2(0), that is P1 ∈
(p,X) or P2 ∈ (p,X). Hence (p,X) is a prime ideal.

4.4 Polynomial rings

Exercise 51. Set

E = {p(X) ∈ Z[X] | p(0) is even }, F = {q(X) ∈ Z[X] | q(0) ≡ 0(mod 3)}.

Check that E and F are ideals of Z[X] and compute the ideal E + F . Further-
more, check that E · F ⊆ {p(X) ∈ Z[X]|p(0) ≡ 0 (mod 6) }.

Answer. If p(X) =
∑n
k=0 pkX

k, then

E = {p(X) ∈ Z[X] | p0 ∈ 2Z} and F = {q(X) ∈ Z[X] | q0 ∈ 3Z}.

Thus E and F are ideals of Z[X] since 2Z and 3Z are ideals of Z. If
∑
k ckX

k =(∑
k pkX

k
)
·
(∑

k qkX
k
)
, then c0 = p0q0 and thus

E · F ⊆ {p(X) ∈ Z[X] | p0 ∈ 2Z · 3Z} = {p(X) ∈ Z[X] | p0 ∈ 6Z}.
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Similarly,

E + F = {p(X) ∈ Z[X] | p0 ∈ 2Z + 3Z} =︸︷︷︸
Bezout

{p(X) ∈ Z[X] | p0 ∈ Z} = Z[X].

Exercise 52. Show that if F is a field, the units in F [X] are exactly the nonzero
elements of F .

Answer. Let f(X) ∈ F [X] of degree n, f(X) is a unit if and only if there exists
another polynomial g(X) ∈ F [X] of degree m such that f(X)g(X) = 1. Because
F is a field (thus in particular an integral domain), f(X)g(X) is a polynomial
of degree n+m, thus for the equality to hold, since 1 is a polynomial of degree
0, we need n +m = 0, thus both f and g are constant, satisfying fg = 1, that
is they are units of F , that is nonzero elements since F is a field.

Exercise 53. There exists a polynomial of degree 2 over Z/4Z which has 4
roots. True or false? Justify your answer.

Answer. Take the polynomial 2X(X − 1).

Exercise 54. Let R be a ring, and let a 6= 0 ∈ R such that there exists an
integer n with an = 0. Show that R∗ ⊂ (R[X])∗ and R∗ 6= R[X]∗, where R∗

and R[X]∗ denote respectively the group of units of R and R[X].

Answer. Clearly R∗ ⊆ R[X]∗. We need to show that the inclusion is
strict, that this, there exists an element in R[X]∗ which is not in R∗. Take
f(X) = 1− aX. We have

(1− aX)(1 + aX + (aX)2 + . . .+ (aX)n−1) = 1,

and f does not belong to R∗.

4.5 Unique factorization and Euclidean division

Exercise 55.

Show that the ideal generated by 2 and X in the ring of polynomials Z[X] is
not principal.

Answer. We have that

〈2, X〉 = {2r(X) +Xs(X), r(X), s(X) ∈ Z[X]},

and assume there exists f(X) ∈ Z[X] such that 〈2, X〉 = (f(X)). Since 2 ∈
(f(X)), then f(X) = ±2. Since X ∈ (f(X)), we should have X = ±2g(X), a
contradiction.
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Exercise 56. Show that Z[
√

3] is a Euclidean domain. (Hint: use the same
technique as the one seen for Z[

√
2].)

Answer. Consider the ring

Z[
√

3] = {a+ b
√

3, a, b ∈ Z}

with
Ψ(a+ b

√
3) = |a2 − 3b2|.

Take α, β 6= 0 in Z[
√

3], and compute the division in Q(
√

3):

α/β = q′,

with q′ = x +
√

3y with x, y rational. Let us now approximate x, y by integers
x0, y0, namely take x0, y0 such that

|x− x0| ≤ 1/2, |y − y0| ≤ 1/2.

Take
q = x0 + y0

√
3, r = β((x− x0) + (y − y0)

√
3),

where clearly q ∈ Z[
√

3], then

βq + r = β(x0 + y0

√
3) + β((x− x0) + (y − y0)

√
3)

= β(x+ y
√

3) = βq′ = α,

which at the same time shows that r ∈ Z[
√

3]. So far this is exactly what we
did in the lecture. We are also left to show that Ψ(r) < Ψ(β). We have

Ψ(r) = Ψ(β)Ψ((x− x0) + (y − y0)
√
d)

= Ψ(β)|(x− x0)2 − d(y − y0)2|
≤ Ψ(β)[|x− x0|2 + |d||y − y0|2]

≤ Ψ(β)

(
1

4
+ |3|1

4

)
though here we notice that we get 1

4 + |3| 14 = 1. So this is not good enough! But
let us see what this means to get 1: this happens only if |x− x0|2 = |y− y0|2 =
1/4, otherwise we do get something smaller than 1. Now if |x−x0|2 = |y−y0|2 =
1/4, we have from the second equation that

Ψ = Ψ(β)|(x− x0)2 − d(y − y0)2| = Ψ(β)|1
4
− 3

4
| < 1

and we are done.

Exercise 57. True/False.

Q1. Let R be a ring, and let r be an element of R. If r is not a zero divisor of
R, then r is a unit.
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Q2. A principal ideal domain is a euclidean domain.

Q3. Hamilton’s quaternions form a skew field.

Q4. The quotient ring Z[i]/(1 + i)Z[i] is a field.

Q5. A field is a unique factorization domain.

Q6. The ideal (5, i) in Z[i] is principal.

Q7. Let R be a ring, and M be a maximal ideal, then R/M is an integral
domain.

Answer.

Q1. This cannot be true in general! Take Z for example. It has no zero divisor,
but apart 1 and -1, no other element is a unit! Actually, in an integral
domain, there is no zero divisor, which does not mean it is an field.

Q2. A euclidean domain is a principal ideal domain. The converse is not true.
Take for example Z[(1 + i

√
19)/2]. It is a principal ideal domain, but it is

not a euclidean domain.

Q3. A skew field is non-commutative field. Hamilton’s quaternions are non-
commutative, and we have seen that every non-zero quaternion is invert-
ible (the inverse of q is its conjugate divided by its norm).

Q4. It is actually a field. You can actually compute the quotient ring explicitly,
this shows that Z[i]/(1 + i)Z[i] is isomorphic to the field of 2 elements
{0, 1}.This can be done using the first isomorphism for rings.

Q5. It is true since every non-zero element is a unit by definition.

Q6. It is true! With no computation, we know it from the theory: We know
that Z[i] is a euclidean domain, and thus it is a principal domain, so all
ideals including this one are principal.

Q7. Who said the ring R is commutative? The statement seen in the class is
about commutative rings. It is not true for non-commutative rings. Here
is an example: take R = Z + Zi + Zj + Zk (ring of quaternions with
integer coefficients), pR is a maximal ideal of R (p odd prime) but R/pR
is actually isomorphic to M2(Z/pZ) and thus is not an integral domain.


