Chapter

Exercises on Ring Theory

Exercises marked by (*) are considered difficult.

4.1 Rings, ideals and homomorphisms

Exercise 37. Let R be a ring and x € R. Suppose there exists a positive
integer n such that 2™ = 0. Show that 1 + x is a unit, and so is 1 — «.
Answer. The element 1 — x is a unit since
I-z)(l+z+...+2" 1) =1
The element 1+ x is a unit since
A+2)1l—24+2? -2 . 2" ) =1
Exercise 38. Let R be a commutative ring, and I be an ideal of R. Show that
VT :={z € R| there exists m € N* such that ™ € I}
is an ideal of R. Answer.

e Clearly, 0 € VI. If a € VI, then a™ € I for some m > 1. Then
(—a)™ = (=1)™a™ € I, so —a € VI. Now let a,b € VI, so a™ € I
for some n > 1 and b™ € I for some m > 1. Now let us show that

n—+m '
n: jin+m—j
(U, + b)n+m € I. We have (CL + b)n+m' = Z ma]b + J
j=0

(because R is commutative). Now if 0 < j < n, we have n + m — j > m,
so b"t™m=J € [ in this case (since b™ € I = b' € I for i > m). If
n+1<j<n+m, wehave j > n+ 1, so @/ € I in this case (since
a"el=a €] fori> n). Therefore all the terms in the previous sum
are in I and thus (a4 b)"*™ € I. Hence a +b € v/I. We just proved that
VT is an additive subgroup of R.
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e Now we have to check the second property. Let a € v/I, and r € R. We
have a™ € T for some n > 1. Now (ar)™ = a™r™ because R is commutative,
so (ar)™ € I and therefore ar € v/I. Therefore v/T is an ideal of R.

Exercise 39. (*) Determine all rings of cardinality p and characteristic p.

Answer. Let R be a ring of characteristic p. Consider the ring homomorphism:
@ : Z — R, the characteristic of R is the natural number p such that pZ is the
kernel of ¢. We can now factorize ¢ in an injective map Z/pZ — R. If now we
further assume that R has cardinality p, we have that Z/pZ and R have same
cardinality, and thus we have an isomorphism. This means that the only ring
of cardinality and characteristic p is Z/pZ.

Exercise 40. Let R be a commutative ring. Let
Nil(R) ={r € R|3n > 1,7" = 0}.
1. Prove that Nil(R) is an ideal of R.
2. Show that if r € Nil(R), then 1 — r is invertible in R.

3. Show, with a counter-example, that Nil(R) is not necessarily an ideal
anymore if R is not commutative.

1. e Clearly, 0 € Nil(R). If a € Nil(R), then a™ = 0 for some m > 1.
Then (—a)™ = (=1)™a™ = 0, so —a € Nil(R). Now let a,b €
Nil(R), so a™ = 0 for some n > 1 and b™ = 0 for some m > 1.
Now let us show that (a + b)"*™ = 0. We have (a + b)"T™ =

n+m

n! , .
Z - a?b""77 (because R is commutative). Now if
= Jjl(n+m—j)!

0<j<n,wehave n4+m—j > m, so p*t™m=J = () in this case (since
b =0=b=0fori>m). fn+1<j<n+m, wehavej >n+1,
so a/ = 0 in this case (since a” = 0 = a’ = 0 for i > n). Therefore
all the terms in the previous sum are 0 and thus (a + b)"*™ = 0.
Hence a + b € Nil(R). We just proved that Nil(R) is an additive
subgroup of R.

e Now we have to check the second property. Let a € Nil(R), and
r € R. We have a" = 0 for some n > 1. Now (ar)™ = a™r™ because
R is commutative, so (ar)™ = 0 and therefore ar € Nil(R). Therefore
Nil(R) is an ideal of R.

2. If r € Nil(R), then r™ = 0 for some m > 1. Then 147+ 724 ... +7m"1
is the inverse of 1 — r since

(=) (1+rdr2 4 ™) = 12 e ™ 2 ™ = 1™ = 1,
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3. If R = My(C), let a = (

0 0

0 1
0 0
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)andb:(o O). Then a2 = b2 =

10

( 00 ), so a,b € Nil(R), but a + b does not lie in Nil(R), since (a +

b)2 = I, and I} = I, for all n > 1.

Exercise 41. Determine whether the following maps are ring homomorphisms:

1. f1:Z — Z with fi(z) =2z + 1.

2. fo:Z — 7 with fo(x) = 22

3. f3:Z/15Z — Z/15Z with f3(z) = 4a.

4. fy: ZJ15Z — Z/15Z with fy(z) = 6z.

Answer.

1. Since f1(0) =1, f1, f cannot be a ring homomorphism.

2. Since fo(z +y) = 2% +y? + 22y # 22 + y? = fo(x) + f2(y), fo cannot be

a ring homomorphism.

3. Since f3(xy) = 4oy # xy = f3(x)f3(y), f3 cannot be a ring homomor-

phism.

4. Since f4(1) # 1, f4 cannot be a ring homomorphism!

Exercise 42. Consider the ring M, (R) of real n x n matrices. Are the trace
and the determinant ring homomorphisms?

Answer. The trace is not multiplicative, since

(3 9) o

The determinant is not additive:

R

(s )
e 9)-

—_

=)

Thus none of them are ring homomorphisms.

4.2 Quotient rings

Exercise 43. Compute the characteristic of the following rings R:

1. R =17, = Z/nZ,
2. R=17/2Z x 7.JAZ x 7/10Z,
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3. R=12Z[j]/(2 — 5j), where j denotes a primitive 3rd root of unity (53 =1
but j2 # 1).

Answer. In this exercise, we use the notation T to denote an element in the
quotient group involved.

1. For 1 <m < n—1, we have m-1 = m # 0, since m is not a multiple of
n. But n-1=mn = 0. So char(R) = n by definition of the characteristic.

2. If m € Z, we will denote by respectively by m, [m], 7 its class modulo 2,4
and 10. Assume that m(1,[1],1) = (0,[0],0). Then we have

(mv [m]’ m) = (07 [0]7 6)7

which implies that m is a multiple of 2,4 and 10. Hence m is a multiple
of the lowest common multiple of 2,4 and 10, which is 20. Conversely,
20(1, [1],1) = (20, [20],20) = (0,[0],0). Therefore char(R) = 20.

3. Here we have (2 —55)(2 —552) = 4—10(j + j2) + 2553 = 4+ 10 + 25 = 39.
Hence 39 -1 =39 = (2—5j) - (2—552) = 0. Then the characteristic of
R is finite and divides 39. Therefore the characteristic of R is 1,3,13 or
39. Now let ¢ = char(R) > 0. Since ¢ - 1g lies in the ideal (2 — 55), then
c¢=(2-5j7)(a+bj) for some a,b, € Z. Hence |c|* = |2 — 55||a + bj|?, so

c? =39(a* + b — ab)

and therefore 39|c2. The only value (among 1,3,13 and 39) for which it
is possible is ¢ = 39. Thus char(R) = 39.

Exercise 44. Prove the following isomorphisms:
1. Z[i)/(1 +1i) ~ Z/2Z.
2. ZIX]|/(n,X) ~Z/nZ, n > 2.
3. ZIX]/(n) = (Z/nZ)[X], n > 2.

Answer.

1. Consider ¢ : m € Z — m-1g = m € Z[i]/(1 + ¢). This is a ring
homomorphism. It is surjective. Indeed, let a +bi € Z[i]/(1 + i). We
have a+bi = (b—a)+a(l+i) = b—a, so a+b = ¢(b —a). Now
ker(p) = ¢ - Z, where ¢ = char(R) by definition of the characteristic. By
direct computation, we get char(R) = 2 (since R is not the trivial ring and
(1414)(1—1i) = 2). Therefore ker(¢) = 2Z. Now use the first isomorphism
theorem.

2. Let us consider ¢ : P € Z[X] — P(0) € Z /nZ. This is the composition
of the ring homomorphisms P € Z[X] — P(0) € Zand m € Z — m €
Z /nZ, so it is a ring homomorphism. It is surjective: for m € Z /nZ, we
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have p(m) = T, where m € Z C Z[X] is considered as a constant poly-
nomial. Now we have ker(yp) = {P € Z[X]|P(0) is divisible by n}, which
equals (n, X). Hence ker(p) = (n, X); now applying the first isomorphism
theorem, we get the result.

3. Consider the reduction modulo n, ¢ : P € Z[X] — P € (Z /nZ)[X]. We
have that ¢ is a ring homomorphism. It is surjective: let f € (Z /nZ)[X],
f=ao+ -+anX",a; € Z. Thenlet P=ao+ -+ a,X™ € Z[X]. By
definition of P, we have ¢(P) = f. Now let us compute the kernel of ¢.
Let P=ao+ - +anX™. Wehave o(P) =0 <= Go+---+a,X™ =0.
This is equivalent to say that @; = 0 for all 4, which means that n|a; for
all 4. This is equivalent to say that P =n - @, for some Q € Z[X]. Hence
ker(¢) = (n). Now apply the first isomorphism theorem.

4.3 Maximal and prime ideals

Exercise 45. Show that a non-zero principal ideal is prime if and only if it is
generated by a prime element.

Answer. If p is prime then consider the principal ideal pR = {pr, r € R}. To
show that pR is prime, we have to show that if ab € pR then either a or b is in
pR. If ab € pR, then ab = pr for some r € R. Since p is prime, it has to divide
either a or b, that is either a = pa’ or b = pb’. Conversely, take a principal ideal
cR which is prime, thus if ab € cR, either a € cR, that is a = ca/, or b € cR,
that is b = cb’. We have thus shown that if c|ab, then c|a or c|b.

Exercise 46. Are the ideals (X, X + 1), (5,X2 +4) and (X% + 1,X + 2)
prime/maximal in Z[X]?

Answer.

o [ =(X,X+1)=Zsince 1 = (X + 1) — X, thus I is not a proper ideal
and cannot be prime.

e Consider Z[X]/(5, X2+4) ~ Z5[X]/(X?+4), and (X2+4) = (X —-1)(X+1)
is reducible modulo 5, thus this quotient is not an integral domain and
thus the ideal is not prime.

o I =(X?+1,X+2)=(X+2,5) since (X +2)2 —4(X+2)+5=X?+1,
then Z[X]/I ~ Z5[X]/(X + 2) where X + 2 is irreducible in Z5[X] thus
the quotient is a field and I is maximal.

Exercise 47. 1. Consider the ring R = Z[i] and the ideal I = (1 +4) in R.
Is I prime? Is I maximal?

2. Consider the ring R = Z[j] and the ideal I = (2 — rj) in R. Is I prime?
Is I maximal? (j is a primitive 3rd root of unity.)
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3. Consider the ring R = Z[X] and the ideal I = (n) in R. Is I prime? Is I
maximal?
Answer.

1. We have Z[i]/(1+14) ~ Z /2Z, which is a field, so (1+14) is maximal (hence
prime).

2. The characteristic of Z[j]/(2 — 55) is 39 which is not a prime number (see
Exercise 43), so Z[j]/(2 — 57) is not an integral domain. Hence (2 — 5j) is
not prime and therefore not maximal.

3. We have Z[X]/(n) ~ Z /nZ[X]. We have that Z /nZ[X] is an integral
domain if and only if Z /nZ is an integral domain. Hence (n) is a prime
ideal if and only if n is a prime number. It is never maximal since Z /n Z[X]|
is not a field for any n (X has no inverse).

Exercise 48. Consider the ring R = K[X] and the ideal of R given by I =
(X —a), where K is a field, and @ € K. Is I maximal? Is I prime?

Answer. Let ¢ : P € K[X] — P(a) € K. This is a ring homomorphism,
which is surjective: indeed, if A € K, then p(A) = A, where A € K C K[X]
is viewed as a constant polynomial. We now determine the kernel of . Let
P € K[X]. We can write P = Q(X).(X — a) + ¢, for some @ € K[X] and
¢ € K. (Indeed, it suffices to proceed to the division of P by X — a. The
remainder is either zero or has degree < 1, that is degree 0, which means that the
remainder is a constant.) Then we have P(a) = Q(a).(a —a)+ ¢ = ¢. Therefore,
p(P)=0 <= ¢=0 <= P is a multiple of X — a. Hence ker(y) = (X —a)
(the principal ideal generated by X — a). Using the first isomorphism theorem,
we get that K[X]/(X —a) ~ K. Since K[X]/(X —a) ~ K, and K is a field,
then K[X]/(X —a) is a field as well and (X — a) is maximal (hence prime).

Exercise 49. (*) Let R be a commutative ring. Let
Nil(R) ={r € R|3n > 1,7" = 0}.
1. Show that Nil(R) is contained in the intersection of all prime ideals of R.
2. Show that Nil(R/Nil(R)) = 0.
Answer.

1. Let a € Nil(R), so a™ = 0 for some n > 1. Assume that there is a prime
ideal p for which a ¢ p. We have a™ = 0 € p. Since a™ = a"*.a and p is a
prime ideal, then a”~! € p or a € p. By assumption on a, we have a ¢ p,
so necessarily a” ! € p. But "' = a""2.a € p, so a" 2 € p for the same
reasons, and by induction we get a € p, a contradiction. Therefore a lies
in all the prime ideals of R.
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2. Let @ € Nil((R/Nil(R))), so @* = 0 for some n > 1. Then a™ = 0, which
means that a” € Nil(R) by definition of the quotient ring. Therefore,
there exists m > 1 such that (a™)™ = 0, so ™™ = 0, which means that
a € Nil(R). Hence a = 0.

Exercise 50. Let R = Z[X], and let n > 1.
e Show that the ideal (n, X) is given by

(n, X) = {p(X) € Z[X], p(0) is a multiple of n}.

e Show that (n, X) is a prime ideal if and only if n is a prime number.
Answer.

e Let P € (n,X), so P =nQ + X.Qa for some Q1,Q2 € Z[X]. Then
P(0) = n.Q1(0) € nZ (we have Q1(0) € Z since Q1 € Z[X]), that is
) is a multiple of n. Conversely, assume that P € Z[X] is such that
) is a multiple of n, and write P = a, X" + -+- + a1 X + ap. Then
) = ao, so by assumption ay = n.m for some m € Z. Now we get
P=nm+ X.(a, X" 1+ +aX +a),s0 Pe(nX).

P(0
P(0
P(0

e If n is not a prime number, then we can write n = ny.ng, 1 < ny,ny < n.
Now consider P; = ny, P» = ng € Z[X] (constant polynomials). We have
Pi.P; = ny.ng =n € (n,X), but P, and P, are not elements of (n, X).
Indeed, P1(0) = n; and P»(0) = ng, but ny,ns are not multiples of n
by definition. Hence (n, X) is not a prime ideal. Now assume that n is
equal to a prime number p. First of all, (p, X) # Z[X], because 1 ¢ (p, X)
for example. Now let P, P, € Z[X] such that P1.P, € (p,X). Then
(Py.P,)(0) is a multiple of p by the previous point, that is p|P;(0).P5(0).
Since p is a prime number, it means that p|P;(0) or p|P(0), that is Py €
(p,X) or Py € (p,X). Hence (p, X) is a prime ideal.

4.4 Polynomial rings
Exercise 51. Set

E={p(X) € Z[X]|p(0)iseven }, F={¢(X) € Z[X] | q(0) = 0(mod 3)}.

Check that E and F are ideals of Z[X] and compute the ideal E + F. Further-
more, check that E - F C {p(X) € Z[X]|p(0) = 0 (mod 6) }.

Answer. If p(X) = >"p_  pp X", then

E={p(X) € Z[X] | po € 2Z} and F ={q(X) € Z[X] | qo € 3Z}.

Thus E and F are ideals of Z[X] since 27 and 3Z are ideals of Z. If 3, ¢, X* =
(Zk kak) . (Zk quk), then ¢y = pogo and thus

E-FC{p(X) € ZIX] | po € 2Z - 3Z} = {p(X) € Z[X] | po € 6Z}.
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Similarly,

E+F ={p(X) € ZIX] | po € 2Z+ 3L} =, {p(X) € Z[X]|po € Z} = Z[X].

Bezout

Exercise 52. Show that if F is a field, the units in F[X] are exactly the nonzero
elements of F.

Answer. Let f(X) € F[X] of degree n, f(X) is a unit if and only if there exists
another polynomial g(X) € F[X] of degree m such that f(X)g(X) = 1. Because
F is a field (thus in particular an integral domain), f(X)g(X) is a polynomial
of degree n 4+ m, thus for the equality to hold, since 1 is a polynomial of degree
0, we need n +m = 0, thus both f and g are constant, satisfying fg = 1, that
is they are units of F', that is nonzero elements since F' is a field.

Exercise 53. There exists a polynomial of degree 2 over Z/47Z which has 4
roots. True or false? Justify your answer.

Answer. Take the polynomial 2X (X — 1).
Exercise 54. Let R be a ring, and let a # 0 € R such that there exists an

integer n with @™ = 0. Show that R* C (R[X])* and R* # R[X]*, where R*
and R[X]* denote respectively the group of units of R and R[X].

Answer. Clearly R* C R[X]*. We need to show that the inclusion is
strict, that this, there exists an element in R[X]* which is not in R*. Take
f(X)=1-aX. We have

(1—aX)(1+aX + (aX)*+...+ (aX)" 1) =1,

and f does not belong to R*.

4.5 Unique factorization and Euclidean division

Exercise 55.

Show that the ideal generated by 2 and X in the ring of polynomials Z[X] is
not principal.

Answer. We have that
(2, X) ={2r(X) + Xs(X), r(X),s(X) € Z[X]},
and assume there exists f(X) € Z[X] such that (2, X) = (f(X)). Since 2 €

(f(X)), then f(X) = £2. Since X € (f(X)), we should have X = +2¢(X), a
contradiction.



4.5. UNIQUE FACTORIZATION AND EUCLIDEAN DIVISION 93

Exercise 56. Show that Z[v/3] is a Euclidean domain. (Hint: use the same
technique as the one seen for Z[v/2].)
Answer. Consider the ring

ZIV3] = {a+bV3, a,b € Z}

with
U(a+bV3) = |a® — 3b?|.

Take o, B # 0 in Z[v/3], and compute the division in Q(v/3):
Oé/ﬁ = qla

with ¢ = x 4+ /3y with z,y rational. Let us now approximate z,y by integers
To, Yo, namely take xq, 3o such that

[z — 20 <1/2, |y —yol < 1/2.

Take
q =0+ yoV3, r=B((z — x0) + (y — y0)V3),

where clearly ¢ € Z[v/3], then

Ba+r = Blxo+yoV3)+ B((z — x0) + (y — y0)V3)
= Blx+yV3) =8¢ =a,

which at the same time shows that r € Z[v/3]. So far this is exactly what we
did in the lecture. We are also left to show that ¥(r) < ¥(5). We have

W) = WU~ o)+ (v~ )V
U(B)|(x — x0)® = d(y — yo)?|
< WAl — a0l +ldlly - ol
< w0 (3 +15)

though here we notice that we get  +[3|% = 1. So this is not good enough! But
let us see what this means to get 1: this happens only if |2 — 2¢|? = |y — yo|? =
1/4, otherwise we do get something smaller than 1. Now if |z —x¢|? = |y—yo|? =
1/4, we have from the second equation that

1 3

U= U(B)|(z —z0)” —dly —y0)*| = ¥(B)| 7 — 7 <1

and we are done.
Exercise 57. True/False.

Q1. Let R be aring, and let r be an element of R. If r is not a zero divisor of
R, then r is a unit.
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Q2. A principal ideal domain is a euclidean domain.

Q3. Hamilton’s quaternions form a skew field.

Q4. The quotient ring Z[i]/(1 + ¢)Z[i] is a field.

Q5. A field is a unique factorization domain.

Q6. The ideal (5,4) in Z[d] is principal.

Q7. Let R be a ring, and M be a maximal ideal, then R/M is an integral
domain.

Answer.

Q1. This cannot be true in general! Take Z for example. It has no zero divisor,
but apart 1 and -1, no other element is a unit! Actually, in an integral
domain, there is no zero divisor, which does not mean it is an field.

Q2. A euclidean domain is a principal ideal domain. The converse is not true.
Take for example Z[(1 +i4/19)/2]. It is a principal ideal domain, but it is
not a euclidean domain.

Q3. A skew field is non-commutative field. Hamilton’s quaternions are non-
commutative, and we have seen that every non-zero quaternion is invert-
ible (the inverse of ¢ is its conjugate divided by its norm).

Q4. It is actually a field. You can actually compute the quotient ring explicitly,
this shows that Z[]/(1 + )Z[i] is isomorphic to the field of 2 elements
{0,1}.This can be done using the first isomorphism for rings.

Q5. It is true since every non-zero element is a unit by definition.

Q6. It is true! With no computation, we know it from the theory: We know
that Z[i] is a euclidean domain, and thus it is a principal domain, so all
ideals including this one are principal.

Q7. Who said the ring R is commutative? The statement seen in the class is

about commutative rings. It is not true for non-commutative rings. Here
is an example: take R = Z + Zi + Zj + Zk (ring of quaternions with
integer coefficients), pR is a maximal ideal of R (p odd prime) but R/pR
is actually isomorphic to M(Z/pZ) and thus is not an integral domain.



