Chapter 12

Solutions to the Exercises

“Intuition comes from experience, experience from failure, and
failure from trying.”

Exercises for Chapter 1

Exercise 1. Show that 2 is the only prime number which is even.

Solution. Take p a prime number. Then p has only 2 divisors, 1 and p. If p
is also even, then one of its divisors has to be 2, thus p = 2.

Exercise 2. Show that if n? is even, then n is even, for n an integer.
Solution. An integer n is either even, that is n = 2n/, for some integer n’,
or odd, that is n = 2n’ + 1 for some integer n’. Thus n? is either 4(n’)? or

4(n’)* +4n’ + 1. The case where n? is even is thus when n = 2n’.

Exercise 3. The goal of this exercise is to show that V/2 is irrational. We
provide a step by step way of doing so.

1. Suppose by contradiction that v/2 is rational, that is v/2 = o, for m
and n integers with no common factor. Show that m has to be even,

that is m = 2k.

2. Compute m?, and deduce that n has to be even too, a contradiction.
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Solution. 1. Suppose by contradiction that v/2 is rational, that is v/2 = n,
for m and n integers with no common factor. Then

m
2:—2
n

and thus m? = 2n?, showing that m? is even, that is, using Exercise 2,
m has to be even, say m = 2k for k some integer.

2. Now m? = (2k)? = 4k*. This tells us, combining with the first step of
the exercise, that
m? = 4k* = 2n®

which implies that 2k% = n?, that is n? is even and by again by Exercise
2, it must be that n is even. This is a contradiction, since we assumed
that m and n have no commun factor.

Exercise 4. This exercise is optional, it requires to write things quite for-
mally. Show the following two properties of integers modulo n:

1. (@ mod n)+ (b mod n) = (a+b) mod n.
2. (a mod n)(b mod n) = (a-b) mod n.

Solution. 1. Suppose (¢ mod n) = d/, thatisa = ¢gn+a’, and (b mod n) =
b, that is b = rn + b, for some integers ¢, r. Then

(a modn)+ (b modn)=d +b modn
and

(a+b) modn=(gn+d+rn+¥b) modn=(d+¥b) modn.

2. Similarly
(a mod n)(b modn)=db modn
and

(ab) mod n = (qgn+a’)(rn+b") = grn*+qnb'+d'rn+a’t mod n = (a't)

Exercise 5. Compute the addition table and the multiplication tables for
integers modulo 4.

mod n.
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Solution. We represent integers modulo 4 by the set of integers {0, 1,2, 3}.
Then

+10 1 2 3
0/0 1 2 3
111 2 3 0
212 3 0 1
313 0 1 2
Similarly
o 1 2 3
0/0 0 0 O
110 1 2 3
210 2 0 2
310 3 2 1

Note that these tables are great to observe the closure property! Elements
computed in these tables are the same as those given as input.

Exercise 6. Show that @ =0 (mod p) for p an odd prime.

Solution. Suppose that p is an odd prime. Then p + 1 is even, thus divisible
by 2, say p + 1 = 2k for some k. Now

p(p+1)

5 =pk=0 (mod p).

Note that the critical part is that p is odd. If p = 2, this does not work,
indeed 2 - 3/2 = 3 which is not 0 mod 2.

Exercise 7. Consider the following sets S, with respective operator A.

e Let S be the set of rational numbers, and A be the multiplication. Is
S closed under A? Justify your answer.

e Let S be the set of natural numbers, and A be the subtraction. Is §
closed under A? Justify your answer.

e Let S be the set of irrational numbers, and A be the addition. Is S
closed under A? Justify your answer.
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Solution. e Take two rational numbers % and ’:Z—,’ Then

which is a rational number. Thus the answer is yes, S is closed under
multiplication.

The subtraction of two natural numbers does not always give a number
natural, for example,

5—10 = 5.

Thus S is not closed under subtraction.

The addition of two irrational numbers does not always give an irra-
tional number, for example,

2+V2)+(2-V2) =4

and 4 is not an irrational number. Thus S is not closed under addition.
Note that we are using here the claim that 2+ V/2 is irrational. Indeed,
suppose that 2 + /2 were rational, that is 2 + v/2 = = for m,n some
integers. Then

ﬂ:@_sz—Zn
n n

which is a contradiction to the fact that /2 is irrational.

Exercises for Chapter 2

Exercise 8. Decide whether the following statements are propositions. Jus-
tify your answer.

1

2

3.

4.

>

2+2=05.
2+2=4.
r = 3.

Every week has a Sunday.

Have you read “Catch 2277
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Solution. 1. 2+2 = 5: this is a proposition, because it is a statement that
always takes the truth value ”false”.

2. 24 2 = 4: this is a proposition, because it is a statement that always
takes the truth value "true”.

3. © = 3: the statement depends on the value of . Maybe it is true (if
x was assigned the value 3), or maybe it is false (if = was assigned a
different value). Thus this is not a proposition.

4. Every week has a Sunday: this is a proposition, because it is a statement
that always takes the truth value "true”.

5. Have you read “Catch 2277: this is a question, thus it is not a propo-
sition.

Exercise 9. Show that
~(pVag) =-pA-g
This is the second law of De Morgan.

Solution. We show the equivalence using truth tables:

plaqglpVa|-(pVa plaqg|-p|—-qg|-pA—q
TIT| T F TIT|F|F F
T I F| T F TIF|F|T F
FlT| T Ia FIT|T|F F
FIF| F T FIF|T|T T

Since both truth tables are the same, the two logical expressions are
equivalent.

Exercise 10. Show that the second absorption law p A (p V ¢) = p holds.

Solution. We show the equivalence using a truth table:

plag|prVag| pA(pVa)
TIT| T T
T IF| T T
FlT| T F
F|F| F F
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Since the column of p is the same as that of p A (p V ¢), both logical
expressions are equivalent.

Exercise 11. These two laws are called distributivity laws. Show that they
hold:

1. Show that (pAgq)Vr=(pVr)A(gVr).
2. Show that (pV g Ar=(pAr)V(gAT).

Solution. We use truth tables:

(pAgVr|p (pVr)A(gVr)
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Exercise 12. Verify —(pV —q) V (=p A =q) = —p by
e constructing a truth table,
e developing a series of logical equivalences.

Solution. We start with a truth table:
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plag|p|—~q|pVoqg| =V | pA-g| (Vg V(=pA-g)
TIT|F|F| T F F F
T F|F|T| T F F F
FIT|T|F| F T F T
FIlF|T|T| T r T T

Next we want to prove this result without using the truth table, but by
developing logical equivalences:

~(pV=q)V(=pA—-g) = (=pAgq)V(=pA=g) De Morgan
—p A (q V =q) Distributivity

—p AT since(qV —q) =T

= .

Exercise 13. Using a truth table, show that:
q—> pP=p—4Q.

Solution. We compute the truth table:

pPlg|™P|™q|q—>7pP | P4
T|T| F | F T T
T|F| F | T F F
F\T\|T|F T T
FIF| T | T T T

Exercise 14. Show that pVg—r=(p—>r)A(¢—r).

Solution. We use logical equivalences:

pVqg—1r = (pVq) — r precedence

—(p V q) V 1 conversion theorem

(=p A —q) V r De Morgan
(=p V r) A (=g V r) Distributivity
(

p — 1) A (¢ — ) conversion theorem

Exercise 15. Are (p — q) V (¢ — r) and p — r equivalent statements?

Solution. They are not equivalent. Here is a proof using truth tables:
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We see that the first rows for example are giving different truth values.
This can be done using equivalences as well:

p—=>qV(g—r) = (-pVq) V(—gVr) conversion theorem

—pVrVTsince qVqg=T
T.

Since p — ¢ is not equivalent to T', both statements cannot be equivalent.

Exercise 16. Show that this argument is valid:

-p— F;o.p.

Solution. The premise is -p — F', which is true when —p is false, which is
exactly when p is true.

Exercise 17. Show that this argument is valid, where C' denotes a contra-
diction.

-p—C;. . p.

Solution. The premise is —-p — C, which is true when —p is false, which is
exactly when p is true.

Exercise 18. Determine whether the following argument is valid:

-p—>1rA-S
t— s

U — —p
—w

uVw
St = w.
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Solution. We start by noticing that we have
u VvV w; w; .. U

Indeed, if v V w and —w are both true, then w is false, and u must be true.
Next
u — —p;u;.. .

Indeed, if u — —p is true, either w is true and —p is true, or u is false. But
w is true, thus —p is true (Modus Ponens). Then

-p —>rA-s;,p;,c.r A s,
this is again Modus Ponens. Then
r /A 8;.. TS,
Indeed, for A =s to be true, it must be that —s is true. Finally
t— s;s;0 0t

since for t — s to be true, we need either ¢ to false, or £ and s to be true,
but since s is false, ¢ must be false (Modus Tollens), and

-t .t Vw

or equivalently
“tVw=t—w

using the Conversion theorem, which shows that the argument is valid.

Exercise 19. Determine whether the following argument is valid:

p

pVyq

q— (r—2s)
t—r

. s — .

Solution. For this question, there is no obvious way to combine the known
statements with inference rules. The only 2 related statements are p and
pV q, and assuming that both are true, all can be deduced is that ¢ is either
true or false. Now if ¢ is false, ¢ — (r — s) is always true, while if ¢ is true,
q — (r — s) is true only if (r — s) is true, which excludes the possibility
r=Tand s = F.
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NN T T TR
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Now we look at the last premise ¢ — r. For it to be true, we need t false, or
t true and r true.

q| 1| s t
F|T|T|T/F
F|T|F|T/F
FIF|T| F
FIF|F| F
T|T|T|T/F
T|F|T| F
T|F|F| F

Now if s is true, then —s is always false, and the conclusion is always true.
We thus focus on s is false, and —t is false, that is ¢ is true. The second row
gives a counter-example:

g=F r=T, s=F, t="T.

Exercises for Chapter 3

Exercise 20. Consider the predicates M (z,y) = “x has sent an email to y”,
and T'(z,y) = “x has called y”. The predicate variables x,y take values in
the domain D = {students in the class}. Express these statements using
symbolic logic.

1. There are at least two students in the class such that one student has
sent the other an email, and the second student has called the first
student.

2. There are some students in the class who have emailed everyone.
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Solution. 1. We need two predicate variables since at least 2 students are
involved, say z and y. There are at least two students in the class
becomes

dre D, dy e D.

Then z sent an email to y, that is M(z,y) and y has called z, that is
T(y,x), thus
M(z,y) NT(y, z).

Furthermore, we need to take into account the fact that there are at
least ”"two” students, so x and y have to be distinct! Thus the final
answer is

dJreD, Jye D, ((x #y) NM(xz,y) NT(y,x)).

2. There are students becomes
Jr e D,
then x has emailed everyone, that is
Jr e D,(Vy € D M(x,y)).
Note that the order of the quantifiers is important.

Exercise 21. Consider the predicate C'(z,y) = “z is enrolled in the class y”,
where z takes values in the domain S = {students}, and y takes values in
the domain D = {courses}. Express each statement by an English sentence.

1. 3z €8, C(z, MHIS12).

2. 3y e D, C(Carol,y).

3. 3z €S, (Cz, MHI812) A C(x, CZ2002)).

4. Jxe S, '€ S, Vye D, (v #2)N(Clx,y) < C(2',y))).

Solution. 1. There exists a student such that this student is enrolled in
the class MH1812, that is some student enrolled in the class MH1812.

2. There exists a course such that Carol is enrolled in this course, that
is, Carol is enrolled in some course, or Carol is enrolled in at least one
course.
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3. There exists a student, such that this student is enrolled in MH1812
and in CZ2002, that is some student is enrolled in both MH1812 and
CZ2002.

4. There exist two distinct students x and 2/, such that for all courses, x
is enrolled in the course if and only if 2’ is enrolled in the course. In
other words, there exist two students which are enrolled in exactly the
same courses.

Exercise 22. Consider the predicate P(x,y, z) = “xyz = 17, for z,y,z € R,
x,y,z > 0. What are the truth values of these statements? Justify your
answer.

1.V, Vy, V2, P(x,y,z).

Y, 2).
y
)

N

)

(
2. 3z, Iy, 32z, P(z,
3. Va, Vy, 3z P(z,y,2).
4. 3z, Yy, Vz P(z,y,z2).

Solution. 1. Vx, Yy, Vz P(zx,y,z2) is false: take z =1 and y = 1, then
whenever z # 1, zyz = z # 1.

2. dx, Jy, Iz, P(z,y,2) is true: take v =y =2z = 1.

3. Va, Vy, 3z P(x,y,z) is true: choose any = and any y, then there
exists a z, namely z = % such that xyz = 1.

4. 3z, Vy, ¥z, P(zx,y,z2) is false: one cannot find a single x such that
ryz = 1 no matter what are y and z. This is because once yz are
chosen, then z is completely determined, so x changes whenever yz
does.

Exercise 23. 1. Express
~(Vz, Vy, Pz,y))
in terms of existential quantification.

2. Express
(3, 3y, P(z,y))

in terms of universal quantification.
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Solution. 1. We see that =(V z, Vy, P(z,y)) is a negation of two universal
quantifications. Denote Q(z) = “V y, P(x,y)”, then =(Vz,Q(z)) is
(Ell’, _'Q(x))7 thus

(Y, Vy, Plr,y) =3z, ~(Vy, P,y))
and now we iterate the same rule on the next negation, to get

(VY z, Vy, Plx,y)) =3z, Jy, ~P(x,y).

2. We repeat the same procedure with the negation of two existential
quantifications, by setting this time Q(x) = “Jy, P(z,y)”:
~(Fz, 3y, Plz,y) = ~(E2Q(x))
Vr-Q(x)
Ve=(3y, Plz,y))
= VaVy-P(z,y).

Exercise 24. Consider the predicate C'(z,y) = “z is enrolled in the class 3",
where x takes values in the domain S = {students}, and y takes values in
the domain C' = {courses}. Form the negation of these statements:

1. 3z, (C(xz, MH1812) A C(z, CZ2002)).
2. 323y, Vo, (2 £9) A (Cla,2) & Oy, 2)))
Solution. 1. We have
~(3 @, (C(z, MHI812) A O(z, CZ2002)))
= W (C(z, MH1812) A C(x, CZ2002))
= Va-C(zx, MH1812) V =C'(z, CZ2002)

where the first equivalence is the negation of quantification, and the
second equivalence De Morgan’s law.

2. We have

(3 3y, Vz, ((z #y) A (C(x,2) < Cly, 2))))
= Vzo(3y, Vz, ((z #y) A (Clz,2) < Cy, 2))))
VaVy-(Vz, ((z # y) A (Clz, 2) < Cly, 2))))
= VaVydz=((z # y) A (C(z,2) < Cly, 2)))
= VaVydz—-(z #y) VvV (C(x, z) < C(y, 2)))
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using three times the negation of quantification, and lastly the Morgan’s
law. Next —(z # y) = (z = y) and using that

C(x,z) < C(y,2) = (C(x,2) = Cly,2)) A (Cly, 2) = C(x, 2))
we get
~(C(x,2) ¢ Cly,2)) = ~(Clx,2) = Cly,2)) vV ~(Cly, 2) = Cx,2))
so that, using the Conversion theorem to get =(=C(z, z) V C(y, z)) and
~(=C(y, 2) vV C(z,2))
~(Fz 3y, Vz, ((z#y) A (Clz,2) < Cly,2))))
= VaVydz((@ =y) vV [(C(z,2) A ~C(y, 2)) V (Cly, z) A =C(z, 2))]).

The last term can be further modified using distributivity:

(C(z,2) AN =C(y, 2)) v (Cly, 2) A ~C(x, 2))
= [(Cz,2) A=Cly,2)) V Cly, 2)] N [(Clz, 2) A =Cly, 2)) V =C(a, 2)]
= (Clz,2) v Cl(y,2)) A (=C(z,2) vV ~C(y, 2))

to finally get

—~(3x 3y, Vz, ((x #y) A (Clz,2) < Cly,2))))

= Vavy3z((z = y) V[(C(z,2) V Oy, 2)) A (=C(z, 2) V =C(y, 2))]).
When many steps are involved, it is often a good idea to check the sanity
of the answer. If we look at =(C(z,z) <» C(y, z)), it is false exactly
when C(z, z) and C(y, z) are taking the same truth value (either both
true or both false). Now we look at (C(z,z)V C(y,z)) A (=C(z,z) V
—C(y, z)): when C(z,2) and C(y, z) are taking the same value, we get
false, and true otherwise. This makes sense!

Exercise 25. Show that Vo € D, P(x) — Q(x) is equivalent to its contra-
positive.

Solution. For every instantiation of x, (Vx € D, P(x) — Q(x)) is a proposi-
tion, thus we can use the conversion theorem:

(Vz € D, P(z) = Q(z))

(Vz € D,~P(z) vV Q(x))

(Vz € D,Q(x) vV ~P(z))

(Vz € D,==Q(x) V =P(x))

(Vo € D,=Q(x) — —P(x)).
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Exercise 26. Show that
—(V z, P(z) —» Q(x)) = 3z, P(z) A -Q(z).

Solution.

where the first equivalence is the negation of quantifications, the second
equivalence is the conversion theorem, and the third one is De Morgan’s law.

Exercise 27. Let y,z be positive integers. What is the truth value of
“Jy, 3z, (y =2z A (y is prime))”.

Solution. The truth value is true, take y = 2 and z = 1.

Exercise 28. Write in symbolic logic “Every SCE student studies discrete
mathematics. Jackson is an SCE student. Therefore Jackson studies discrete
mathematics”.

Solution. Consider the domain D = { SCE students }. Set P(x)="“x studies
discrete mathematics. Then every SCE student studies discrete mathematics
becomes

Vx € D, P(x).

Now Jackson is a SCE student means Jackson belongs to D. This gives
Vz € D, P(z);Jackson € D; .. P(Jackson).

Exercise 29. Here is an optional exercise about universal generalization.
Consider the following two premises: (1) for any number z, if x > 1 then
x —1>0, (2) every number in D is greater than 1. Show that therefore, for
every number z in D, z — 1 > 0.

Solution. Set P(x) = “x > 1”7 and Q(z) = “c — 1 > 0”. Let us formalize
what we want to prove:

Vz (P(z) — Q(x)) AVx € D P(x)] = Vx € D, Q(x).
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1. Vz (P(z) — Q(x)), by hypothesis

2. Yz € D P(z), also by hypothesis

3. P(y) — Q(y), by universal instantiation on the first hypothesis
4. P(y), by universal instantiation on D in the second hypothesis
5. Q(y), using modus ponens

6. VY € D, Q(x), using universal generalization.

Exercise 30. Let ¢ be a positive real number. Prove or disprove the following
statement: if ¢ is irrational, then /g is irrational.

Solution. We prove the contrapositive of this statement, namely: if |/q is
rational, then ¢ is rational. But if /q is rational, then /g = 3, a, b integers,
b # 0, and thus ¢ = 7z which shows that ¢ is rational.

Exercise 31. Prove using mathematical induction that the sum of the first

n odd positive integers is n?.

Solution. We want to prove that Vn, P(n) where

Pn)=“Y (2j—1)=n*, neZ, >1.

j=1
e Basis Step: we need to show that P(1) is true.
Pl)=2-1)=1=1?

which is true.

e Inductive Step: Assume P(k) is true, that is we assume that

(2j —1) =k
1

k
Jj=
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is true. We now need to prove that P(k 4 1) is true.

k+1
> (2=1)
&
= > (-1 +2k+1)-1

= k*+2(k+1)—1 using P(k)
42k +1=(k+1)>2
This shows that P(k + 1) is true, therefore P(n) is true for all n.

Exercise 32. Prove using mathematical induction that n® — n is divisible
by 3 whenever n is a positive integer.

Solution. We first set P(n) = “3 | n® —n”, that is 3 divides n® — n.
e Basis Step: P(1) = “3|0” which is true.
e Inductive Step: Assume P(k) is true, that is we assume that
3| (K —k).

is true. We now need to prove that P(k + 1) is true. When n =k + 1,
we get

(k+1)°—(k+1)= (K> +3k*+3k+1) — (k+1) = (K’ — k) + 3k* + 3k
which is divisible by 3, since (k*—k) is divisible by 3, and so is 3(k*+k).

Therefore P(k+ 1) is true, and we conclude that P(n) is true for all n.
Exercises for Chapter 4
Exercise 33. 1. Show that
n . n _(n+1
k k—1)  \ k
for 1 < k <[, where by definition
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2. Prove by mathematical induction that

(z+y)" = z”: <Z> Yk

k=0
You will need 1. for this!

3. Deduce that the cardinality of the power set P(S) of a finite set S with

n elements is 2".
n n n _(n+ 1
k k—1) k ’

we first expand the left hand side:

Solution. To prove

n! N n! _nln—k+1) N nlk
Elin—k)!  (k—=D!n—k+1)! kln—k+1) kl(n—k+1)!

which is equal to

nln+1) (+1)! /n+1
k!(n—k+1)!_k!(n—k+1)!_( k )

To prove the binomial theorem by mathematical induction, we set
P(?’l) — “(l’ 4 y>n — i (n) xnfkykn
k=0 k 7

and we want to prove that ¥n, P(n). The basis step is to prove that P(1)
holds, which is given by

1

Iy -

(@+y)=) (k)wl Y=oty
k=0

Next for the inductive step, we suppose that P(l) is true, namely

(x+y) =) <,i) alThyE (12.1)

l
k=0
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and we want to prove P(l + 1).
(@+y)™ = @+y)=+y)

= (z+vy) Z (;{) 2! Fy¥ (using (12.1))

k=0 k=0
L/l L/l
=S <k)xlk+lyk 0y (k)xlkylwrl.
k=0 k=0

At this point, it is probably a good idea to remember what we want to prove,

namely
I+1
[+1 _
=3 (1 et

k=0

From our aim, we notice that the first sum has already right exponents,
namely z!**19* is a term we want. So we first work on the other sum to get

a similar right term present, by doing a change of variable j = k + 1, to get

! I I+1 I
=k, k+1 _ I—j+1, 5
IAESTEED M PN S

k=0 j=1
We next combine this derivation:
($ =+ y)l+1
! ] 1+1 ]
_ Z (k) xlfk+1yk 4 ( . 1) ml—jﬂyj
k=0 j=1 J

! !
_ DN kv iy (U am l g (DY,
_;(k>x v l,)? +; i1)" v, )y

l
_ l l I—k+1, k I+1 I+1
= 210l s

and now is the point where we recognize the formula that we derived in 1.,
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thus

Finally, evaluate the binomial theorem in x = y = 1. The only thing left
to be seen is the interpretation of (Z) as “n choose k”, which will be discussed
into more details in the next chapter, namely (Z) counts the number of ways
of picking k elements out of n. Therefore to count the number of elements
in P(S) we just count how many subsets we have with 1 element, with 2

elements, ..., and we sum these numbers up!

Exercise 34. Let P(C) denote the power set of C. Given A = {1,2} and
B = {2,3}, determine:

P(ANB), P(A), P(AUB), P(Ax B).
Solution. e AN B = {2}, therefore P(AN B) = {@, {2}}.
o P(A)={o, {1} {2} {1,2}}.
o AUB = {1,2,3}, therefore P(AUB) = {&, {1}, {2}, {3}, {1,2},{1, 3},{2,3},{1,2,3}}.

e Ax B=1{(1,2),(1,3),(2,2),(2,3)}, therefore P(A x B) contains
- 9, {(172)}7{(173)}7{(272)}v{(273)}7
- {(1,2),(1,3)}1,{(1,2),(2,2)}, {(1,2),(2,3)}.{(1,3),(2,2)}, {(1,3), (2,3)},
{(2,2),(2,3)},
- {(1,2),(1,3),(2,2)},{(1,2), (1,3),(2,3)}.{(1,2),(2,3), (2,2)},{(1,3),(2,2), (2,3) },
B {(17 2)7 (17 3)? (27 2>> (27 3)}

Exercise 35. Prove by contradiction that for two sets A and B

(A-B)N(B-A) = 0.



287

Solution. Suppose by contradiction that (A — B) N (B — A) is not empty.
Then there exists an element x which belongs to both (A — B) and (B — A).
This means that = belongs to A (since x € A — B), and x does not belong
to A (since x € B — A), which is a contradiction! Therefore the assumption
was false, and (A — B) N (B — A) is empty.

Note that from a propositional logic point of view, what we did is set
p=“(A—B)N(B—-A)=0", g="“x € A”, and we prove that

—p— (¢ A\ —q)
which turns out to be equivalent to p.

Exercise 36. Let P(C) denote the power set of C'. Prove that for two sets
A and B
P(A)=P(B) <— A=18B.

Solution. We need to show that P(A) = P(B) - A= B and A = B —
P(A) = P(B).

e suppose P(A) = P(B): then all sets containing one element are the
same for P(A) and P(B), and A = B.

e suppose A = B: subsets of A and subsets of B are the same, and
P(A) = P(B).

Exercise 37. Let P(C) denote the power set of C'. Prove that for two sets
A and B
P(A)C P(B) «<— ACB.

Solution. We need to show that P(A) C P(B) -+ AC Band AC B —
P(A) € P(B).
e suppose P(A) C P(B): then A C P(B), from which A C B.

e suppose A C B: then for any X € P(A), X C A, X C B, therefore
X € P(B).

Exercise 38. Show that the empty set is a subset of all non-null sets.

Solution. Recall the definition of subset: Y C X means by definition that
Ve, (r € Y — z € X). Now take Y to be the empty set @. Since z €
Y is necessarily false (one cannot take any x in the empty set), then the
conditional statement is vacuously true.
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Exercise 39. Show that for two sets A and B
A#B=3x[(x € ANz g€ B)V(xe BAx & A).
Solution.

A#B = —Vz(re€ A< z€B)
Jz—(xz € A <> x € B) (negation of universal quantifier)
= dz-[(r€A—xe€ B)A(x € B— x e A)(definition)
Jz[~(r € A=z € B)V-(reB—xe A)(DeMorgan)
dx[-~(xr ¢ AVe e B)Va(zx g BVxe A)| (Conversion)
= Jx[(zre ANz g B)V(reBAx¢A)| (DeMorgan)

Exercise 40. Prove that for the sets A, B, C, D
(AxB)U(CxD)C(AUuC) x (BUD,.
Does equality hold?

Solution. Suppose = € (A x B)U (C' x D), then © = (x1,25) with z; € A,
ze € B (or x; € C, 9 € D). But then z; € A (or C), and z € B (or
D), therefore x € (AU C) x (BU D). The equality does not hold: take
A=[-1,0], B=[-1,0], C =10,1], D = [0, 1] (all the set are intervals, that

is [a, b] means the interval from a to b). Then

([-1,0] x [-1,0]) U ([0,1] x [0,1]) # [-1,1] x [-1,1].
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Exercise 41. Does the equality
(Al U Az) X (Bl U BQ) = (Al X Bl) U (A2 X BQ)
hold?

Solution. No it does not. For example, take A; = {0}, A, = {1}, By = {0},
BQ = {1}, then
{0,1} x {0, 1} # {(0,0), (1, 1)}

Exercise 42. For all sets A, B, C, prove that

(A-B)—-(B-C)=AUB.
using set identities.

Solution. We have

(A—B) —(B—0) =

NS

O D

gl \@\
|

&

D)

9\

o> D D
~— Q Q)

Q

|
S
CCDE‘:’S
TPz
SES2
5 B W

Both the 3rd and 4rth equality follows from De Morgan’s Laws for sets, and
S = S for any set S. The 5th equality is associativity, while the last equality
is true because (B N () is a subset of B.

Exercise 43. This exercise is more difficult. For all sets A and B, prove
(AUB)NANB = (A—- B)U (B — A) by showing that each side of the
equation is a subset of the other.

Solution. We have to prove that (1) (AUB)NANBC (A—-B)U(B—A)
and (2) (AUB)NANB2(A—B)U(B - A).
Part (1). Suppose that x € (AU B)N AN B, then

(x € (AUB))A (z € AN B).
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Now (z € (AU B)) means that (x € A) V (x € B), that is

(e A)V(ze B)|AN(re ANB)
= [(zreAHAN(xe ANB)|V[(x e B)A(xe AN B)]

using distributivity.

Next (z € AN B) means that © ¢ AN B (z always lives in the universe
U, so it is not repeated). Now the negation of v € ANBis (v ¢ A)V(x & B).
We thus get that (z € A) A (x € AN B) becomes

e MA[(x g AV (@gB]=FViaecA)A(@¢B)

using distributivity. Repeating the same procedure by flipping the role of B
and A in (x € B) A (x € AN B), we finally obtain that

[(z e A)A(z & B)]V[(x € B)A(x & Al

We have thus shown that (AUB)NANBC (A—B)U(B— A).

Part (2). For the second part, we need to show (AUB)NANB D
(A-B)U(B—A).

Suppose thus that € (A — B) U (B — A), that is x € (A — B) or
re(B—A). Ifxe(A—B)then z € A and = ¢ B by definition. Therefore
reAUBand x € ANB.

Similarly, if x € (B — A) then z € B and = ¢ A by definition. Therefore
re AUBand x ¢ AN B.

Exercise 44. The symmetric difference of A and B, denoted by A & B, is
the set containing those elements in either A or B, but not in both A and B.

1. Prove that (A® B) ® B = A by showing that each side of the equation
is a subset of the other.

2. Prove that (A& B) @ B = A using a membership table.

Solution. It is a good idea to draw a Venn diagram to visualize (A & B),
which consists of A U B without the intersection A N B.

1. We have to show that (1) (A®B)® B C A, and (2) (A®B)® B D A.

o (ADB)®B C A: takex € (A®@B)®B. If v € B, thena ¢ A®B
by definition. But then, it must be that B € AN B that is, x € A
as desired. Next if x ¢ B, then € A® B by definition. But then
x is in the union A U B though not in the intersection AN B, and
since it is not in B, it must be in A.
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o (A® B)® B O A: we now start with x € A. If x € B (that is,
xr € ANB), then x ¢ A® B, then v € (A® B) ® B. Next if
r ¢ B,thenz € A® B, and thus z € (A® B) ® B.

2. We construct a membership table as shown next:

A B|AeB|(AeDB)&B
0 0] 0 0
0 1| 1 0
1 0| 1 1
1 1] o0 1

For example, for the second row, x € B but not in A. Then z € A& B.
But then it cannot be in (A @ B) @& B since x is in both B and A& B.
We conclude since both the first and last column are the same.

Exercise 45. In a fruit feast among 200 students, 88 chose to eat durians,
73 ate mangoes, and 46 ate litchis. 34 of them had eaten both durians and
mangoes, 16 had eaten durians and litchis, and 12 had eaten mangoes and
litchis, while 5 had eaten all 3 fruits. Determine, how many of the 200
students ate none of the 3 fruits, and how many ate only mangoes?

Solution. Let us draw a Venn diagram with 3 sets (one for each of the fruits)
and start by identifying the numbers of students who ate all the 3 fruits,
namely 5 of them. Then we identify the number of students who ate two
types of fruits (for example, 34 ate durians and mangoes, so 34-5=29), and
finally only one type of fruit.
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\

32 Mangoes

// ‘\ 2 9 \\\ “
Duri{@ns 43 | /\\5 ‘ , /
[11 —
A |

i 23 Litchis

We thus get a total of 150, meaning that 50 students ate nothing. 32 students
ate only mangoes.

Exercises for Chapter 5

Exercise 46. A set menu proposes 2 choices of starters, 3 choices of main
dishes, and 2 choices of desserts. How many possible set menus are available?

Solution. You have 2 choices of starters, then for any choice, you get 3 choices
of main dishes, or for each of them you get 2 choices of desserts. Therefore
the total is

2-3-2=12.

Exercise 47. Consider the set A = {1,2,3}, P(A) =power set of A.
e Compute the cardinality of P(A) using the binomial theorem approach.
e Compute the cardinality of P(A) using the counting approach.

Solution. e To compute the cardinality of P(A), we need to count the
empty set (1), the number of subset of size 1 ((3)), the number of sets
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of size 2 ((3)) and the whole set (1), therefore:

|P(A)| =1+ (i’) + (2) +1=2

where the last equality follows from the binomial theorem.

e In a counting approach, we write binary strings to identify whether a
given element belongs to a subset, for example 000 corresponds to the
empty set, and 000 is read as 1 is not in this subset, 2 is not, and 3
is not either. Now for every subset, each element either belongs, or
does not belong, therefore we get the 8 possible binary strings, and the
cardinality is 23.

Exercise 48. e Two fair coins are tossed. What is the probaiblity of
getting 2 heads?

e Three fair coins are tossed. What is the probability of getting exactly
2 heads?

Solution. e Two fair coins are tossed, therefore the sample space is
{HH,HT,TH,TT}.
The probability of getting HH is therefore 1/4.
e Three fair coins are tossed, therefore the sample space is
{HHH,HTH,THH,TTH, HHT,HTT,THT,TTT}.

The event getting exactly 2 heads is {HHT, HTH,THH}. Thefore
the probability is 3/8.

Exercise 49. Ten fair coins are tossed together. What is the probability
that there were at least seven heads?

Solution. To have at least seven heads means that the number of heads is
either 7, 8, 9 or 10. The number of patterns for 7 heads is C'(10,7), the
number of patterns for 8 heads is C(10,8), the number of patterns for 9
heads is C'(10,9), and finally C'(10,10) for 10 heads. The total number of
outcomes is 2'9, thus we get

>..0,0(10,4)  120+45+10+1 176
910 - 910 ~ 910
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since

10! 10! 10!
C(10,7) = 75y = 1034, C(10,8) = gy =59, C(10,9) = 7 = 10.

Exercise 50. Snow white is going to a party with the seven dwarves. Each
of the eight of them owns a red dress and a a blue dress. If each of them
is likely to choose either colored dress randomly and independently of the
other’s choices, what is the chance that all of them go to the pary wearing
the same colored dress?

Solution. FEither they all dress in blue, or they all dress in blue, therefore

Exercises for Chapter 6

Exercise 51. Consider the linear recurrence a,, = 2a,_1 — a,_2 with initial
conditions a; = 3, ag = 0.

e Solve it using the backtracking method.
e Solve it using the characteristic equation.

Solution. e We have a,, = 2a,,_1 —a,_2, thus a,,_1 = 2a,,_9s—ap_3, Ap_o =
203 — Up_4, Ap_3 = 20y_4 — Gy_5, €tc therefore

Ap = 20,1 — Qp_2
= 2(20%72 - CLn,3) — U2 = 32 — 20,3
= 3(2an—3 - an—4) —2a,-3 =4a,_3 — 3ap_4

= 4(2an—4 - an—5) - 3an—4 = Olp_4 — 4an—5

We see that a general term is (i + 1)an—; — i@p—(i+1). Therefore the
last term is when n — ¢ — 1 = 0 that is © = n — 1, for which we have
na; — (n — 1)ay, therefore with initial condition ag = 0 and a; = 3, we
get

a, = 3n.
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Optional. Now if one wants to be sure that this is indeed the right
answer, this can be checked using a proof by mathematical induction!
However here, the mathematical induction is slightly different from our
usual one! We have

P(n) = “a, = 3n”,

so the basis step which is P(0) = “ag = 0” holds. However we will also
need a second basis step, which is P(1) = “a; = 3", which still holds.
Now suppose P(k) = “ax = 3k" and P(k — 1) = “ap_y = 3(k — 1)" are
both true. Then

1 = 2ap — ap—q
— 6k —3(k—1)
6k — 3k +3=3k+3=3(k+1)

as needed, where we used both our induction hypotheses!

Suppose now we want to solve the same recurrence using a character-
istic equation. We have 2" = 2z"~! — "2 that is

2" —22" 4" =0 = 2" *(2? -2z +1)=0.
We have 22 — 2z + 1 = (z — 1)?, therefore
Ay, = U + vn.

Then

thus v = 3, yielding

Exercise 52. What is the solution of the recurrence relation

Ap = Qp-1 + 2an—2

with ag =2 and a; = 77

Solution. The characteristic equation is 22 — x — 2 = 0. Its roots are x = —1
and = 2 since (z+1)(x—2) = 0. Therefore a,, = u2"+wv(—1)" is a solution.
We are left with identifying u, v using the initial conditions.

a=2=u+v, ag =2u—v=".
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So u = 3,v = —1, therefore
a, =3-2" — (=1)".

Exercise 53. Let a, = c1a,,_1+c2a,,_o+. . .+cra,_i be a linear homogeneous

recurrence. Assume both sequences a,,a, satisfy this linear homogeneous

recurrence. Show that a, + a/, and aa, also satisfy it, for a some constant.

Solution. We have

an+a, = (c1an-1+ Cano+ ...+ chan_g)+ (10, 1+ c2al, o+ ...+ cral,_,;)
= ci(an-1+a, 1)+ c2(anr2+a, o)+ ...+ cr(an-r +a,_y).

Thus a,, + al, is a solution of the recurrence. Similarly

aa, = o(c1y_1+ 2059+ ...+ CRy_i)

= C1QQp_1+ CQGy_o+ ...+ CraQ,_f.

Therefore aa,, is a solution of the recurrence.

Exercises for Chapter 7

Exercise 54. Set 1 = y/—1. Compute

Solution. First

Note that i* = 1 because i = —1.
Then since i = —1, we have
1
i
Finally since i® = —i, we have
1 1
—_ = — =1
i3 —1

Indeed —i -7 =1.
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Exercise 55. Set i = v/—1. Compute the real part and the imaginary part

of (142) — (2 +14)

(2 — z)(3 + 1)
Solution. We have
(1+2i)— (2+4)  —1+i
(2—9)(3+4) T—i
_ (—1+4)(7+1)
(7 —14)(7+1)
-4 3
BT

Exercise 56. Set i = /—1. Compute d, e € R such that
. 7 .
4—6i+d=—+ei.
1

Solution. Note that for a complex number to be zero, we need both its real
and its imaginary parts to be 0. We thus need 4+d = 0, that is d = —4, and

;7, +ei+ 61 =0,
for which we need e = 1.
Exercise 57. For z1, 2o € C, prove that
* i tm=72+%.
© T =7 5.
Solution. Write z1 = aq + ib1, 29 = ag + 1bs.

e We have

21+ 29 = (a1 + ag) + 'L(bl + bg)
= (CL1 + CLQ) — ’l(bl + bQ)
= al—ib1+a2—’ib2

= Z1+ 2.
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e Similarly:

Zi 22 = (ay +iby)(ag + iby)
= ajay — i(a1bs + bras) — biby
= (a1 —iby)(ag — iby)
= Zi- 2.
Exercise 58. Consider the complex number z in polar form: z = re®.
Express re~? as a function of z.

Solution. Since
z =r(cosf +isind),

we have
re " = r(cos@ — isinf) = z.

Exercise 59. Prove that
(cosx +isinz)" = cosnx + isinnx

for n an integer.
Solution. We have by Euler formula that

e =cosxr +isinz,

thus
(") = e cosnx + i sinn.

Exercise 60. Compute |e?|, 6 € R.
Solution. We have
€% = | cos § + isinf|? = (cos6)* + (sinf)? = 1.
Therefore |e?| = 1.
Exercise 61. Prove the so-called triangle inequality:

la + 0| < la| + 10|, a,beC.
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Solution. Write a = ay + 1as, b = by 4+ ibs. Then
la + b = (a+b)(a+b) = |a|* + |b]* + ab + ab

while
(la] + [b)?* = la|? + 2[al[b] + [b]?

so we are left to show that ab + ab < 2|al|b]. We have
(ll_) = (a1 + iag)(bl -+ Zbg) = Cblbl — aﬂbz 4 iagbl =+ a2b2

and
ab = ((ll + i(lg)(bl + Zbg) = a1b1 + alibg — iagbl + agbg

thus we are left to show that
ab + ab = 2a1b; + 2asby < 2|allb],

or equivalently that (a;by + agbs)? < |ab|?. But |ab|? = (a? + a2)(b? + b3) and
we get
2albla2b2 S a%bg + a%bf <~ 0 S (CleQ - a2b1)2

which is true.

Exercise 62. Compute the two roots of 4¢, that is
Vi
Solution. We have
Vi = 2vi = £2e*™/% = £9(cos 27 /8 + i sin 27/8).

One may further compute that cos27/8 = sin27/8 = 1/4/2 (this is for
example seen by considering a square with edges of size 1). Therefore the
two roots are

+£2(1/V2 +i/V?2).
Exercises for Chapter 8

Exercise 63. Compute the sum A + B of the matrices A and B, where A
and B are as follows:
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300
) V2 V2
2 2 0 v2
=(4) - (00)
where A, B are matrices with coefficients in R.
2.

241 —1 —1 1
A= (2 5) 5= (1))
where A, B are matrices with coefficients in C, and i = /—1.

01 2 10 2
A‘(z 0 2)’B_<0 1 1)

where A, B are matrices with coefficients that are integers mod 3.

What are the dimensions of the matrices involved?

Solution. 1. Matrices are 2 x 2.

A+B:<_21 \f)+(0 \/5):(2 2\/5)

2. Matrices are 2 x 2.
A+rB= (—21++ii _31) * (:i ;> = (—22+z' g)
3. Matrices are 2 x 3.
(101
1. Compute the transpose AT of A for
()

2. Show that (A + B)T = AT + BT,

Exercise 64.
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Solution. 1. We have

0
AT = 1
1

N O =

2. If A has coefficients a; j, then the coefficients of AT are a;;, thus (A +
B)T has coefficients a;; + b;; and (A + B)T = AT + B” as needed.

Exercise 65. Compute

2A+ BC + B>+ AD

(2= e- (0 )

are real matrices and D = [, is the 2-dimensional identity matrix.

where

Solution. First we notice that AD = A, thus 2A+ AD = 3A, and we are left
to compute

3A + BC + B2.
Then
6 0
n-(59)
and
1 -1 -1 0 -3 -1
BC:(O 2)(2 1):<4 2)
and finally
, (1 =1\ (1 -1\ (1 -3
B_(O 2 0o 2/ \o 4
therefore

s (6 0 -3 —1 1 -3\ (4 —4
savscre = (8 0+ (T 0+ (0 D) -0 )

Exercise 66. Consider the complex matrix

0 i
=(500)

where i = v/—1. What is A, for [ > 1.
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Solution. We have

CHICHRCIORT

where [5 is the identity matrix. Thus

w==i(5 )=o)

At = (A%)? = (—ily)? = —1I,.

and

Next
A’ = —A, A = —A% = 115, AT =A% = 1A, A% = (A4)2 = 1.

This shows that A’ is decided by { mod 8, since we may write [ = I’ + 8k for
some integers [', k, and

Al _ Al/+8k _ Al’<A8)k _ Al’

so we conclude that

(A I=1 mod8

—ily [ = mod 8

—iA [ =3 mod8

Al -, 1= mod 8
—-A =5 modS8

iy, 1= mod 8

1A | = mod 8

I [=0 mod38

\

Exercise 67. 1. Let S be the set of 3 x 3 diagonal real matrices. Is S
closed under matrix addition?

A:(_21 f)

Compute a matrix B such that A 4+ B is a diagonal, and a matrix C
such that AC is diagonal.

2. Consider the real matrix
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Solution. 1. Take two diagonal matrices D and E in S

2.

d1 1 O O €11 0 O
D = 0 dg 2 0 s E = 0 €99 0
0 0 d373 0 0 e33

and compute their sum:

d171 + €1,1 0 0
D+ FE = 0 d272 + €22 0
0 0 d3z+es3

thus the sum D+ E belongs to S and S is closed under matrix addition.
We want a matrix B such that
A+ B= ’ ) = ’ ’
+ (—1 1) * (bz,l ba 2 —14+by1 14 0boo
is diagonal. Thefore we need b; » = —3 and by; = 1, then such a matrix

B will work, independently of the choice of b; ; and by 5. Then we want
a matrix C such that

2 3 C11 C12 20171 + 30271 20172 + 362,2
AC = =
-1 1 Co1 C22 —C11t+C1 —Cio+ Coo

is diagonal. For example, we can take c;o = —3 and co2 = 2, and

C21 =2C11-

Exercise 68. Let A and B be n X n matrices which satisfy

A* 4+ AB+A—-1,=0,

where I,, means the n x n identity matrix, and 0 the n X n zero matrix. Show
that A is invertible.

Solution. We can rewrite A2+ AB+ A—1, =0 as

AA+B+1,) =1,

therefore A is invertible with inverse A + B + I,,.
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Exercise 69. Compute, if it exists, the inverse A~! of the matrix A, where
A is given by

for A a real matrix.

(1 14
a=(5)

for A a complex matrix and i = /—1.

()

for A a matrix with coefficients modulo 5.

Solution. e We compute the row echelon form of the augmented matrix
2 3 -2100
A=|-11 2 010
3 7 2 001

Replace the 3rd row by (row 3)+3(row 2)=(3,7,2,0,0,1)+3(—1,1,2,0,1,0)
which is(3,7,2,0,0,1)+(—3,3,6,0,3,0)=(0,10,8,0,3, 1), to get

2 3 =2
-1 1
0 10

(Ol N}

o O =
W = O
_ o O

,0,0)+2(—1,1,2,0,1,0)

Next replace the 1st row by (row 1)42(row 2)=(2, 3, —2, 1
= 2,1,2,0), after which

which is(2,3,-2,1,0,0)+(-2,2,4,0,2,0)=(0,5,2,1,2,
we switch row 1 and 2 to get

-1 1 2 010
0 5 2120
0 10 8 0 3 1
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Next replace the 3rd row by -2(row 2)+(row 3)=(0, —10, —4, —2, —4,0)+(0, 10, 8,0, 3, 1)
which is(0,0,4, -2, —1, 1), to get

-112 0 1 0
0 52 1 2 0

0 04 -2 -1 1

Therefore we can already tell that this matrix is invertible. Next to
find its inverse, let us compute the reduced row echelon form. Replace
row 2 by 2(row 2)-(row 3)=(0, 10,4,2,4,0)-(0,0,4, —2, —1,1) which is
(0,10,0,4,5,—1). We get

-1 1 2 0 1 0
0 100 4 5 -1
0 0 4 -2 -1 1

Next replace (row 1) by 2(row 1)-(row 3)=(—2,2,4,0,2,0)+(0,0, —4,2,1,—-1)=(-2,2,0,2, 3, —1)
to get
-2 2 0 2 3 -1
0O 10 0 4 5 -1
0O 0 4 -2 -1 1
Next we replace (row 1) by -5(row 1)+ (row 2)=(10, —10, 0, —10, —15, 5)+(0, 10,0, 4,5, —1)
which is equal to (10,0,0, —6,—10,4)

10 0 0 -6 —-10 4
0 10 0 4 5 -1
0 0 4 -2 -1 1

We are now left by normalizing the diagonal coefficients to get 1:

100 —6/10 -1 4/10
010 4/10 5/10 —1/10
001 —1/2 —1/4 1/4
This gives us A~

—6/10 -1 4/10
At = 4/10 5/10 —1/10
—1/2 —1/4 1/4

It is always good to compute AA~! to make sure the answer is correct!
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e We compute the row echelon form of

(1 1+i 10
A_(l—i 1 01)‘

We replace (row 2) by (row 2)-(1—i)(row 1)=(1—14,1,0,1)-(1—4,2,1—
i,0)=(0,—1,—-1+14,1), to get

1 142 1 0
0 -1 —1+:¢ 1)°
Thus this matrix is invertible, and we compute its reduced row ech-

elon form. We replace (row 1) by (row 1)+(1 + i)(row 2)=(1,1 +
i,1,0)+(0, —(1 +14), —(L+4)(1 —),1 +17) to get

1 0 -1 1+
0 -1 —-1+: 1 '

Finally we multiply the second row by —1:

10 -1 1+
01 1—¢ -1/

(-1 14
AT = <1 —i -1 )
e We compute the row echelon form of
2310
A= (1 10 1) ‘
We replace (row 1) by (row 1)-2(row 2)=(2, 3,1,0)-2(1,1,0,1)=(0,1, 1, —2),

and switch rows to get
1101
A= (0 11 3) ’

This matrix is thus invertible, and we compute its reduced row echelon
form. Replace row 1 by (row 1)-(row 2)=(1,0, —1,—2) to get

1043
A:(0113)‘

L (43
=18

This gives

Therefore
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Exercise 70. Write the following system of linear equations in a matrix form
and solve it.

T1+ Ty — 2:83 = 1
201 — 319+ 2x3 = —8
31’1 + z9 + 41‘3 = 7

Solution. In matrix form, we get

1 1 —2 X1 1
2 -3 1 To | = | —8
3 1 4 T3 7

We compute the row echelon form of the matrix of the system, augmented
by the vector (1,—8,7): Replace row 2 by (row 2)-2(row 1) and row 3 by
(row 3)-3(row 1):

1 1 =2
0 -5 5 -10
0 -2 10 4
Replace row 3 by 5(row 3)-2(row 2):
11 -2 1
-5 5 —10
0 0 40 40

Divide the last row by 40, we already deduce that x3 = 1, and after dividing
the second row by -5, we get

11 =21
01 -1 2
00 1 1

where we replace row 2 by (row 2)4(row 3):

1 1 =2
0 1
0 0

)

1
3
1
from which we get that xo = 3. Finally, by replacing row 1 by (row 1)42(row

3), and then (row 1) again by (row 1)-(row 2) we get

1
0
0

O = O
_— o O
= w O
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and z1 = 0. In summary, this system has a unique solution, given by
r1=0, zo0=3, z3=1.

Exercise 71. Write the following system of linear equations in a matrix form
and solve it.

X1 — X9+ Ty — T4 = 2

r|— To + T3 + x4 = 0

41‘1 — 45(]2 + 41’3 = 4

—21’1 + 21’2 - 2I3 +x4 = -3

Solution. In matrix form, we have

1 -1 1 =1\ [z 2

1 -1 1 1 | |0

4 -4 4 0 3] | 4
-2 2 =2 1 Ty -3

Next we compute the row echelon form of

1 -1 1 -1 2
1 -1 1 1 0
4 -4 4 0 4
-2 2 =2 1 =3

Replace (row 4) by (row 4)42(row 1) and (row 3) by (row 3)-4(row 1):

1 -1 1 -1 2
1 -1 1 1 0
0O 0 0 4 -4
0 0 0 -1 1

Then row 3 is a multiple of row 4, and replace row 2 by (row 2)-(row 1):

1 -1 1 -1 2
0O 0 0 2 =2
0O 0 0 0 O
0 0 0 -1 1

showing the row 2 is a multiple of row 4, and thus our system reduces to

1 -1 1 -1 2
0 0 0 -1 1
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where we replace row 1 by (row 1)-(row 2):
1 -1 1 0 1
0 0 0 -1 1)°

1'4:—1, [Elzl—f—l’g—{[‘g.

This tells us that

There are infinitely many solutions.

Exercises for Chapter 9

Exercise 72. Consider the sets A = {1,2}, B = {1,2,3} and the relation
(r,y) € R <= (x—vy) is even. Compute the inverse relation R~'. Compute
its matrix representation.

Solution. The relation R is

(1,1),(1,3),(2,2),

therefore the relation R~! is

(1,1),(3,1),(2,2).

Its matrix representation is obtained by representing B as rows, that is row
lis by =1, row 2 is by = 2, row 3 is b3 = 3, while column 1 is a; = 1 and
column 2 is ay = 2:

T F

T
T F

Exercise 73. Consider the sets A = {2,3,4}, B = {2,6,8} and the relation
(r,y) € R < x| y. Compute the matrix of the inverse relation R~

Solution. The relation R is
(2,2),(2,6),(2,8),(3,6), (4,8)
thus the inverse relation R~ is

(2,2),(6,2),(8,2),(6,3),(8,4)
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that is (z,y) € R™! <= 1z is a multiple of y, and the corresponding matrix
is

T F F
T T F
T F T

Exercise 74. Let R be a relation from Z to Z defined by xRy < 2|(z — y).
Show that if n is odd, then n is related to 1.

Solution. Any odd number n can be written of the form n = 2m+ 1 for some
integer m. Therefore n — 1 = 2m which is divisible by 2 and n is related to
1.

Exercise 75. This exercise is about composing relations.

1. Consider the sets A = {ay, a2}, B = {b1,b2}, C = {c1, 2, c3} with the
following relations R from A to B, and S from B to C"

R ={(a1,b1), (a1,b2)}, S ={(b1, c1), (b, 1), (b1, 3), (b2, c2) }-
What is the matrix of R o S7
2. In general, what is the matrix of R o .S?
Solution. 1. Let us write the matrices of R and S first:
T T T F T
(F F) ° (T T F> '
Next we have that (a,c) € Ro S whenever aRb A bSc for some b € B.

So to know, for example, whether (ay,c1) is in Ro .S, we have to check
if we can find a b; such that (ay,b;) A (b;, ¢1), that is whether

[(a1,01) A (by, )] V [(a1, ba) A (b2, 1))

is true. But (a;,b;) means that the coefficient r;; of the matrix R is
true, and similarly (b;, a;) means that the coeflicient s;; of the matrix
S is true. So we may rephrase the coefficient of the 1st row, 1st column
of the matrix of Ro S as

(7“11 A\ 811) V (7’12 A 821).
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Notice that this is almost like doing the scalar product of the first row
of R with the first column of S, except that multiplication is replaced
by A, and addition by V. Therefore, we have that the matrix of Ro S

T T o T F T\ (T T T

F F T T F)] \F F F
2. In general, we have a relation R from A to B, and a relation S from
B to C', where the size of the set B is n. Denote the coefficients of the

matrix of the relation R by r;;, and that of the matrix of the relation
S by si;. Then the matrix of R oS will have coefficients t;; given by

tij = (’ril A Slj) V (TZ‘Q A ng) V...V (Tin A Snj)-

Exercise 76. Consider the relation R on Z, given by aRb <= a — b
divisible by n. Is it symmetric?

Solution. Yes it is symmetric. Suppose aRb, then a — b is divisible by n.
Thus —(a — b) = b — a is divisible by n, and bRa holds.

Exercise 77. Consider a relation R on any set A. Show that R symmetric
if and only if R = R

Solution. Consider a relation R. The relation R™! is defined by pairs (y, z)
such that (z,y) € R. If R is symmetric, it has the property that (z,y) =
(y,z), therefore (y,r) € R and R = R~!. Conversely, if R = R™!, then if
(x,y) € R, it must be that (y,z) € R and R is symmetric.

Exercise 78. Consider the set A = {a,b,c,d} and the relation
R = {(a,a),(a,b),(a,d), (b,a), (b,b), (¢, ), (d, a), (d,d)}.
Is this relation reflexive? symmetric? transitive?

Solution. It is reflexive since (a,a), (b,b), (¢c,c),(d,d) € R. It is symmetric
since (a, b), (b, a), (a,d), (d,a) € R. It is not transitive, indeed, (b, a), (a,d) €
R but (b,d) & R.

Exercise 79. Consider the set A = {0, 1,2} and the relation R = {(0, 2), (1,2),(2,0)}.
Is R antisymmetric?

Solution. No, since (0,2) and (2,0) are in R, but 2 # 0.
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Exercise 80. Are symmetry and antisymmetry mutually exclusive?

Solution. There is no connection between symmetry and antisymmetry, so
no they are not mutually exclusive. For example, the relation A = B is
both symmetric and antisymmetric. Then the relation “A is brother of B”
is neither symmetric (if A is a brother of B, it could be that B is a sister of
A) nor antisymmetric.

Exercise 81. Consider the relation R given by divisibility on positive inte-
gers, that is Ry <> z|y. Is this relation reflexive? symmetric? antisymmet-
ric? transitive? What if the relation R is now defined over non-zero integers
instead?

Solution. It is reflexive since z|x always. It is not symmetric, since for exam-
ple 1|y but y will never divide 1 if y > 1. It is antisymmetric, since if x|y then
y = ax while if y|z then = by and it must be that y = ax = a(by) = aby
and a = b = 1. It is transitive, since x|y and y|z imply y = ax, z = by thus
z =by = b(ax) and z|z.

If we consider instead non-zero integers, the relation is not antisymmetric,
indeed y = ax = a(by) = aby could imply a = b = —1 in which case z|y and
y|lxr when y = —x is possible.

Exercise 82. Consider the set A = {0,1,2,3,4,5,6,7,8}. Show that the
relation xRy < 2|(z — y) is an equivalence relation.

Solution. It is reflexive: 2|(z —x). It is symmetric: if 2|(x —y) then (z —y) =
2n for some integer n, and thus (y — x) = —2n showing that 2|(y — z). It is
transitive: if 2|(x —y) and 2|(y — 2), then (z —y) = 2n, and (y — z) = 2m, for
some integers m, n. Therefore t —z = (x—y)+ (y—2) = 2n+2m = 2(n+m)
and 2|(x — 2).

Exercise 83. Show that given a set A and an equivalence relation R on A,
then the equivalence classes of R partition A.

Solution. Let a,b € A, and [a], [b] denote their equivalence classes. It is
possible that [a] = [b]. Suppose that this is not the case. Then we will show
that [a] and [b] are disjoint. Suppose by contradiction that there exists one
element ¢ € [a] N [b]. Then aRc and bRe. But R is an equivalence relation,
therefore it is symmetric (and cRb) and transitive, implying that aRb. But
then b € [a] and a € [b] by symmetry, and it must be that [a] = [b]. Indeed:
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we show that [a] C [b] and [b] C [a]. Take an element z of [a], then aRz,
that is xRa (symmetry), and since aRb (b is in [a]), it must be that xRb
(transitivity) and thus bRz (symmetry again), which shows that z is in [b)].
The same reasoning will show that [b] belongs to [a.

Since either [a] = [b] or they are disjoint, take the union of the classes [a]
that give distinct classes, and this gives a partition of A.

Exercise 84. Consider the set A = {2,3,4,5,6,7,8,9,10} and the relation
TRy <> Jc e Z, y=cx.
Is R an equivalence relation? is R a partial order?

Solution. R is reflexive: zRx < dc € Z, x = cx, take ¢ = 1. R is not
T 1

symmetric: xRy means x = cy, but then y = % so apart if ¢ = £1, - will
not be in Z. For example, 2R4 since 4 = ¢2 with ¢ = 2, but 2 = ¢4 means
that ¢ cannot be an integer. We conclude that R cannot be an equivalence
relation.

Let us check antisymmetry and transitivity. Suppose y = cx and x = 'y,
then x = dcx and dc = 1. So either ¢ = ¢ = —1, which cannot happen
because all elements of A are positive, or ¢ = ¢ = 1, and the relation is
antisymmetric. For transitivity, suppose tRy <= y = cx, yRz <— 2z =
c'y. Then z = 'y = cx with ¢ € Z thus xRz as needed. We conclude that

R is a partial order.
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Exercises for Chapter 10

Exercise 85. Consider the set A = {a,b,c} with power set P(A) and N:
P(A) x P(A) — P(A). What is its domain? its co-domain? its range?
What is the cardinality of the pre-image of {a}?

Solution. Its domain is the cartesian product P(A) x P(A), its co-domain is
P(A). Itsrange is P(A): indeed, for any subset X of A, XNX = X, therefore
every element of P(A) has a pre-image. The pre-image of {a} is the set of
elements in P(A) x P(A) which are mapped to {a}, that is, pairs (X,Y) of
subsets of A whose intersection is {a}. Now {a}, {a, b}, {a,c},{a,b,c} are all
the subsets containing {a}, so this gives 2* possible pairs, but among them,
not all are suitable: we have to remove those with bigger intersection. So we
can intersect {a} with all of them:

({a},{a}), ({a},{a,b}), ({a},{a,c}), ({a},{a,b,c}),

or {a, c} with {a,b}. Note that the ordering of a pair matters, thus all those
pairs give rise to another pair, apart for ({a}, {a}) thus a total of 9.

Exercise 86. Show that sin : R — R is not one-to-one.

Solution. We have that sin(0) = sin(7) = 0 but 7 # 0, which contradicts the
definition of one-to-one, since there exist x; = 0,29 = 7 such that sin(x;) =
sin(zy) but xy # s.

Exercise 87. Show that sin : R — R is not onto, but sin : R — [—1, 1] is.

Solution. It is not onto because dy € R, say y = 2, such that for all x € R,

f@) #2.
Exercise 88. Is h: Z — Z, h(n) = 4n — 1, onto (surjective)?

Solution. No, it is not. For example, take y = 1. Then it is not possible that
1 = 4n — 1 for n an integer, because this equation means that n = 1/2.

Exercise 89. Is f : R — R, f(x) = 23, a bijection (one-to-one correspon-
dence)?

Solution. Injectivity: suppose f(x1) = f(x2), then z} = z3 and it must be

that z; = x5. Surjectivity: take y € R, and v = ¢y € R, then f(z) =y, so
surjectivity holds. Therefore it is a bijection.
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Exercise 90. Consider f: R - R, f(z) =2? and g : R —» R, g(z) = = + 5.
What is go f? What is f o g?

Solution. We have

9(f(@)) = g(a®) = 2 +5, f(g(z)) = f(z +5) = (z +5)™.

Exercise 91. Consider f:Z — Z, f(n) =n+1and g:Z — Z, g(n) = n>.
What is go f? What is f o g7

Solution. We have

9(f(n)) =gln+1)=(n+1)* flg(n)) = f(n*)=n*+1.

Exercise 92. Given two functions f: X - VY, g:Y - Z. lfgof: X - 272
is one-to-one, must both f and g be one-to-one? Prove or give a counter-
example.

Solution. 1t is not true. For example, take f : X — Y andg:Y — Z as
follows, X ={a,b,c}, Y ={w,z,y,z}, Z ={1,2,3}:

fla) =z, f(b) =y, flc) =2z glw) =1, g(x) =1, g(y) =2, g(z) =3.
Then g o f is one-to-one, but ¢ is not.

Exercise 93. Show that if f : X — Y is invertible with inverse function
f1:Y = X, then f~'of=ixand fof™' =iy.

Solution. Take x € X, with y = f(z). Then f~'(f(z)) = f~'(y) = = by
definition of inverse, and z = ix(z) for all z € X therefore f~' o f = iy.
Similarly take y € Y and x = f~(y). Then f(f'(y)) = f(z) = y by
definition of inverse, and y = iy (y) for all y € Y therefore f o f~! = iy.

Exercise 94. If you pick five cards from a deck of 52 cards, prove that at
least two will be of the same suit.

Solution. If you pick 5 cards, then the first one will be of a given suit (say
heart), if the second is also heart, then you got two of the same suit. If the
second is not heart (say diamond), then take a 3rd. If it is either heart or
diamond, then you got at least two of the same suit, if not, say it is club,
pick a 4rth card. Again, if the 4rth card is heart, diamond of club, you got
at least two of the same suit, if not, it must be that this 4rth card is spade.
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But now all the 4 possible choices of suits are picked, so no matter what
is the next suit of the card, it will be one that has already appeared. This
shows that you will always get at least two cards of the same suit. This is
an application of the pigeonhole principle: you have 4 suits, and 5 cards,
therefore 2 cards must be of the same suit.

Exercise 95. If you have 10 black socks and 10 white socks, and you are
picking socks randomly, you will only need to pick three to find a matching
pair.

Solution. Pick the first sock, it is say white. Pick the second sock, if it white,
then you got a matching pair. If not, pick a third one. But by now, you
have already one white and one black sock, so no matter which is the color
of the third one, ou will have a matching pair. This is an application of the
pigeonhole principle: you have 2 colors, and 3 socks, therefore 2 socks must
be of the same color.

Exercises for Chapter 11

Exercise 96. Prove that if a connected graph G has exactly two vertices
which have odd degree, then it contains an FEuler path.

Solution. Suppose that v and w are the vertices of G which have odd degrees,
while all the other vertices have an even degree. Create a new graph G,
formed by G, with one more edge e, which connects v and w. Every vertex
in G’ has even degree, so by the theorem on Euler cycles, there is an Euler
cycle. Say this Euler cycle is

v, €1,V2,€2,...,W,€E,V

then

v,€1,V2,€2,...,W

is an Euler path.

Exercise 97. Draw a complete graph with 5 vertices.
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Solution.

Exercise 98. Show that in every graph G, the number of vertices of odd
degree is even.

Solution. Let E denote the set of edges, and write the set V' of vertices as

V'U V" where V' is the set of nodes with odd degrees, and V" is the set of
nodes with even degrees. Suppose that the number of vertices of odd degree

is odd, then
2|E| = Zdeg(v) = Z + Z

veV veV’  veV”
where the first sum (over V’) is odd and the second sum is even, a contra-
diction.

Exercise 99. Show that in very simple graph (with at least two vertices),
there must be two vertices that have the same degree.

Solution. Suppose there are n nodes. If all degrees are different, they must
be exactly 0,1,...,n — 1, which is impossible: one cannot have one node of
degree 0, yet another one with degree n — 1!

Exercise 100. Decide whether the following graphs contain a Euler path/cycle.
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Solution. The first graph (left hand side) contains a Euler path and no Euler
circuit, the middle graph contains a Euler circuit, the third one contains
nonel!
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